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Object detection is a fundamental problem in computer vision and is an essential

building block for many applications such as autonomous driving, visual search, and ob-

ject tracking. Given its large-scale and real-time applications, scalable training and fast

inference are critical. Deep neural networks, although powerful in visual recognition,

can be computationally expensive. Besides, they introduce shortcomings such as lack of

scale-invariance and inaccurate predictions in crowded scenes that can affect detection.

This dissertation studies the intrinsic problems which emerge when deep convolutional

neural networks are used for object and face detection. We introduce methods to over-

come these issues which are not only accurate but also efficient.

First, we focus on the problem of lack of scale-invariance. Performing inference on

a multi-scale image pyramid, although effective, increases computation noticeably. More-

over, multi-scale inference really blooms when the model is also trained using expensive

multi-scale approaches. As a result, we start by introducing an efficient multi-scale train-

ing algorithm called “SNIPER” (Scale Normalization for Image Pyramids with Efficient



Re-sampling). Based on the ground-truth annotations, SNIPER sparsely samples high-

resolution image regions wherever needed. In contrast to training, at inference, there is

no ground-truth information to guide region sampling. Thus, we propose “AutoFocus”.

AutoFocus predicts regions to be zoomed-in from low resolutions at inference time, mak-

ing it possible to skip a large portion of the input pyramid. While being as efficient as

single-scale detectors, these methods boost performance noticeably.

Second, we study the problem of efficient face detection. Compared to generic ob-

jects, faces are rigid and crowded scenes containing hundreds of faces with extreme scales

are more common. In this dissertation, we present “SSH” (Single Stage Headless Face

Detector). A method that unlike two-stage localization/classification detectors, performs

both tasks in a single stage, efficiently models scale variation by design, and removes

most of the parameters from its underlying network, but still achieves state-of-the-art re-

sults on challenging benchmarks. Furthermore, for the two-stage detection paradigm, we

introduce “FA-RPN” (Floating Anchor Region Proposal Network). FA-RPN takes the

spatial structure of faces into account and allows modification of the prediction density

during inference to efficiently deal with crowded scenes.

Finally, we turn our attention to the first step in two-stage localization/classification

detectors. While neural networks were deployed for classification, localization was pre-

viously solved using classic algorithms which became the bottleneck. To remedy, we

propose “G-CNN” which models localization as a search in the space of all possible

bounding boxes and deploys the same neural network used for classification. Further-

more, for tasks such as saliency detection, where the number of predictions is typically

small, we develop an alternative approach that runs at speeds close to 120 frames/second.
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Chapter 1: Introduction

Detection, the problem of localizing and classifying objects in a visual scene, is

fundamental in computer vision. Object detection is an essential building block for many

applications such as autonomous driving, visual search, and object tracking. Given its

large-scale and real-time applications, an object detection system is truly valuable if it is

not only accurate but also efficient.

Deep convolutional neural networks (CNNs) are among the most effective approaches

for describing visual data. In their simplest forms, these networks process images through

several blocks, each of which usually consists of convolution operations, a down-sampling

operation, and a non-linearity. Although powerful in visual recognition and successfully

applied to the task of image classification [1], they introduce important shortcomings

when it comes to object detection.

An important limitation that affects detection significantly is the lack of scale-

invariance. To put it in another way, CNNs in their simple form, perform poorly in

describing objects that appear in extreme sizes and scales, and deploying them for lo-

calization is more challenging than classification. Especially, in face detection scenarios,

where crowded scenes with hundreds of small faces are common, care should be taken

when designing the localization stage of the detection systems.

1



The goal of this dissertation is to study the intrinsic shortcomings that emerge when

deep convolutional neural networks are deployed for the tasks of object and face detection

and to propose solutions that are not only accurate but also efficient. The following sub-

sections give an overview of the topics covered in this dissertation.

1.1 Lack of Scale-Invariance: Efficient Multi-Scale Object Detection

Objects appear in different scales. This is while CNNs have a difficult time describ-

ing objects in extreme scales. To make it more clear, consider a classification CNN. Due

to the existence of the down-sampling (pooling) operations, the spatial resolution of the

feature maps extracted from the image keeps decreasing. After some layers, it is very

hard to extract features from objects which are relatively small in the original image. It

should be noted that these operations cannot be simply removed. Partly due to mem-

ory constraints, and partly because the pooling operations are necessary to aggregate the

contextual information for describing visual content.

A possible solution is to apply the CNN to an image pyramid consisting of the re-

sampled versions of the input at different scales. Although effective, such an approach

would increase the computation noticeably during inference. Moreover, multi-scale infer-

ence blooms when the model is also trained in a similar multi-scale fashion. However, this

significantly increases the training time, making training data-extensive CNNs intractable

on large-scale datasets.

We introduce SNIPER (Scale Normalization for Image Pyramids with Efficient Re-

Sampling). SNIPER is an efficient multi-scale training algorithm with “scale normaliza-
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tion”. Not all objects are reliably detectable in all pyramid levels. As a result, enforcing

the model to correctly classify all objects in all scales leads to noisy parameter updates.

Consequently, SNIPER assigns objects to their correct pyramid level based on their scales.

Moreover, SNIPER performs efficient input re-sampling. That is, instead of processing

the whole image pyramid, it adaptively re-samples a sparse number of regions, referred to

as “chips”, from the high-resolution pyramid levels. These low-resolution chips are sam-

pled based on the ground-truth information as well as the estimated hard negative regions.

While being in contrast to the current trend in using high-resolution inputs for instance-

level recognition tasks, SNIPER achieves state-of-the-art results in object detection and

instance segmentation. Besides, by reducing the input resolution, increasing the training

batch size, and skipping a large portion of the image pyramid, it makes the computation

cost of multi-scale training comparable to single-stage training.

Unlike training, there is no ground-truth information available at inference time to

guide chip re-sampling. To speed up multi-scale inference, we propose AutoFocus. Auto-

Focus starts from processing the lowest scale in the image pyramid and besides detection,

it also predicts regions in the image that need to be further zoomed-in for more reliable lo-

calization. Only those regions are then processed in higher resolutions. With this strategy,

it is possible to extend the idea of low-resolution chip processing from training to infer-

ence. AutoFocus can be as efficient as single-scale processing but noticeably improves

the performance on challenging benchmarks.
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1.2 Faces: Efficient Detection in the Wild

Compared to generic objects, faces are more rigid, and spatial relations between

the parts are more persistent. Besides, crowded scenes containing many faces are more

common. When it comes to face detection, the detector is expected to perform well, even

when there are hundreds of tiny faces in a single scene.

We introduce the “SSH” (Single Stage Headless) face detector. Most state-of-the-

art detectors consist of two stages, namely localization (proposal generation), and classi-

fication. In contrast, SSH is a single-stage detector performing both localization and clas-

sification concurrently. For efficient scale-invariance, SSH places multiple light-weight

detection modules on different internal feature maps of a CNN with different resolutions.

Each of these modules is specialized to detect faces from a specific range of scales (i.e.

small, medium, large), allowing SSH to detect faces of various scales in a single network

forward pass. As another step towards efficiency, SSH replaces most of the parameters of

its underlying classification network with a light-weight detection head. All of which en-

able SSH to achieve state-of-the-art results while being comparably faster than previous

approaches.

Besides, we also study the popular two-stage detection paradigm in which localiza-

tion is addressed by a proposal generation stage. We propose “FA-RPN” (Floating Anchor

Region Proposal Network). A proposal generation algorithm that ties parameters to spa-

tial locations inside the full extent of the objects which is especially beneficial for rigid

objects like faces. Moreover, it allows iterative refinement of proposals and modifying

the density of proposals at inference time efficiently, without requiring further training.
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These features make it an effective approach, especially in crowded scenes.

1.3 Deep Learning and Efficient Localization

Most state-of-the-art object detectors consist of two stages: localization and classi-

fication. In the localization phase, hundreds of bounding boxes (proposals) are generated

which with a high probability contain objects. In the second stage, these boxes are classi-

fied into one of the object categories or background.

Classification networks are naturally applied to the second stage. However, classic

proposal generation approaches [2] were previously deployed for the localization stage,

making it the bottleneck in object detection systems. To overcome this, we propose “G-

CNN” where a single CNN is used for both localization and classification. To do so, we

model localization as a search in the space of all possible bounding boxes. Starting from

a regular grid, G-CNN iteratively moves and scale boxes towards objects in the scene

and classifies them. By removing the external proposal generation algorithm, as well

as solving both sub-problems with a unified network, G-CNN performs detection more

efficiently compared to its predecessors.

When the number of predictions is expected to be small, it is possible to reduce

the computation of the localization stage more. Consider the task of saliency detection

where the goal is to localize only a few most visually salient objects in the scene. For this

application, we propose a real-time detection algorithm by reformulating the localization

problem. Instead of proposing hundreds of candidate boxes and then classifying them,

we model localization by directly predicting a saliency map over the image. Once this

5



saliency map is predicted, it is possible to infer the same number of bounding boxes as

the existing salient objects present in the image. This strategy significantly speeds up the

process, leading to a system that meets real-time requirements.

1.4 Outline

The rest of this dissertation is organized as follows. Chapters 2 and 3 focus on the

problem of lack of scale-invariance in CNNs and propose efficient methods for training

and performing inference on multi-scale image pyramids. Chapters 4 and 5 discuss the

problem of face detection and efficient ways to detect faces from a wide range of scales

and in crowded scenes. Chapters 6 and 7 study the problem of efficient localization

with deep learning for tasks of generic and salient object detection. Finally, chapter 8

concludes the dissertation.
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Chapter 2: SNIPER: Efficient Multi-Scale Training

2.1 Introduction

Humans have a foveal visual system which attends to objects at a fixed distance and

size. For example, when we focus on nearby objects, far away objects get blurred [3].

Naturally, it is difficult for us to focus on objects of different scales simultaneously [4].

We only process a small field of view at any given point of time and adaptively ignore the

remaining visual content in the image. However, computer algorithms which are designed

for instance level visual recognition tasks like object detection depart from this natural

way of processing visual information. For obtaining a representation robust to scale,

popular detection algorithms like Faster-RCNN/Mask-RCNN [5, 6] are trained on a multi-

scale image pyramid [7, 8]. Since every pixel is processed at each scale, this approach

to processing visual information increases the training time significantly. For example,

constructing a 3 scale image pyramid (e.g. scales=1x,2x,3x) requires processing 14 times

the number of pixels present in the original image. For this reason, it is impractical to use

multi-scale training in many scenarios.

Recently, it is shown that ignoring gradients of objects which are of extreme reso-

lutions is beneficial while using multiple scales during training [8]. For example, when

constructing an image pyramid of 3 scales, the gradients of large and small objects should
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be ignored at large and small resolutions respectively. If this is the case, an intuitive ques-

tion which arises is, do we need to process the entire image at a 3x resolution? Wouldn’t

it suffice to sample a much smaller RoI (chip) around small objects at this resolution? On

the other hand, if the image is already high resolution, and objects in it are also large in

size, is there any benefit in upsampling that image?

