204,647 research outputs found

    CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection

    Full text link
    Robust face detection in the wild is one of the ultimate components to support various facial related problems, i.e. unconstrained face recognition, facial periocular recognition, facial landmarking and pose estimation, facial expression recognition, 3D facial model construction, etc. Although the face detection problem has been intensely studied for decades with various commercial applications, it still meets problems in some real-world scenarios due to numerous challenges, e.g. heavy facial occlusions, extremely low resolutions, strong illumination, exceptionally pose variations, image or video compression artifacts, etc. In this paper, we present a face detection approach named Contextual Multi-Scale Region-based Convolution Neural Network (CMS-RCNN) to robustly solve the problems mentioned above. Similar to the region-based CNNs, our proposed network consists of the region proposal component and the region-of-interest (RoI) detection component. However, far apart of that network, there are two main contributions in our proposed network that play a significant role to achieve the state-of-the-art performance in face detection. Firstly, the multi-scale information is grouped both in region proposal and RoI detection to deal with tiny face regions. Secondly, our proposed network allows explicit body contextual reasoning in the network inspired from the intuition of human vision system. The proposed approach is benchmarked on two recent challenging face detection databases, i.e. the WIDER FACE Dataset which contains high degree of variability, as well as the Face Detection Dataset and Benchmark (FDDB). The experimental results show that our proposed approach trained on WIDER FACE Dataset outperforms strong baselines on WIDER FACE Dataset by a large margin, and consistently achieves competitive results on FDDB against the recent state-of-the-art face detection methods

    Efficient Detection of Objects and Faces with Deep Learning

    Get PDF
    Object detection is a fundamental problem in computer vision and is an essential building block for many applications such as autonomous driving, visual search, and object tracking. Given its large-scale and real-time applications, scalable training and fast inference are critical. Deep neural networks, although powerful in visual recognition, can be computationally expensive. Besides, they introduce shortcomings such as lack of scale-invariance and inaccurate predictions in crowded scenes that can affect detection. This dissertation studies the intrinsic problems which emerge when deep convolutional neural networks are used for object and face detection. We introduce methods to overcome these issues which are not only accurate but also efficient. First, we focus on the problem of lack of scale-invariance. Performing inference on a multi-scale image pyramid, although effective, increases computation noticeably. Moreover, multi-scale inference really blooms when the model is also trained using expensive multi-scale approaches. As a result, we start by introducing an efficient multi-scale training algorithm called "SNIPER" (Scale Normalization for Image Pyramids with Efficient Re-sampling). Based on the ground-truth annotations, SNIPER sparsely samples high-resolution image regions wherever needed. In contrast to training, at inference, there is no ground-truth information to guide region sampling. Thus, we propose "AutoFocus". AutoFocus predicts regions to be zoomed-in from low resolutions at inference time, making it possible to skip a large portion of the input pyramid. While being as efficient as single-scale detectors, these methods boost performance noticeably. Second, we study the problem of efficient face detection. Compared to generic objects, faces are rigid and crowded scenes containing hundreds of faces with extreme scales are more common. In this dissertation, we present "SSH" (Single Stage Headless Face Detector). A method that unlike two-stage localization/classification detectors, performs both tasks in a single stage, efficiently models scale variation by design, and removes most of the parameters from its underlying network, but still achieves state-of-the-art results on challenging benchmarks. Furthermore, for the two-stage detection paradigm, we introduce "FA-RPN" (Floating Anchor Region Proposal Network). FA-RPN takes the spatial structure of faces into account and allows modification of the prediction density during inference to efficiently deal with crowded scenes. Finally, we turn our attention to the first step in two-stage localization/classification detectors. While neural networks were deployed for classification, localization was previously solved using classic algorithms which became the bottleneck. To remedy, we propose "G-CNN" which models localization as a search in the space of all possible bounding boxes and deploys the same neural network used for classification. Furthermore, for tasks such as saliency detection, where the number of predictions is typically small, we develop an alternative approach that runs at speeds close to 120 frames/second

    OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks

    Full text link
    We present an integrated framework for using Convolutional Networks for classification, localization and detection. We show how a multiscale and sliding window approach can be efficiently implemented within a ConvNet. We also introduce a novel deep learning approach to localization by learning to predict object boundaries. Bounding boxes are then accumulated rather than suppressed in order to increase detection confidence. We show that different tasks can be learned simultaneously using a single shared network. This integrated framework is the winner of the localization task of the ImageNet Large Scale Visual Recognition Challenge 2013 (ILSVRC2013) and obtained very competitive results for the detection and classifications tasks. In post-competition work, we establish a new state of the art for the detection task. Finally, we release a feature extractor from our best model called OverFeat

    Single-Shot Refinement Neural Network for Object Detection

    Full text link
    For object detection, the two-stage approach (e.g., Faster R-CNN) has been achieving the highest accuracy, whereas the one-stage approach (e.g., SSD) has the advantage of high efficiency. To inherit the merits of both while overcoming their disadvantages, in this paper, we propose a novel single-shot based detector, called RefineDet, that achieves better accuracy than two-stage methods and maintains comparable efficiency of one-stage methods. RefineDet consists of two inter-connected modules, namely, the anchor refinement module and the object detection module. Specifically, the former aims to (1) filter out negative anchors to reduce search space for the classifier, and (2) coarsely adjust the locations and sizes of anchors to provide better initialization for the subsequent regressor. The latter module takes the refined anchors as the input from the former to further improve the regression and predict multi-class label. Meanwhile, we design a transfer connection block to transfer the features in the anchor refinement module to predict locations, sizes and class labels of objects in the object detection module. The multi-task loss function enables us to train the whole network in an end-to-end way. Extensive experiments on PASCAL VOC 2007, PASCAL VOC 2012, and MS COCO demonstrate that RefineDet achieves state-of-the-art detection accuracy with high efficiency. Code is available at https://github.com/sfzhang15/RefineDetComment: 14 pages, 7 figures, 7 table
    • …
    corecore