While ignoring significant portions of the image would save computation, a smaller

chip would also lack context required for recognition. A significant portion of background

would also be ignored at a higher resolution. So, there is a trade-off between computa-

tion, context and negative mining while accelerating multi-scale training. To this end, we

present a novel training algorithm called Scale Normalization for Image Pyramids with

Efficient Resampling (SNIPER), which adaptively samples chips from multiple scales of

an image pyramid, conditioned on the image content. We sample positive chips con-

ditioned on the ground-truth instances and negative chips based on proposals generated

by a region proposal network. Under the same conditions (fixed batch normalization),

we show that SNIPER performs as well as the multi-scale strategy proposed in SNIP [8]

while reducing the number of pixels processed by a factor of 3 during training on the

COCO dataset. Since SNIPER is trained on 512x512 size chips, it can reap the benefits

of a large batch size and training with batch-normalization on a single GPU node. In

particular, we can use a batch size of 20 per GPU (leading to a total batch size of 160),

even with a ResNet-101 based Faster-RCNN detector. While being efficient, SNIPER ob-

tains competitive performance on the COCO detection dataset even with simple detection

architectures like Faster-RCNN.
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2.2 Background

Deep learning based object detection algorithms have primarily evolved from the

R-CNN detector [9], which started with object proposals generated with an unsupervised

algorithm [2], resized these proposals to a canonical 224x224 size image and classified

them using a convolutional neural network [10]. This model is scale invariant, but the

computational cost for training and inference for R-CNN scales linearly with the number

of proposals. To alleviate this computational bottleneck, Fast-RCNN [11] proposed to

project region proposals to a high level convolutional feature map and use the pooled fea-

tures as a semantic representation for region proposals. In this process, the computation

is shared for the convolutional layers and only lightweight fully connected layers are ap-

plied on each proposal. However, convolution for objects of different sizes is performed

at a single scale, which destroys the scale invariance properties of R-CNN. Hence, infer-

ence at multiple scales is performed and detections from multiple scales are combined by

selecting features from a pair of adjacent scales closer to the resolution of the pre-trained

network [12, 11]. The Fast-RCNN model has since become the de-facto approach for

classifying region proposals as it is fast and also captures more context in its features,

which is lacking in RCNN.

It is worth noting that in multi-scale training, Fast-RCNN upsamples and downsam-

ples every proposal (whether small or big) in the image. This is unlike R-CNN, where

each proposal is resized to a canonical size of 224x224 pixels. Large objects are not

upsampled and small objects are not downsampled in R-CNN. In this regard, R-CNN

more appropriately does not up/downsample every pixel in the image but only in those
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regions which are likely to contain objects to an appropriate resolution. However, R-

CNN does not share the convolutional features for nearby proposals like Fast-RCNN,

which makes it slow. To this end, we propose SNIPER, which retains the benefits of both

these approaches by generating scale specific context-regions (chips) that cover maxi-

mum proposals at a particular scale. SNIPER classifies all the proposals inside a chip

like Fast-RCNN which enables us to perform efficient classification of multiple proposals

within a chip. As SNIPER does not upsample the image where there are large objects

and also does not process easy background regions, it is significantly faster compared to

a Fast-RCNN detector trained on an image pyramid.

SNIP [8] is also trained on almost all the pixels of the image pyramid (like Fast-

RCNN), although gradients arising from objects of extreme resolutions are ignored. In

particular, 2 resolutions of the image pyramid (480 and 800 pixels) always engage in

training and multiple 1000 pixel crops are sampled out of the 1400 pixel resolution of

the image in the finest scale. SNIPER takes this cropping procedure to an extreme level

by sampling 512 pixels crops from 3 scales of an image pyramid. At extreme scales

(like 3x), SNIPER observes less than one tenth of the original content present in the

image! Unfortunately, as SNIPER chips generated only using ground-truth instances are

very small compared to the resolution of the original image, a significant portion of the

background does not participate in training. This causes the false positive rate to increase.

Therefore, it is important to generate chips for background regions as well. In SNIPER,

this is achieved by randomly sampling a fixed number of chips (maximum of 2 in the

experiments) from regions which are likely to cover false positives. To find such regions,

we train a lightweight RPN network with a short schedule. The proposals of this network
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are used to generate chips for regions which are likely to contain false positives (this

could potentially be replaced with unsupervised proposals like EdgeBoxes [13] as well).

After adding negative chip sampling, the performance of SNIPER matches SNIP, but it is

3 times faster! Since we are able to obtain similar performance by observing less than one

tenth of the image, it implies that very large context during training is not important for

training high-performance detectors but sampling regions containing hard negatives is.

2.3 SNIPER

We describe the major components of SNIPER in this section. One is positive/negative

chip mining and the other is label assignment after chips are generated. Finally, we will

discuss the benefits of training with SNIPER.

2.3.1 Chip Generation

SNIPER generates chips Ci at multiple scales {s1, s2, .., si, ..sn} in the image. For

each scale, the image is first re-sized to width (Wi) and height (Hi). On this canvas,

K ×K pixel chips are placed at equal intervals of d pixels (we set d to 32). This leads to

a two-dimensional array of chips at each scale.

2.3.2 Positive Chip Selection

For each scale, there is a desired area range Ri = [rimin, r
i
max], i ∈ [1, n] which

determines which ground-truth boxes/proposals participate in training for each scale i.

The valid list of ground-truth bounding boxes which lie inRi are referred to as Gi. Then,
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chips are greedily selected so that maximum number of valid ground-truth boxes (Gi) are

covered. A ground-truth box is said to be covered if it is completely enclosed inside a

chip. All the positive chips from a scale are combined per image and are referred to as

Cipos. For each ground-truth bounding box, there always exists a chip which covers it.

Since consecutiveRi contain overlapping intervals, a ground-truth bounding box may be

assigned to multiple chips at different scales. It is also possible that the same ground-

truth bounding box may be in multiple chips from the same scale. Ground-truth instances

which have a partial overlap (IoU ¿ 0) with a chip are cropped. All the cropped ground-

truth boxes (valid or invalid) are retained in the chip and are used in label assignment.

In this way, every ground-truth box is covered at the appropriate scale. Since the

crop-size is much smaller than the resolution of the image (i.e. more than 10x smaller

for high-resolution images), SNIPER does not process most of the background at high-

resolutions. This leads to significant savings in computation and memory requirement

while processing high-resolution images. We illustrate this with an example shown in

Figure 2.1. The left side of the figure shows the image with the ground-truth boxes rep-

resented by green bounding boxes. Other colored rectangles on the left side of the figure

show the chips generated by SNIPER in the original image resolution which cover all ob-

jects. These chips are illustrated on the right side of the figure with the same border color.

Green and red bounding boxes represent the valid and invalid ground-truth objects cor-

responding to the scale of the chip. As can be seen, in this example, SNIPER efficiently

processes all ground-truth objects in an appropriate scale by forming 4 low-resolution

chips.
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Figure 2.1: SNIPER Positive chip selection. SNIPER adaptively samples context regions
(aka chips) based on the presence of objects inside the image. Left side: The image,
ground-truth boxes (represented by green lines), and the chips in the original image scale
(represented by the blue, yellow, pink, and purple rectangles). Right side: Down/up-
sampling is performed considering the size of the objects. Covered objects are shown in
green and invalid objects in the corresponding scale are shown as red rectangles.

2.3.3 Negative Chip Selection

Although positive chips cover all the positive instances, a significant portion of the

background is not covered by them. Incorrectly classifying background increases the

false positive rate. In current object detection algorithms, when multi-scale training is

performed, every pixel in the image is processed at all scales. Although training on all

scales reduces the false positive rate, it also increases computation. We posit that a sig-

nificant amount of the background is easy to classify and hence, we can avoid performing

any computation in those regions. So, how do we eliminate regions which are easy to

classify? A simple approach is to employ object proposals to identify regions where ob-

jects are likely to be present. After all, our classifier operates on region proposals and

if there are no region proposals in a part of the image, it implies that it is very easy to

classify as background. Hence, we can ignore those parts of the image during training.
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To this end, for negative chip mining, we first train RPN for a couple of epochs. No

negative chips are used for training this network. The task of this network is to roughly

guide us in selecting regions which are likely to contain false positives, so it is not nec-

essary for it to be very accurate. This RPN is used to generate proposals over the entire

training set. We assume that if no proposals are generated in a major portion of the image

by RPN, then it is unlikely to contain an object instance. For negative chip selection, for

each scale i, we first remove all the proposals which have been covered in Cipos. Then,

for each scale i, we greedily select all the chips which cover at least M proposals in Ri.

This generates a set of negative chips for each scale per image, Cineg. During training, we

randomly sample a fixed number of negative chips per epoch (per image) from this pool

of negative chips which are generated from all scales, i.e.
⋃n
i=1 Cineg. Figure 2.2 shows

examples of the generated negative chips by SNIPER. The first row shows the image and

the ground-truth boxes. In the bottom row, we show the proposals not covered by Cipos

and the corresponding negative chips generated (the orange boxes). However, for clar-

ity, we represent each proposal by a red circle in its center. As illustrated, SNIPER only

processes regions which likely contain false positives, leading to faster processing time.

2.3.4 Label Assignment

Our network is trained end to end on these chips like Faster-RCNN, i.e. it learns

to generate proposals as well as classify them with a single network. While training,

proposals generated by RPN are assigned labels and bounding box targets (for regression)

based on all the ground-truth boxes which are present inside the chip. We do not filter
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Figure 2.2: SNIPER negative chip selection. First row: the image and the ground-truth
boxes. Bottom row: negative proposals not covered in positive chips (represented by red
circles located at the center of each proposal for the clarity) and the generated negative
chips based on the proposals (represented by orange rectangles).

ground-truth boxes based on Ri. Instead, proposals which do not fall in Ri are ignored

during training. So, a large ground-truth box which is cropped, could generate a valid

proposal which is small. Like Fast-RCNN, we mark any proposal which has an overlap

greater than 0.5 with a ground-truth box as positive and assign bounding-box targets for

the proposal. Our network is trained end to end and we generate 300 proposals per chip.

We do not apply any constraint that a fraction of these proposals should be re-sampled

as positives [5], as in Fast-RCNN. We did not use OHEM [14] for classification and

use a simple softmax cross-entropy loss for classification. For assigning RPN labels, we

use valid ground-truth boxes to assign labels and invalid ground-truth boxes to invalidate

anchors, as done in SNIP [8].

2.3.5 Benefits

For training, we randomly sample chips from the whole dataset for generating a

batch. On average, we generate ∼ 5 chips of size 512x512 per image on the COCO
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dataset (including negative chips) when training on three scales (512/ms 1, 1.667, 3).

This is only 30% more than the number of pixels processed per image when single scale

training is performed with an image resolution of 800x1333. Since all our images are of

the same size, data is much better packed leading to better GPU utilization which easily

overcomes the extra 30% overhead. But more importantly, we reap the benefits of multi-

scale training on 3 scales, large batch size and training with batch-normalization without

any slowdown in performance on a single 8 GPU node.

It is commonly believed that high resolution images (e.g. 800x1333) are necessary

for instance level recognition tasks. Therefore, for instance level recognition tasks, it

was not possible to train with batch-normalization statistics computed on a single GPU.

Methods like synchronized batch-normalization [7, 15] or training on 128 GPUs [16]

have been proposed to alleviate this problem. Synchronized batch-normalization slows

down training significantly and training on 128 GPUs is also impractical for most people.

Therefore, group normalization [17] has been recently proposed so that instance level

recognition tasks can benefit from another form of normalization in a low batch setting

during training. With SNIPER, we show that the image resolution bottleneck can be

alleviated for instance level recognition tasks. As long as we can cover negatives and use

appropriate scale normalization methods, we can train with a large batch size of resampled

low resolution chips, even on challenging datasets like COCO. Our results suggest that

context beyond a certain field of view may not be beneficial during training. It is also

possible that the effective receptive field of deep neural networks is not large enough to

leverage far away pixels in the image, as suggested in [18].

1max(widthim,heightim)
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In very large datasets like OpenImagesV4 [19] containing 1.7 million images, most

objects are large and images provided are high resolution (1024x768), so it is less impor-

tant to upsample images by 3×. In this case, with SNIPER, we generate 3.5 million chips

of size 512x512 using scales of (512/ms, 1). Note that SNIPER also performs adaptive

downsampling. Since the scales are smaller, chips would cover more background, due to

which the impact of negative sampling is diminished. In this case (of positive chip se-

lection), SNIPER processes only half the number of pixels compared to naı̈ve multi-scale

training on the above mentioned scales in OpenImagesV4. Due to this, we were able to

train Faster-RCNN with a ResNet-101 backbone on 1.7 million images in just 3 days on

a single 8 GPU node!

2.4 Experimental Details

We evaluate SNIPER on the COCO dataset for object detection. COCO contains

123,000 images in the training and validation set and 20,288 images in the test-dev set.

We train on the combined training and validation set and report results on the test-dev set.

Since recall for proposals is not provided by the evaluation server, we train on 118,000

images and report recall on the remaining 5,000 images (commonly referred to as the

minival set).

On COCO, we train SNIPER with a batch-size of 128 and with a learning rate of

0.015. We use a chip size of 512×512 pixels. Training scales are set to (512/ms, 1.667, 3)

where ms is the maximum value width and height of the image2. The desired area ranges

(i.e. Ri) are set to (0,802), (322, 1502), and (1202, inf) for each of the scales respectively.
2For the first scale, zero-padding is used if the smaller side of the image becomes less than 512 pixels.
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Training is performed for a total of 6 epochs with step-down at the end of epoch 5. Image

flipping is used as a data-augmentation technique. Every epoch requires 11,000 iterations.

For training RPN without negatives, each epoch requires 7000 iterations. We use RPN

for generating negative chips and train it for 2 epochs with a fixed learning rate of 0.015

without any step-down. Therefore, training RPN for 2 epochs requires less than 20% of

the total training time. RPN proposals are extracted from all scales. Note that inference

takes 1/3 the time for a full forward-backward pass and we do not perform any flipping for

extracting proposals. Hence, this process is also efficient. We use mixed precision training

as described in [20]. To this end, we re-scale weight-decay by 100, drop the learning rate

by 100 and rescale gradients by 100. This ensures that we can train with activations of

half precision (and hence ∼ 2x larger batch size) without any loss in accuracy. We use

fp32 weights for the first convolution layer, last convolution layer in RPN (classification

and regression) and the fully connected layers in Faster-RCNN.

We evaluate SNIPER using a popular detector, Faster-RCNN with ResNets [21, 22]

and MobileNetV2 [23]. Proposals are generated using RPN on top of conv4 features and

classification is performed after concatenating conv4 and conv5 features. In the conv5

branch, we use deformable convolutions and a stride of 1. We use a 512 dimensional

feature map in RPN. For the classification branch, we first project the concatenated feature

map to 256 dimensions and then add 2 fully connected layers with 1024 hidden units. For

lightweight networks like MobileNetv2 [23], to preserve the computational processing

power of the network, we did not make any architectural changes to the network like

changing the stride of the network or added deformable convolutions. We reduced the

RPN dimension to 256 and size of fc layers to 512 from 1024. RPN and classification
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Method AR AR50 AR75 0-25 25-50 50-100 100-200 200-300
ResNet-101 With Neg 65.4 93.2 76.9 41.3 65.8 74.5 76.9 78.7
ResNet-101 W/o Neg 65.4 93.2 77.6 40.8 65.7 74.7 77.4 79.3

Table 2.1: We plot the recall for SNIPER with and without negatives. Surprisingly, recall
is not effected by negative chip sampling

branch are both applied on the layer with stride 32 for MobileNetv2.

SNIPER generates 1.2 million chips for the COCO dataset after the images are

flipped. This results in around 5 chips per image. In some images which contain many

object instances, SNIPER can generate as many as 10 chips and others where there is a

single large salient object, it would only generate a single chip. In a sense, it reduces the

imbalance in gradients propagated to an instance level which is present in detectors which

are trained on full resolution images. At least in theory, training on full resolution images

is biased towards large object instances.

2.4.1 Recall Analysis

We observe that recall (averaged over multiple overlap thresholds 0.5:0.05:0.95) for

RPN does not decrease if we do not perform negative sampling. This is because recall

does not account for false positives. As shown in Section 2.4.2, this is in contrast to mAP

for detection in which negative sampling plays an important role. Moreover, in positive

chip sampling, we do cover every ground truth sample. Therefore, for generating propos-

als, it is sufficient to train on just positive samples. This result further bolsters SNIPER’s

strategy of finding negatives based on an RPN in which the training is performed just on

positive samples.
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2.4.2 Negative Chip Mining and Scale

SNIPER uses negative chip mining to reduce the false positive rate while speeding

up the training by skipping the easy regions inside the image. As proposed in Section

2.3.3, we use a region proposal network trained with a short learning schedule to find

such regions. To evaluate the effectiveness of our negative mining approach, we compare

SNIPER’s mean average precision with a slight variant which only uses positive chips

during training (denoted as SNIPER w/o neg). All other parameters remain the same. Ta-

ble 2.2 compares the performance of these models. The proposed negative chip mining

approach noticeably improves AP for all localization thresholds and object sizes. Notice-

ably, negative chip mining improves the average precision from 43.4 to 46.1. This is in

contrast to the last section where we were evaluating proposals. This is because mAP is

affected by false positives. If we do not include regions in the image containing negatives

which are similar in appearance to positive instances, it would increase our false positive

rate and adversely affect detection performance.

SNIPER is an efficient multi-scale training algorithm. In all experiments, we use

the aforementioned three scales (See Section 2.4 for the details). To show that SNIPER

effectively benefits from multi-scale training, we reduce the number of scales from 3 to

2 by dropping the high resolution scale. Table 2.2 shows the mean average precision for

SNIPER under these two settings. As can be seen, by reducing the number of scales, the

performance consistently drops by a large margin on all evaluation metrics.
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Method Backbone AP AP50 AP75 APS APM APL

SNIPER ResNet-101 46.1 67.0 51.6 29.6 48.9 58.1
SNIPER 2 scale ResNet-101 43.3 63.7 48.6 27.1 44.7 56.1

SNIPER w/o negatives ResNet-101 43.4 62.8 48.8 27.4 45.2 56.2

Table 2.2: The effect training on 2 scales (1.667 and max size of 512). We also show the
impact in performance when no negative mining is performed.

2.4.3 Timing

It takes 14 hours to train SNIPER end to end on a 8 GPU V100 node with a Faster-

RCNN detector which has a ResNet-101 backbone. It is worth noting that we train on

3 scales of an image pyramid (max size of 512, 1.667 and 3). Training RPN is much

more efficient and it only takes 2 hours for pre-training. Not only is SNIPER efficient

in training, it can also process around 5 images per second on a single V100 GPU. For

better utilization of resources, we run multiple processes in parallel during inference and

compute the average time it takes to process a batch of 100 images.

2.4.4 Inference

We perform inference on an image pyramid and scale the original image to the fol-

lowing resolutions (480, 512), (800, 1280) and (1400, 2000). The first element is the min-

imum size with the condition that the maximum size does not exceed the second element.

The valid ranges for training and inference are similar to SNIP [8]. For combining the

detections, we use Soft-NMS [24]. We do not perform flipping [25], iterative bounding

box regression [26] or mask tightening [7].
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2.4.5 Comparison with State-of-the-art

It is difficult to fairly compare different detectors as they differ in backbone archi-

tectures (like ResNet [21], ResNext [27], Xception [28]), pre-training data (e.g. ImageNet-

5k, JFT [29], OpenImages [19]), different structures in the underlying network (e.g multi-

scale features [30, 31], deformable convolutions [32], heavier heads [16], anchor sizes,

path aggregation [7]), test time augmentations like flipping, mask tightening, iterative

bounding box regression etc.

Therefore, we compare our results with SNIP [8], which is a recent method for train-

ing object detectors on an image pyramid. The results are presented in Table 2.3. Without

using batch normalization [33], SNIPER achieves comparable results. While SNIP [8]

processes almost all the image pyramid, SNIPER on the other hand, reduces the com-

putational cost by skipping easy regions. Moreover, since SNIPER operates on a lower

resolution input, it reduces the memory footprint. This allows us to increase the batch size

and unlike SNIP [8], we can benefit from batch normalization during training. With batch

normalization, SNIPER significantly outperforms SNIP in all metrics. It should be noted

that not only the proposed method is more accurate, it is also 3× faster during training. To

the best of our knowledge, for a Faster-RCNN architecture with a ResNet-101 backbone

(with deformable convolutions), our reported result of 46.1% is state-of-the-art. This re-

sult improves to 46.8% if we pre-train the detector on the OpenImagesV4 dataset. Adding

an instance segmentation head and training the detection network along with it improves

the performance to 47.6%.

With our efficient batch inference pipeline, we can process 5 images per second on

22



Method Backbone AP AP50 AP75 APS APM APL

SSD MobileNet-v2 22.1 - - - - -
SNIP ResNet-50 (fixed BN) 43.6 65.2 48.8 26.4 46.5 55.8

ResNet-101 (fixed BN) 44.4 66.2 49.9 27.3 47.4 56.9
MobileNet-V2 34.1 54.4 37.7 18.2 36.9 46.2

ResNet-50 (fixed BN) 43.5 65.0 48.6 26.1 46.3 56.0
SNIPER ResNet-101 46.1 67.0 51.6 29.6 48.9 58.1

ResNet-101 + OpenImages 46.8 67.4 52.5 30.5 49.4 59.6
ResNet-101 + OpenImages + Seg Binary 47.1 67.8 52.8 30.2 49.9 60.2

ResNet-101 + OpenImages + Seg Softmax 47.6 68.5 53.4 30.9 50.6 60.7
SNIPER ResNet-101 + OpenImages + Seg Softmax 38.9 62.9 41.8 19.6 41.2 55.0
SNIPER ResNet-101 + OpenImages + Seg Binary 41.3 65.4 44.9 21.4 43.5 58.7

Table 2.3: Ablation analysis and comparison with full resolution training. Last two rows
show instance segmentation results when the mask head is trained with N+1 way softmax
loss and binary softmax loss for N classes.

a single V100 GPU and still obtain an mAP of 47.6%. This implies that on modern GPUs,

it is practical to perform inference on an image pyramid which includes high resolutions

like 1400x2000. We also show results for Faster-RCNN trained with MobileNetV2. It

obtains an mAP of 34.1% compared to the SSDLite [23] version which obtained 22.1%.

This again highlights the importance of image pyramids (and SNIPER training) as we can

improve the performance of the detector by 12%.

We also show results for instance segmentation. The network architecture is same

as Mask-RCNN [6], just that we do not use FPN [30] and use the same detection architec-

ture which was described for object detection. For multi-tasking, we tried two variants of

loss functions for training the mask branch. One was a foreground-background softmax

function for N classes and another was a N+1 way softmax function. For instance seg-

mentation, the network which is trained with 2-way Softmax loss for each class clearly

performs better. But, for object detection, the N+1 way Softmax loss leads to slightly

better results. We only use 3 scales during inference and do not perform flipping, mask
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tightening, iterative bounding-box regression, padding masks before resizing etc. Our

instance segmentation results are preliminary and we have only trained 2 models so far.

2.5 Related Work

SNIPER benefits from multiple techniques which were developed over the last year.

Notably, it was shown that it is important to train with batch normalization statistics

[16, 7, 15] for tasks like object detection and semantic segmentation. This is one impor-

tant reason for SNIPER’s better performance. SNIPER also benefits from a large batch

size which was shown to be effective for object detection [16]. Like SNIP [8], SNIPER

ignores gradients of objects at extreme scales in the image pyramid to improve multi-scale

training.

In the past, many different methods have been proposed to understand the role of

context [34, 35, 36], scale [37, 38, 30, 31] and sampling [39, 14, 40, 41]. Considerable

importance has been given to leveraging features of different layers of the network and

designing architectures for explicitly encoding context/multi-scale information [31, 42,

25, 43] for classification. Our results highlight that context may not be very important for

training high performance object detectors.

2.6 Conclusion

We presented an algorithm for efficient multi-scale training which sampled low

resolution chips from a multi-scale image pyramid to accelerate multi-scale training by a

factor of 3 times. In doing so, SNIPER did not compromise on the performance of the
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detector due to effective sampling techniques for positive and negative chips. As SNIPER

operates on re-sampled low resolution chips, it can be trained with a large batch size

on a single GPU which brings it closer to the protocol for training image classification.

This is in contrast with the common practice of training on high resolution images for

instance-level recognition tasks.
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Chapter 3: AutoFocus: Efficient Multi-Scale Inference

3.1 Introduction

Human vision is foveal and active [44, 45]. The fovea, which observes the world

at high-resolution, only corresponds to 5 degrees of the total visual field [46]. Our lower

resolution peripheral vision has a field of view of 110 degrees [47]. To find objects, our

eyes perform saccadic movements which rely on peripheral vision [48]. When moving

between different fixation points, the region in between is simply ignored, a phenomenon

known as saccadic masking [49, 50, 51]. Hence, finding objects is an active process and

the search time depends on the complexity of the scene. For example, locating a face

in a portrait photograph would take much less time than finding every face in a crowded

market.

Adaptive processing, which is quite natural, brings several benefits. Many appli-

cations do not have real-time requirements and detectors are applied offline on billions

of images/videos. Therefore, computational savings in a batch mode provide substantial

monetary benefits. Examples include large-scale indexing of images and videos for visual

search, APIs provided by cloud services, smart retail stores etc. While there is work on

image classification which performs conditional computation [52, 53, 54], modern ob-

ject detection algorithms perform static inference and process every pixel of a multi-scale
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Figure 3.1: Area of objects of different sizes and the background in the COCO validation
set. Objects are divided based on their area (in pixels) into small, medium, and large.

image pyramid to detect objects of different sizes [8, 55, 16]. This is a very inefficient

process as the algorithm spends equal energy at every pixel at different scales.

To provide some perspective, we show the percentage of pixels occupied per image

for different size objects in the COCO dataset in Fig 3.1. Even though 40% of the object

instances are small, they only occupy 0.3% of the area. If the image pyramid includes a

scale of 3, then just to detect such a small fraction of the dataset, we end up performing

9 times more computation at finer-scales. If we add some padding around small objects

to provide spatial context and only upsample these regions, their area would still be small

compared to the resolution of the original image. So, when performing multi-scale infer-

ence, can we predict regions containing small objects from coarser scales?

If deep convolutional neural networks are an approximation of biological vision,

it should be possible to localize object-like regions at lower resolution and recognize

them by zooming on them at higher resolution - similar to the way our peripheral vision

is coupled with foveal vision. To this end, we propose an object detection framework

called AutoFocus, which adopts a coarse to fine approach and learns where to look in the

next (larger) scale in the image pyramid. Thus, it saves computation while processing
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finer scales. This is achieved by predicting category agnostic binary segmentation maps

for small objects, which we refer to as FocusPixels. A simple algorithm which operates

on FocusPixels is designed to generate chips for the next image scale. AutoFocus only

processes 20% of the image at the largest scale in the pyramid on the COCO dataset,

without any drop in performance. This can be improved to as little as 5% with a 1% drop

in performance.

3.2 Related Work

Image pyramids [56] and convolutional neural networks [10] are fundamental build-

ing blocks in the computer vision pipeline. Unfortunately, convolutional neural networks

are not scale invariant. Therefore, for instance-level visual recognition problems, to rec-

ognize objects of different sizes, it is beneficial to rely on image pyramids [8]. While

efficient training solutions have been proposed for multi-scale training [55], inference on

image pyramids remains a computational bottleneck which prohibits their use in prac-

tice. Recently, a few methods have been proposed to accelerate multi-scale inference, but

they have only been evaluated under constrained settings like pedestrian/face detection

or object detection in videos [57, 58, 59, 60, 61, 62]. In this work, we propose a simple

and pragmatic framework to accelerate multi-scale inference for generic object detection

which is evaluated on benchmark datasets.

Accelerating object detection has a long history in computer vision. The Viola-

Jones detector [63] is a classic example. It rejects easy regions with simple filters and

spends more energy on promising object-like regions to accelerate the process. Several
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methods since then have been proposed to improve it [64, 65, 66]. Prior to deep-learning

based object detectors, it was common to employ a multi-scale approach for object detec-

tion [67, 68, 69, 70, 71, 72] and several effective solutions were proposed to accelerate

detection on image pyramids. Common techniques involved approximation of features to

reduce the number of scales [71, 72], cascades [64, 73] or feature pyramids [74]. Recently,

feature-pyramids have been extensively studied and employed in deep learning based ob-

ject detectors as the representation provides a boost in accuracy without compromising

speed [75, 42, 38, 37, 30, 76, 31, 6, 39, 7]. Although the use of image pyramids is com-

mon in challenge winning entries which primarily focus on performance [21, 32, 16, 7],

efficient detectors which operate on a single low-resolution image (e.g. YOLO [77], SSD

[42], RetinaNet [39]) are commonly deployed in practice. This is because multi-scale

inference on pyramids of high-resolution images is prohibitively expensive.

AutoFocus alleviates this problem to a large extent and is designed to provide a

smooth trade-off between speed and accuracy. It shows that it is possible to predict the

presence of a small object at a coarser scale (referred to as FocusPixels) which enables

avoiding computation in large regions of the image at finer scales. These are different

from object proposals [78, 2, 5] where region candidates need to have a tight overlap

with objects. Learning to predict FocusPixels is an easier task and does not require

instance-level reasoning. AutoFocus shares the motivation with saliency and reinforce-

ment learning based methods which perform a guided search while processing images

[79, 80, 81, 82, 83, 84, 85, 86, 87], but it is designed to predict small objects in coarser

scales and they need not be salient.
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3.3 Background

We provide a brief overview of SNIP, which is the multi-scale training and infer-

ence method described in [8]. The core idea is to restrict the training samples to be in a

pre-defined scale range which is appropriate for the input scale. For example, the detector

is only trained on small objects at high resolution (larger scale) and large objects at low

resolution (smaller scale). Because it is not trained on large objects at high resolution

images, it is unlikely to detect them during inference as well. Rules are also defined to

ignore large detections in high-resolution images during inference and vice-versa. There-

fore, while merging detections from multiple scales, SNIP simply ignores large detections

in high resolution images which contain most of the pixels.

Since the size of objects is known during training, it is possible to ignore large

regions of the image pyramid by only processing appropriate context regions around ob-

jects. SNIPER [55] showed that training on such low resolution chips with appropriate

scaling does not lead to any drop in performance when compared to training on full-

resolution images. If we can automatically predict these chips for small objects at a

coarser scale, we may not need to process the entire high-resolution image during infer-

ence as well. But when these chips are generated during training, many object instances

get cropped and their size changes. This did not hurt performance during training and can

also be regarded as a data augmentation strategy. Unfortunately, if chips are generated

during inference and an object is cropped into multiple parts, it would increase the error

rate. So, apart from predicting where to look at the next scale, we also need to design an

algorithm which correctly merges detections from chips at multiple scales.
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3.4 The AutoFocus Framework

Classic features like SIFT [88] / SURF [89], combine two major components - the

detector and the descriptor. The detector typically involved lightweight operators like Dif-

ference of Gaussians (DoG) [90], Harris Affine [91], Laplacian of Gaussians (LoG) [92]

etc. The detector was applied on the entire image to find interesting regions. Therefore,

the descriptor, which was computationally expensive, only needed to be computed for

these interesting regions. This cascaded model of processing the image made the entire

pipeline efficient.

Likewise, the AutoFocus framework is designed to predict interesting regions in

the image and discards regions which are unlikely to contain objects at the next scale. It

zooms and crops only such interesting regions when applying the detector at successive

scales. AutoFocus is comprised of three main components: the first learns to predict

FocusPixels, the second generates FocusChips for efficient inference and the third merges

detections from multiple scales, which we refer to as focus stacking for object detection.

3.4.1 FocusPixels

FocusPixels are defined at the granularity of the convolutional feature map (like

conv5). A pixel in the feature map is labelled as a FocusPixel if it has any overlap with

a small object. An object is considered to be small if it falls in an area range (between 5

× 5 and 64 × 64 pixels in our implementation) in the resized chip (Sec. 3.4.2) which is

input to the network . To train our network, we mark FocusPixels as positives. We also

define some pixels in the feature map as invalid. Those pixels which overlap objects that
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have an area smaller or slightly larger than those defined as small are considered invalid

(smaller than 5 × 5 or between 64 × 64 and 90 × 90). All other pixels are considered

as negatives. AutoFocus is trained to generate high activations on regions which contain

FocusPixels.

Formally, given an image of size X × Y , and a fully convolutional neural network

whose stride is s, then the labelsLwill be of sizeX ′×Y ′, whereX ′ = dX
s
e and Y ′ = dY

s
e.

Since the stride is s, each label l ∈ L corresponds to s× s pixels in the image. The label

l is defined as follows,

l =



1, IoU(GT, l) > 0, a <
√
GTArea < b

−1, IoU(GT, l) > 0,
√
GTArea < a

−1, IoU(GT, l) > 0, b <
√
GTArea < c

0, otherwise

where IoU is intersection over union of the s×s label block with the ground truth bound-

ing box. GTArea is the area of the ground truth bounding box after scaling. a is typically

5, b is 64 and c is 90. If multiple ground-truth bounding boxes overlap with a pixel, Fo-

cusPixels (l = 1) are given precedence. Since our network is trained on 512 × 512 pixel

chips, the ratio between positive and negative pixels is around 10, so we do not perform

any re-weighting for the loss. Note that during multi-scale training, the same ground-truth

could generate a label of 1, 0 or -1 depending on how much it has been scaled. The reason

we regard pixels for medium objects as invalid (l = −1) is that the transition from small

to large objects is not visually obvious. Extremely small objects in each scale are also
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Figure 3.2: The figure illustrates how FocusPixels are assigned at multiple scales of an
image. At scale 1 (b), the smallest two elephants generate FocusPixels, the largest one
is marked as background and the one on the left is ignored during training to avoid pe-
nalizing the network for borderline cases (see Sec. 3.4.1 for assignment details). The
labelling changes at scales 2 and 3 as the objects occupy more pixels. For example, only
the smallest elephant would generate FocusPixels at scale 2 and the largest two elephants
would generate negative labels.

marked as invalid because after the early down-sampling operations, the network does

not have sufficient information to make a correct prediction about them at that particular

scale. The labelling scheme is visually depicted in Fig 3.2. For training the network, we

add two convolutional layers (3×3 and 1×1) with a ReLU non-linearity on top of the

conv5 feature-map. Finally, we have a binary softmax classifier to predict FocusPixels,

shown in Fig 3.3.

3.4.2 FocusChip Generation

During inference, we mark those pixels P in the output as FocusPixels, where the

probability of foreground is greater than a threshold t, which is a parameter controlling

the speed-up and can be set with respect to the desired speed accuracy trade-off. This

generates a number of connected components S. We dilate each component with a filter

of size d × d to increase contextual information needed for recognition. After dilation,
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Figure 3.3: The figure illustrates how AutoFocus detects a person and a racket in an
image. The green borders and arrows are for inference at the original resolution. The
blue borders and arrows are shown when inference is performed inside FocusChips. In
the first iteration, the network detects the person and also generates a heat-map to mark
regions containing small objects. This is depicted in the white/grey map - it is used to
generate FocusChips. In the next iteration, the detector is then applied inside FocusChips
only. Inside FocusChips, there could be detections for the cropped object present at the
larger resolution. Such detections are pruned and finally valid detections are stacked
across multiple scales.

components which become connected are merged. Then, we generate chips C which

enclose these connected components. Note that chips of two connected components could

overlap. As a result, these chips are merged and overlapping chips are replaced with their

enclosing bounding-boxes. Some connected components could be very small, and may

lack the contextual information needed to perform recognition. Many small chips also

increase fragmentation which results in a wide range of chip sizes. This makes batch-

inference inefficient. To avoid these problems, we ensure that the height and width of a

chip is greater than a minimum size k. This process is described in Algorithm 1. Finally,

we perform multi-scale inference on an image pyramid but successively prune regions

which are unlikely to contain objects.
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Algorithm 1: FocusChip Generator
Input : Predictions for feature map P , threshold t, dilation constant d,

minimum size of chip k
Output: Chips C

1 Transform P into a binary map using the threshold t
2 Dilate P with a d× d filter
3 Obtain a set of connected components S from P
4 Generate enclosing chips C of size > k for each component in S
5 Merge chips C if they overlap
6 return Chips C

3.4.3 Focus Stacking for Object Detection

One issue with such cascaded multi-scale inference is that some detections at the

boundary of the chips can be generated for cropped objects which were originally large.

At the next scale, due to cropping, they could become small and generate false positives,

such as the detections for the horse and the horse rider on the right, shown in Fig 3.4c. To

alleviate this effect, Step 2 in Algorithm 1 is very important. Note that when we dilate the

map P and generate chips, this ensures that no interesting object at the next scale would

be observed at the boundaries of the chip (unless the chip shares a border with the image

boundary). Otherwise, it would be enclosed by the chip, as these are generated around the

dilated maps. Therefore, if a detection in the zoomed-in chip is observed at the boundary,

we discard it, even if it is within valid SNIP ranges, such as the horse rider eliminated in

Fig 3.4d.

There are some corner cases when the detection is at the boundary (or boundaries

x, y) of the image. If the chip shares one boundary with the image, we still check if the

other side of the detection is completely enclosed inside or not. If it is not, we discard it,

else we keep it. In another case, if the chip shares both the sides with the image boundary
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(a) (b) (c) (d)

Figure 3.4: Pruning detections while FocusStacking. (a) Original Image (b) The predicted
FocusPixels and the generated FocusChip (c) Detection output by the network (d) Final
detections for the FocusChip after pruning.

and so does the detection, then we keep the detection.

Once valid detections from each scale are obtained using the above rules, we merge

detections from all the scales by projecting them to the image co-ordinates after applying

appropriate scaling and translation. Finally, Non-Maximum Suppression is applied to ag-

gregate the detections. The network architecture and an example of multi-scale inference

and focus stacking is shown in Fig 3.3.

3.5 Datasets and Experiments

We evaluate AutoFocus on the COCO [93] and the PASCAL VOC [94] datasets. As

our baseline, we use the SNIPER detector1 [55] which obtains an mAP of 47.9% (68.3%

at 50% overlap) on the COCO test-dev set and 47.5% (67.9% at 50% overlap) on the

COCO validation set. We add the fully convolutional layers for AutoFocus which predict

the FocusPixels. No other changes are made to the architecture or the training schedule.

We use Soft-NMS [24] at test-time for Focus Stacking with σ = 0.55. Following SNIPER

[55], the resolutions used for the 3 scales at inference are S1=(480, 512), S2=(800, 1280),

and S3=(1400, 2000). The first resolution is the minimum size of a side and the second

1http://www.github.com/mahyarnajibi/SNIPER
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one is the maximum in pixels. The scales corresponding to these resolutions are referred

to as scales 1, 2 and 3 respectively in the following sections.

Since FocusChips of different size are generated, we group chips which are of sim-

ilar size and aspect ratio to achieve a high batch inference throughput. In some cases, we

need to perform padding when performing batch inference, which can slightly change the

number of pixels processed per image. For large datasets, this overhead is negligible as

the number of groups (for size and aspect ratio) can be increased without reducing the

batch size.

3.5.1 Stats for FocusPixels and FocusChips

In high resolution images (scale 3), the percentage of FocusPixels is very low (i.e.

∼ 4%). So, ideally a very small part of the image needs to be processed at high resolution.

Since the image is upsampled, the FocusPixels projected on the image occupy an area of

632 pixels on average (the highest resolution images have an area of 16022 pixels on

average). At lower scales (like scale 2), although the percentage of FocusPixels increases

to ∼ 11%, their projections only occupy an area of 1022 pixels on average (each image at

this scale has an average area of 9402 pixels). After dilating FocusPixels with a kernel of

size 3 × 3, their percentages at scale 3 and scale 2 change to 7% and 18% respectively.

Using the chip generation algorithm, for a given minimum chip size (like k = 512),

we also compute the upper bound on the speedup which can be obtained. This is under the

assumption that FocusPixels can be predicted without any error (i.e. based on GTs). The

bound for the speedup can change as we change the minimum chip size in the algorithm.
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Figure 3.5: Upper-bound on the speed-up using FocusChips generated from optimal Fo-
cusPixels.

Fig 3.5 shows the effect of the minimum chip size parameter k for FocusChip generation

in algorithm 1. The same value is used at each scale. For example, reducing the minimum

chip size from 512 to 64 can lead to a theoretical speedup of ∼ 10 times over the baseline

which performs inference on 3 scales. However, a significant reduction in minimum chip

size can also affect detection performance - a reasonable amount of context is necessary

for retaining high detection accuracy.

3.5.2 Quality of FocusPixel prediction

We evaluate how well our network predicts FocusPixels at different scales. To

measure the performance, we use two criteria. First, we measure recall for predicting

FocusPixels at two different resolutions. This is shown in Fig 3.6a. This gives us an

upper bound on how accurately we localize small objects using low resolution images.

However, not all ground-truth objects which are annotated might be correctly detected.

Note that our eventual goal is to accelerate the detector. Therefore, if we crop a region

in the image which contains a ground-truth instance but the detector is not able to detect

it, cropping that region would not be useful. The final effectiveness of FocusChips is
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Figure 3.6: Quality of the FocusPixels and FocusChips. The x-axis represents the ratio
of the area of FocusPixels or FocusChips to that of the image. The y-axis changes as
follows, (a) FocusPixel recall is computed based on the GT boxes (b) FocusPixel recall is
computed using the confident detections (c) FocusChip recall is computed based on the
GT boxes (d) FocusChip recall is computed based on the confident detections.

coupled with the detector, hence we also evaluate the accuracy of FocusPixel prediction

on regions which are confidently detected as shown in Fig 3.6b. To this end, we only

consider FocusPixels corresponding to those GT boxes which are covered (IoU > 0.5) by

a detection with a score greater than 0.5. At a threshold of 0.5, the detector still obtains an

mAP of 47% which is within 1% of the final mAP and does not have a high false positive

rate.

As expected, we obtain better recall at higher resolutions with both metrics. We

can cover all confident detections at the higher resolution (scale 2) when the predicted

FocusPixels cover just 5% of total image area. At a lower resolution (scale 1), when the

FocusPixels cover 25% of the total image area, we cover all confident detections, see Fig

3.6b.

3.5.3 Quality of FocusChips

While FocusPixels are sufficient to generate enclosing regions which need to be

processed, current software implementations require the input image to be a rectangle
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for efficient processing. To this end, we evaluate the performance of the enclosing chips

generated using the FocusPixels. Similar to Section 3.5.2, we use two metrics - one is

recall of all GT boxes which are enclosed by FocusChips, the other one is recall for GT

boxes enclosed by FocusChips which have a confident overlapping detection. To achieve

perfect recall for confident detections at scale 2, FocusChips cover 5% more area than

FocusPixels. At scale 1, they cover 10% more area. This is because objects are often not

rectangular in shape. These results are shown in Fig 3.6d.

3.5.4 Speed Accuracy Trade-off

We perform grid-search on different parameters, which are dilation, min-chip size

and the threshold to generate FocusChips on a subset of 100 images in the validation set.

For a given average number of pixels, we check which configuration of parameters obtains

the best mAP on this subset. Since there are two scales at which we predict FocusPixels,

we first find the parameters of AutoFocus when it is only applied to the highest resolution

scale. Then we fix these parameters for the highest scale, and find parameters for applying

AutoFocus at scale 2.

In Fig 3.7 we show that the multi-scale inference baseline which uses 3 scales ob-

tains an mAP of 47.5% (and 68% at 50% overlap) on the val-2017 set. Using only the

lower two scales obtains an mAP of 45.4%. The middle scale alone obtains an mAP of

37%. This is partly because the detector is trained with the scale normalization scheme

proposed in [8]. As a result, the performance on a single scale alone is not very good,

although multi-scale performance is high. The maximum savings in pixels which we
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Figure 3.7: Results are on the val-2017 set. (a,c) show the mAP averaged for IoU from
0.5 to 0.95 with an interval of 0.05 (COCO metric). (b,d) show mAP at 50% overlap
(PASCAL metric). We can reduce the number of pixels processed by a factor of 2.8 times
without any loss of performance. A 5 times reduction in pixels is obtained with a drop of
1% in mAP.

can obtain while retaining performance is 2.8 times. We lose approximately 1% mAP to

obtain a 5 times reduction over our baseline in the val-2017 set.

We also perform an ablation experiment for the FocusPixels predicted using scale 2.

Note that the performance of just using scales 1 and 2 is 45%. We can retain the original

performance of 47.5% on the val-2017 set by processing just one fifth of scale 3. With a

0.5% drop we can reduce the pixels processed by 11 times in the highest resolution image.

This can be improved to 20 times with a 1% drop in mAP, which is still 1.5% better than

the performance of the lower two scales.

Results on the COCO test-dev set are provided in Table 3.1. While matching

SNIPER’s performance of 47.9% (68.3% at 0.5 IoU), AutoFocus processes 6.4 images

per second on the test-dev set with a Titan X Pascal GPU. SNIPER processes 2.5 images

per second. RetinaNet with a ResNet-101 backbone and a FPN architecture processes 6.3

images per second on a P100 GPU (which is like Titan X), but obtains 37.8% mAP 2. We

also report the number of pixels processed with a few efficient recent detectors. Detectors

2https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.
md
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Method Pixels AP AP50 S M L

Retina [39] 9502 37.8 57.5 20.2 41.1 49.2
LightH [95] 9402 41.5 - 25.2 45.3 53.1
Refine+ [96] 31002 41.8 62.9 25.6 45.1 54.1
Corner+ [97] 12402 42.1 57.8 20.8 44.8 56.7

SNIPER [55] 19102 47.9 68.3 31.5 50.5 60.3

11752 47.9 68.3 31.5 50.5 60.3
AutoFocus 9302 47.2 67.5 30.9 49.0 60.0

8602 46.9 67.0 30.1 48.9 60.0

Table 3.1: Comparison with SNIPER on the COCO test-dev. This is our multi-scale
baseline. Results for others are taken from the papers/GitHub of the authors. Note that
average pixels processed over the dataset are reported (instead of the shorter side). All
methods use a ResNet-101 backbone. ‘+’ denotes the multi-scale version provided by the
authors.

Method Pixels AP50 AP70

Deformable ConvNet [32] 7052 82.3 67.8
Deformable ConvNet v2 [98] 7052 84.9 73.5

SNIPER [55] 19152 86.6 80.5

AutoFocus* 8602 85.8 79.5

AutoFocus 7002 85.3 78.1
12502 86.5 80.2

Table 3.2: Comparison on PASCAL VOC 2007 test-set. All methods use ResNet-101
and trained on VOC2012 trainval+VOC2007 trainval. The average pixels processed over
the dataset are also reported. To show the robustness of AutoFocus to hyper-parameter
choices, in ‘*’ we use the same parameters as COCO and run the algorithm on PASCAL.

which perform better than SNIPER like MegDet [16] or PANet [7] are slower because

they use complex architectures like ResNext-152 [27] etc. To the best of our knowledge,

AutoFocus is the fastest detector which obtains an mAP of 47.9% (or 68.3% at 0.5 IoU)

on the COCO dataset. We show the inference process for AutoFocus on a few images in

the COCO val-2017 set in Fig 3.8. We also report results on the PASCAL VOC dataset in

Table 3.2. To show the robustness of AutoFocus to its hyper-parameters, we use exactly

the same hyper-parameters tuned for COCO (shown as AutoFocus*). While processing

42



the same area as DeformableV2 [98], AutoFocus achieves 4.6% better AP at 0.7 IoU. It

also matches the performance of SNIPER while being considerably more efficient. Its

mAP (on the COCO metric) can be further improved by using refinement techniques like

cascade-RCNN [99].
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Figure 3.8: Each column shows the inference pipeline in AutoFocus. The confidence for
FocusPixels and FocusChips are shown in red, and yellow respectively in the second and
fourth rows. Detections are shown in green. As can be seen, complex images containing
many small objects like the two leftmost columns can generate multiple FocusChips in
high resolutions like 1400 × 2000. Images which do not contain small objects are not
processed at all in high resolution, like the one in the rightmost column.
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Chapter 4: SSH: Single Stage Headless Face Detector

4.1 Introduction

Face detection is a crucial step in various problems involving verification, identifi-

cation, expression analysis, etc. From the Viola-Jones [63] detector to recent work by Hu

et al. [100], the performance of face detectors has been improved dramatically. However,

detecting small faces is still considered a challenging task. The recent introduction of the

WIDER face dataset [101], containing a large number of small faces, exposed the perfor-

mance gap between humans and current face detectors. The problem becomes more chal-

lenging when the speed and memory efficiency of the detectors are taken into account.

The best performing face detectors are usually slow and have high memory foot-prints

(e.g. [100] takes more than 1 second to process an image, see Section 4.4.5) partly due to

the huge number of parameters as well as the way robustness to scale or incorporation of

context are addressed.

State-of-the-art CNN-based detectors convert image classification networks into

two-stage detection systems [11, 5]. In the first stage, early convolutional feature maps

are used to propose a set of candidate object boxes. In the second stage, the remaining

layers of the classification networks (e.g. fc6~8 in VGG-16 [102]), which we refer to as

the network “head”, are deployed to extract local features for these candidates and clas-
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Figure 4.1: SSH detects various face sizes in a single CNN forward pass and without
employing an image pyramid in ∼ 0.1 second for an image with size 800 × 1200 on a
GPU.

sify them. The head in the classification networks can be computationally expensive (e.g.

the network head contains ∼ 120M parameters in VGG-16 and ∼ 12M parameters in

ResNet-101). Moreover, in the two stage detectors, the computation must be performed

for all proposed candidate boxes.

Very recently, Hu et al. [100] showed state-of-the-art results on the WIDER face

detection benchmark by using a similar approach to the Region Proposal Networks (RPN)

[5] to directly detect faces. Robustness to input scale is achieved by introducing an image

pyramid as an integral part of the method. However, it involves processing an input

pyramid with an up-sampling scale up to 5000 pixels per side and passing each level to a

very deep network which increased inference time.

In this section, we introduce the Single Stage Headless (SSH) face detector. SSH

performs detection in a single stage. Like RPN [5], the early feature maps in a classifi-

cation network are used to regress a set of predefined anchors towards faces. However,
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unlike two-stage detectors, the final classification takes place together with regressing the

anchors. SSH is headless. It is able to achieve state-of-the-art results while removing the

head of its underlying network (i.e. all fully connected layers in VGG-16), leading to a

light-weight detector. Finally, SSH is scale-invariant by design. Instead of relying on an

external multi-scale pyramid as input, inspired by [30], SSH detects faces from various

depths of the underlying network. This is achieved by placing an efficient convolutional

detection module on top of the layers with different strides, each of which is trained for

an appropriate range of face scales. Surprisingly, SSH based on a headless VGG-16, not

only outperforms the best-reported VGG-16 by a large margin but also beats the current

ResNet-101-based state-of-the-art method on the WIDER face detection dataset. Unlike

the current state-of-the-art, SSH does not deploy an input pyramid and is 5 times faster.

If an input pyramid is used with SSH as well, our light-weight VGG-16-based detector

outperforms the best reported ResNet-101 [100] on all three subsets of the WIDER dataset

and improves the mean average precision by 4% and 2.5% on the validation and the test

set respectively. SSH also achieves state-of-the-art results on the FDDB and Pascal-Faces

datasets with a relatively small input size, leading to a runtime of 50 ms/image.

The rest of the section is organized as follows. Section 4.2 provides an overview of

the related works. Section 4.3 introduces the proposed method. Section 4.4 presents the

experiments and finally the conclusion is presented in Section 4.5.
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4.2 Related Works

4.2.1 Face Detection

Prior to the re-emergence of convolutional neural networks (CNN), different ma-

chine learning algorithms were developed to improve face detection performance [63,

103, 104, 105, 106, 107, 108]. However, following the success of these networks in clas-

sification tasks [1], they were applied to detection as well [9]. Face detectors based on

CNNs significantly closed the performance gap between human and artificial detectors

[109, 110, 111, 112, 100]. However, the introduction of the challenging WIDER dataset

[101], containing a large number of small faces, re-highlighted this gap. To improve

performance, CMS-RCNN [112] changed the Faster R-CNN object detector [5] to incor-

porate context information. Very recently, Hu et al. proposed a face detection method

based on proposal networks which achieves state-of-the-art results on this dataset [100].

However, in addition to skip connections, an input pyramid is processed by re-scaling the

image to different sizes, leading to slow detection speeds. In contrast, SSH is able to pro-

cess multiple face scales simultaneously in a single forward pass of the network, which

reduces inference time noticeably.

4.2.2 Single Stage Detectors and Proposal Networks

The idea of detecting and localizing objects in a single stage has been previously

studied for general object detection. SSD [42] and YOLO [77] perform detection and

classification simultaneously by classifying a fixed grid of boxes and regressing them
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towards objects. G-CNN [113] models detection as a piece-wise regression problem and

iteratively pushes an initial multi-scale grid of boxes towards objects while classifying

them. However, current state-of-the-art methods on the challenging MS-COCO object

detection benchmark are based on two-stage detectors[93]. SSH is a single stage detector;

it detects faces directly from the early convolutional layers without requiring a proposal

stage.

Although SSH is a detector, it is more similar to the object proposal algorithms

which are used as the first stage in detection pipelines. These algorithms generally regress

a fixed set of anchors towards objects and assign an objectness score to each of them.

MultiBox [114] deploys clustering to define anchors. RPN [5], on the other hand, defines

anchors as a dense grid of boxes with various scales and aspect ratios, centered at every

location in the input feature map. SSH uses similar strategies, but to localize and at the

same time detect, faces.

4.2.3 Scale Invariance and Context Modeling

Being scale invariant is important for detecting faces in unconstrained settings. For

generic object detection, [35, 25] deploy feature maps of earlier convolutional layers to

detect small objects. Recently, [30] used skip connections in the same way as [75] and

employed multiple shared RPN and classifier heads from different convolutional layers.

For face detection, CMS-RCNN [112] used the same idea as [35, 25] and added skip

connections to the Faster RCNN [5]. [100] creates a pyramid of images and processes

each separately to detect faces of different sizes. In contrast, SSH is capable of detecting
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faces at different scales in a single forward pass of the network without creating an image

pyramid. We employ skip connections in a similar fashion as [75, 30], and train three

detection modules jointly from the convolutional layers with different strides to detect

small, medium, and large faces.

In two stage object detectors, context is usually modeled by enlarging the window

around proposals [25]. [35] models context by deploying a recurrent neural network. For

face detection, CMS-RCNN [112] utilizes a larger window with the cost of duplicating

the classification head. This increases the memory requirement as well as detection time.

SSH uses simple convolutional layers to achieve the same larger window effect, leading

to more efficient context modeling.

4.3 Proposed Method

SSH is designed to decrease inference time, have a low memory foot-print, and be

scale-invariant. SSH is a single-stage detector; i.e. instead of dividing the detection task

into bounding box proposal and classification, it performs classification together with

localization from the global information extracted from the convolutional layers. We

empirically show that in this way, SSH can remove the “head” of its underlying network

while achieving state-of-the-art face detection accuracy. Moreover, SSH is scale-invariant

by design and can incorporate context efficiently.
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Figure 4.2: The network architecture of SSH.

4.3.1 General Architecture

Figure 4.2 shows the general architecture of SSH. It is a fully convolutional network

which localizes and classifies faces early on by adding a detection module on top of

feature maps with strides of 8, 16, and 32, depicted asM1,M2, andM3 respectively. The

detection module consists of a convolutional binary classifier and a regressor for detecting

faces and localizing them respectively.

To solve the localization sub-problem, as in [114, 5, 113], SSH regresses a set of

predefined bounding boxes called anchors, to the ground-truth faces. We employ a similar

strategy to the RPN [5] to form the anchor set. We define the anchors in a dense over-

lapping sliding window fashion. At each sliding window location, K anchors are defined

which have the same center as that window and different scales. However, unlike RPN,

we only consider anchors with aspect ratio of one to reduce the number of anchor boxes.

We noticed in our experiments that having various aspect ratios does not have a noticeable

impact on face detection precision. More formally, if the feature map connected to the
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Figure 4.3: SSH detection module.

detection moduleMi has a size of Wi ×Hi, there would be Wi ×Hi ×Ki anchors with

aspect ratio one and scales {S1
i , S

2
i , . . . S

Ki
i }.

For the detection module, a set of convolutional layers are deployed to extract fea-

tures for face detection and localization as depicted in Figure 4.3. This includes a simple

context module to increase the effective receptive field as discussed in section 4.3.3. The

number of output channels of the context module, (i.e. “X” in Figures 4.3 and 4.4) is set

to 128 for detection moduleM1 and 256 for modulesM2 andM3. Finally, two convo-

lutional layers perform bounding box regression and classification. At each convolution

location inMi, the classifier decides whether the windows at the filter’s center and corre-

sponding to each of the scales {Ski }Kk=1 contains a face. A 1× 1 convolutional layer with

2 × K output channels is used as the classifier. For the regressor branch, another 1 × 1

convolutional layer with 4×K output channels is deployed. At each location during the

convolution, the regressor predicts the required change in scale and translation to match

each of the positive anchors to faces.
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4.3.2 Scale-Invariance Design

In unconstrained settings, faces in images have varying scales. Although forming

a multi-scale input pyramid and performing several forward passes during inference, as

in [100], makes it possible to detect faces with different scales, it is slow. In contrast,

SSH detects large and small faces simultaneously in a single forward pass of the network.

Inspired by [30], we detect faces from three different convolutional layers of our network

using detection modulesM1,M2, andM3. These modules have strides of 8, 16, and 32

and are designed to detect small, medium, and large faces respectively.

More precisely, the detection module M2 performs detection from the conv5-3

layer in VGG-16. Although it is possible to place the detection module M1 directly

on top of conv4-3, we use the feature map fusion which was previously deployed for se-

mantic segmentation [75], and generic object detection [30]. However, to decrease the

memory consumption of the model, the number of channels in the feature map is reduced

from 512 to 128 using 1 × 1 convolutions. The conv5-3 feature maps are up-sampled

and summed up with the conv4-3 features, followed by a 3 × 3 convolutional layer. We

used bilinear up-sampling in the fusion process. For detecting larger faces, a max-pooling

layer with stride of 2 is added on top of the conv5-3 layer to increase its stride to 32. The

detection moduleM3 is placed on top of this newly added layer.

During the training phase, each detection moduleMi is trained to detect faces from

a target scale range as discussed in 4.3.4. During inference, the predicted boxes from the

different scales are joined together followed by Non-Maximum Suppression (NMS) to

form the final detections.
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Figure 4.4: SSH context module.

4.3.3 Context Module

In two-stage detectors, it is common to incorporate context by enlarging the window

around the candidate proposals. SSH mimics this strategy by means of simple convolu-

tional layers. Figure 4.4 shows the context layers which are integrated into the detection

modules. Since anchors are classified and regressed in a convolutional manner, apply-

ing a larger filter resembles increasing the window size around proposals in a two-stage

detector. To this end, we use 5 × 5 and 7 × 7 filters in our context module. Modeling

the context in this way increases the receptive field proportional to the stride of the cor-

responding layer and as a result the target scale of each detection module. To reduce the

number of parameters, we use a similar approach as [115] and deploy sequential 3×3 fil-

ters instead of larger convolutional filters. The number of output channels of the detection

module (i.e. “X” in Figure 4.4) is set to 128 forM1 and 256 for modulesM2 andM3.

It should be noted that our detection module together with its context filters uses fewer of

parameters compared to the module deployed for proposal generation in [5]. Although,

more efficient, we empirically found that the context module improves the mean average

precision on the WIDER validation dataset by more than half a percent.
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4.3.4 Training

We use stochastic gradient descent with momentum and weight decay for training

the network. As discussed in section 4.3.2, we place three detection modules on layers

with different strides to detect faces with different scales. Consequently, our network

has three multi-task losses for the classification and regression branches in each of these

modules as discussed in Section 4.3.4.1. To specialize each of the three detection modules

for a specific range of scales, we only back-propagate the loss for the anchors which are

assigned to faces in the corresponding range. This is implemented by distributing the

anchors based on their size to these three modules (i.e. smaller anchors are assigned to

M1 compared toM2, andM3). An anchor is assigned to a ground-truth face if and only

if it has a higher IoU than 0.5. This is in contrast to the methods based on Faster R-CNN

which assign to each ground-truth at least one anchor with the highest IoU. Thus, we do

not back-propagate the loss through the network for ground-truth faces inconsistent with

the anchor sizes of a module.

4.3.4.1 Loss function

SSH has a multi-task loss. This loss can be formulated as follows:

∑
k

1

N c
k

∑
i∈Ak

`c(pi, gi)+

λ
∑
k

1

N r
k

∑
i∈Ak

I(gi = 1)`r(bi, ti) (4.1)

55



where `c is the face classification loss. We use standard multinomial logistic loss as `c.

The index k goes over the SSH detection modulesM = {Mk}K1 and Ak represents the

set of anchors defined in Mk. The predicted category for the i’th anchor in Mk and

its assigned ground-truth label are denoted as pi and gi respectively. As discussed in

Section 4.3.2, an anchor is assigned to a ground-truth bounding box if and only if it has

an IoU greater than a threshold (i.e. 0.5). As in [5], negative labels are assigned to anchors

with IoU less than a predefined threshold (i.e. 0.3) with any ground-truth bounding box.

N c
k is the number of anchors in module Mk which participate in the classification loss

computation.

`r represents the bounding box regression loss. Following [9, 11, 5], we parameter-

ize the regression space with a log-space shift in the box dimensions and a scale-invariant

translation and use smooth `1 loss as `r. In this parametrized space, pi represents the pre-

dicted four dimensional translation and scale shift and ti is its assigned ground-truth re-

gression target for the i’th anchor in moduleMk. I(.) is the indicator function that limits

the regression loss only to the positively assigned anchors, and N r
k =

∑
i∈Ak

I(gi = 1).

4.3.5 Online hard negative and positive mining

We use online negative and positive mining (OHEM) for training SSH as described

in [14]. However, OHEM is applied to each of the detection modules (Mk) separately.

That is, for each moduleMk, we select the negative anchors with the highest scores and

the positive anchors with the lowest scores with respect to the weights of the network

at that iteration to form our mini-batch. Also, since the number of negative anchors is
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more than the positives, following [11], 25% of the mini-batch is reserved for the positive

anchors. As empirically shown in Section 4.4.8, OHEM has an important role in the

success of SSH which removes the fully connected layers out of the VGG-16 network.

4.4 Experiments

4.4.1 Experimental Setup

All models are trained on 4 GPUs in parallel using stochastic gradient descent. We

use a mini-batch of 4 images. Our networks are fine-tuned for 21K iterations starting

from a pre-trained ImageNet classification network. Following [11], we fix the initial

convolutions up to conv3-1. The learning rate is initially set to 0.004 and drops by a factor

of 10 after 18K iterations. We set momentum to 0.9, and weight decay to 5e−4. Anchors

with IoU> 0.5 are assigned to positive class and anchors which have an IoU< 0.3 with

all ground-truth faces are assigned to the background class. For anchor generation, we

use scales {1, 2} inM1, {4, 8} inM2, and {16, 32} inM3 with a base anchor size of 16

pixels. All anchors have aspect ratio of one. During training, 256 detections per module

is selected for each image. During inference, each module outputs 1000 best scoring

anchors as detections and NMS with a threshold of 0.3 is performed on the outputs of all

modules together.

4.4.2 Datasets

WIDER dataset[101]: This dataset contains 32, 203 images with 393, 703 anno-

tated faces, 158, 989 of which are in the train set, 39, 496 in the validation set and the
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rest are in the test set. The validation and test set are divided into “easy”, “medium”,

and “hard” subsets cumulatively (i.e. the “hard” set contains all images). This is one of

the most challenging public face datasets mainly due to the wide variety of face scales

and occlusion. We train all models on the train set of the WIDER dataset and evaluate on

the validation and test sets. Ablation studies are performed on the the validation set (i.e.

“hard” subset).

FDDB[116]: FDDB contains 2845 images and 5171 annotated faces. We use this

dataset only for testing.

Pascal Faces[117]: Pascal Faces is a subset of the Pascal VOC dataset [118] and

contains 851 images annotated for face detection. We use this dataset only to evaluate our

method.

4.4.3 WIDER Dataset Result

We compare SSH with HR [100], CMS-RCNN [112], Multitask Cascade CNN

[119], LDCF [120], Faceness [110], and Multiscale Cascade CNN [101]. When report-

ing SSH without an image pyramid, we rescale the shortest side of the image up to 1200

pixels while keeping the largest side below 1600 pixels without changing the aspect ratio.

SSH+Pyramid is our method when we apply SSH to a pyramid of input images. Like HR,

a four level image pyramid is deployed. To form the pyramid, the image is first scaled to

have a shortest side of up to 800 pixels and the longest side less than 1200 pixels. Then,

we scale the image to have min sizes of 500, 800, 1200, and 1600 pixels in the pyramid.

All modules detect faces on all pyramid levels, except M3 which is not applied to the
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Method easy medium hard
CMS-RCNN [112] 89.9 87.4 62.9

HR(VGG-16)+Pyramid [100] 86.2 84.4 74.9
HR(ResNet-101)+Pyramid [100] 92.5 91.0 80.6

SSH(VGG-16) 91.9 90.7 81.4
SSH(VGG-16)+Pyramid 93.1 92.1 84.5

Table 4.1: Comparison of SSH with top performing methods on the validation set of the
WIDER dataset.

largest level.

Table 4.1 compares SSH with best performing methods on the WIDER validation

set. SSH without using an image pyramid and based on the VGG-16 network outperforms

the VGG-16 version of HR by 5.7%, 6.3%, and 6.5% in “easy”, “medium”, and “hard”

subsets respectively. Surprisingly, SSH also outperforms HR based on ResNet-101 on

the whole dataset (i.e. “hard” subset) by 0.8. In contrast HR deploys an image pyramid.

Using an image pyramid, SSH based on a light VGG-16 model, outperforms the ResNet-

101 version of HR by a large margin, increasing the state-of-the-art on this dataset by

∼ 4%.

The precision-recall curves on the test set is presented in Figure 4.5. We submit-

ted the detections of SSH with an image pyramid only once for evaluation. As can be

seen, SSH based on a headless VGG-16, outperforms the prior methods on all subsets,

increasing the state-of-the-art by 2.5%.

4.4.4 FDDB and Pascal Faces Results

In these datasets, we resize the shortest side of the input to 400 pixels while keeping

the larger side less than 800 pixels, leading to an inference time of less than 50 ms/image.

We compare SSH with HR[100], HR-ER[100], Conv3D[121], Faceness[110], Faster R-
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Figure 4.5: Comparison among the methods on the test set of WIDER face detection
benchmark.
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(a) FDDB discrete score.

0 200 400 600 800 1000
False positives

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

it
iv

e 
ra

te
HR-ER* (0.790)
Conv3d (0.759)
SSH (0.744)
Faceness (0.723)
Faster R-CNN (0.715)
MTCNN (0.708)
HeadHunter (0.703)
HR (0.688)
DP2MFD (0.672)

(b) FDDB continuous score.

0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.5

0.6

0.7

0.8

0.9

1.0

P
re

ci
si

on

SSH (AP 98.27)
Faster R-CNN (AP 97.84)
HyperFace (AP 92.46)
Faceness (AP 92.11)
HeadHunter (AP 89.63)

(c) Pascal-Faces.

Figure 4.6: Comparison among the methods on FDDB and Pascal-Faces datasets. (*Note
that unlike SSH, HR-ER is also trained on the FDDB dataset in a 10-Fold Cross Validation
fashion.)

CNN(VGG-16)[5], MTCNN[119], DP2MFD[122], and Headhunter[106]. Figures 4.6a

and 4.6b show the ROC curves with respect to the discrete and continuous measures on

the FDDB dataset respectively.

It should be noted that HR-ER also uses FDDB as a training data in a 10-fold cross

validation fashion. Moreover, HR-ER and Conv3D both generate ellipses to decrease the

localization error. In contrast, SSH does not use FDDB for training, and is evaluated on

this dataset out-of-the-box by generating bounding boxes. However, as can be seen, SSH

outperforms all other methods with respect to the discrete score. Compare to HR, SSH

improved the results by 5.6% and 1.1% with respect to the continuous and discrete scores.

We also compare SSH with Faster R-CNN(VGG-16)[5], HyperFace[123], Head-

hunter[106], and Faceness[110] on the Pascal-Faces dataset. As shown in Figure 4.6c,
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Max Size 400× 800 600× 1000 800× 1200 1200× 1600

Time 48 ms 74 ms 107 ms 182 ms

Table 4.2: SSH inference time with respect to different input sizes

SSH achieves state-of-the-art results on this dataset.

4.4.5 Timing

SSH performs face detection in a single stage while removing all fully-connected

layers from the VGG-16 network. This makes SSH an efficient detection algorithm. Table

4.2 shows the inference time with respect to different input sizes. We report average time

on the WIDER validation set. Timing are performed on a NVIDIA Quadro P6000 GPU.

In column with max size m×M , the shortest side of the images are resized to “m” pixels

while keeping the longest side less than “M” pixels. As shown in section 4.4.3, and 4.4.4,

SSH outperforms HR on all datasets without an image pyramid. On WIDER we resize

the image to the last column and as a result detection takes 182 ms/image. In contrast,

HR has a runtime of 1010 ms/image, more than 5X slower. As mentioned in Section

4.4.4, a maximum input size of 400 × 800 is enough for SSH to achieve state-of-the-art

performance on FDDB and Pascal-Faces, with a detection time of 48 ms/image. If an

image pyramid is used, the runtime would be dominated by the largest scale.

4.4.6 Ablation study: Scale-invariant design

As discussed in Section 4.3.2, SSH uses each of its detections modules, {Mi}3i=1,

to detect faces in a certain range of scales from layers with different strides. To better

understand the impact of these design choices, we compare the results of SSH with and
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Figure 4.7: Ablation studies. All experiments are reported on the Wider Validation set.

without multiple detection modules. That is, we remove {M1,M3} and only detect faces

with M2 from conv5-3 in VGG-16. However, for fair comparison, all anchor scales in

{M1,M3} are moved toM2 (i.e. we use ∪3
i=1Si inM2). Other parameters remain the

same. We refer to this simpler method as ”SSH-OnlyM2”. As shown in Figure 4.7a,

by removing the multiple detection modules from SSH, the AP significantly drops by

∼ 12.8% on the hard subset which contains smaller faces. Although SSH does not deploy

the expensive head of its underlying network, results suggest that having independent

simple detection modules from different layers of the network is an effective strategy for

scale-invariance.

4.4.7 Ablation study: The effect of input size

The input size can affect face detection precision, especially for small faces. Table

4.3 shows the AP of SSH on the WIDER validation set when it is trained and evaluated

with different input sizes. Even at a maximum input size of 800×1200, SSH outperforms

HR-VGG16, which up-scales images up to 5000 pixels, by 3.5%, showing the effective-

ness of our scale-invariant design for detecting small faces.
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Max Size 600× 1000 800× 1200 1200× 1600 1400× 1800

AP 68.6 78.4 81.4 81.0

Table 4.3: The effect of input size on average precision.

4.4.8 Ablation study: The effect of OHEM

As discussed in Section 4.3.5, we apply hard negative and positive mining (OHEM)

to select anchors for each of our detection modules. To show its role, we train SSH, with

and without OHEM. All other factors are the same. Figure 4.7b shows the results. Clearly,

OHEM is important for the success of our light-weight detection method which does not

use the pre-trained head of the VGG-16 network.

4.4.9 Ablation study: The effect of feature fusion

In SSH, to form the input features for detection moduleM1, the outputs of conv4-3

and conv5-3 are fused together. Figure 4.7c, shows the effectiveness of this design choice.

Although it does not have a noticeable computational overhead, as illustrated, it improves

the AP on the WIDER validation set.

4.4.10 Ablation study: Selection of anchor scales

As mentioned in Section 4.4.1, SSH uses S1 = {1, 2}, S2 = {4, 8}, S3 = {16, 32}

as anchor scale sets. Figure 4.7d compares SSH with its slight variant which uses S1 =

{0.25, 0.5, 1, 2, 3}, S2 = {4, 6, 8, 10, 12}, S3 = {16, 20, 24, 28, 32}. Although using a

finer scale set leads to a slower inference, it also reduces the AP due to the increase in the

number of False Positives.
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4.4.11 Qualitative Results

Figure 4.8 shows some qualitative results on the Wider validation set. The colors

encode the score of the classifier. Green and blue represent score 1.0 and 0.5 respectively.

4.5 Conclusion

We introduced the SSH detector, a fast and lightweight face detector that, unlike

two-stage proposal/classification approaches, detects faces in a single stage. SSH local-

izes and detects faces simultaneously from the early convolutional layers in a classifi-

cation network. SSH is able to achieve state-of-the-art results without using the “head”

of its underlying classification network (i.e. fc layers in VGG-16). Moreover, instead of

processing an input pyramid, SSH is designed to be scale-invariant while detecting dif-

ferent face scales in a single forward pass of the network. SSH achieves state-of-the-art

performance on the challenging WIDER dataset as well as FDDB and Pascal-Faces while

reducing the detection time considerably.
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Figure 4.8: Qualitative results of SSH on the validation set of the WIDER dataset. Green
and blue represent a classification score of 1.0 and 0.5 respectively.
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Chapter 5: FA-RPN: Floating Region Proposals for Face Detection

5.1 Introduction

Face detection is an important computer vision problem and has multiple applica-

tions in surveillance, tracking, consumer-facing devices like iPhones etc. Hence, various

approaches have been proposed towards solving it [110, 124, 100, 112, 121, 125, 126,

123, 31] and successful solutions have also been deployed in practice. So, expectations

from face detection algorithms are much higher and error rates today are quite low. Al-

gorithms need to detect faces which are as small as 5 pixels to 500 pixels in size. As

localization is essential for detection, evaluating every small region of the image is im-

portant. Face detection datasets can have up to a thousand faces in a single image, which

is not common in generic object detection.

Detectors like Faster-RCNN [5] employ a region proposal network (RPN) which

places anchor boxes of different sizes and aspect ratios uniformly on the image and clas-

sifies them for generating object-like regions. However, RPN only uses a single pixel

in the convolutional feature map for evaluating the proposal hypotheses, independent of

the size of the object. Therefore, the feature representation in RPN entirely relies on the

contextual information encoded in the high-dimensional feature representation generated

at the pixel. It does not pool features from the entire extent of an object while generat-
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Figure 5.1: Difference between RPN and FA-RPN in terms of weight configuration. For
simplicity we show 2x2 pooling for FA-RPN.

ing the feature representation, see Fig. 5.1. Thus, it can miss object regions or generate

proposals which are not well localized. Further, it is not possible to iterate and refine

the positions of the anchor-boxes as part of the proposal network. If objects of different

scale/aspect-ratios are to be learned or if we want to place anchors at sub-pixel resolution,

filters specific to each of these conditions need to be added during training. Generating

proposals using a pooling-based algorithm can alleviate such problems easily.

There are predominantly two pooling-based methods for the final classification of

RoIs in an image - Fast-RCNN [11] and R-FCN [127]. Fast-RCNN projects the region-

proposals to the convolutional feature map, and pools the features inside the region of

interest (RoI) to a fixed size grid (typically 7×7) and applies two fully connected layers

which perform classification and regression. Due to computational constraints, this ap-

proach is practically infeasible for proposal generation as one would need to apply it to

hundreds of thousands of regions - which is the number of region candidates which are

typically evaluated by a region proposal algorithm.
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To reduce the dependence on fully connected layers, R-FCN performs local con-

volutions (7×7) inside an RoI for capturing the spatial extent of each object. Since each

of these local filters can be applied to the previous feature-map, we just need to pool the

response from the appropriate region corresponding to each local filter. This makes it a

good candidate for a pooling-based proposal approach as it is possible to apply it to a large

number of RoIs efficiently. However, in high-resolution images, proposal algorithms like

RPN evaluate hundreds of thousands of anchors during inference. It is computationally

infeasible to perform pooling on that many regions. Luckily, many anchors are not nec-

essary (e.g. large anchors which are very close to each other). In this section, we show

that careful anchor placement strategies can reduce the number of proposals significantly

to the point where a pooling-based algorithm becomes feasible for proposal generation.

This yields an efficient and effective objectness detector which does not suffer from the

aforementioned problems present in RPN designs.

A pooling-based proposal method based on R-FCN which relies on position sen-

sitive filters is particularly well suited for face detection. While objects deform and po-

sitional correspondence between different parts is often lost - faces are rigid, structured

and parts have positional semantic correspondence (e.g. nose, eyes, lips). Moreover, it

is possible to place anchor boxes of different size and aspect ratios without adding more

filters. We can also place fractional anchor boxes and perform bilinear interpolation while

pooling features for computing objectness. We can further improve the localization per-

formance of the proposal candidates by iteratively pooling again from the generated RoIs

and all these design changes can be made during inference! Due to these reasons, we

refer to our proposal network as Floating Anchor Region Proposal Network (FA-RPN).
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Figure 5.2: We highlight the major differences between RPN (a) and FA-RPN (b) propos-
als. RPN performs classification on a single pixel in the high-dimensional feature-map
and uses different weights for classifying anchor-boxes of different sizes/aspect ratios.
FA-RPN proposals, on the other hand, pool features from multiple bins in the image and
share weights across objects of different sizes and aspect ratios.

We highlight these advantages in Fig. 5.1 and Fig. 5.2. On the WIDER dataset [101]

we show that FA-RPN proposals are better than RPN proposals. FA-RPN also obtains

state-of-the-art results on WIDER and PascalFaces which demonstrates its effectiveness

for face detection.

5.2 Related Work

Generating class agnostic region proposals has been investigated in computer vision

for more than a decade. Initial methods include multi-scale combinatorial grouping [128],

constrained parametric min-cuts [2], selective search [78] etc. These methods generate

region proposals which obtain high recall for objects in a category agnostic fashion. They

were also very successful in the pre-deep learning era and obtained state-of-the-art per-

formance even with a bag-of-words model [2]. Using region proposals based on selective

search [2], R-CNN [9] was the first deep learning based detector. Unsupervised region

proposals were also used in later detectors like Fast-RCNN [11] but since the Faster-

RCNN detector [5] generated region proposals using a convolutional neural network, it
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has become the de-facto algorithm for generating region proposals.

To improve RPN, several modifications have been proposed. State-of-the-art detec-

tors can also detect objects in a single step. Detectors like SSH [31], SSD [42], RetinaNet

[39], MS-CNN [37] generate multi-scale feature maps to classify and regress anchors

placed on these feature-maps. These single-shot detectors are closely related to the re-

gion proposal network as they have specific filters to detect objects of different sizes and

aspect ratios but also combine feature-maps from multiple layers of the deep neural net-

work. No further refinement is performed after the initial offsets generated by the network

are applied. Another class of detectors are iterative, like G-CNN [113], Cascade-RCNN

[99], LocNet [26], FPN [30], RFCN-3000 [129], Faster-RCNN [5]. These detectors re-

fine a pre-defined set of anchor-boxes in multiple stages and have more layers to further

improve classification and localization of regressed anchors. One should note that even in

these networks, the first stage comprises of the region proposal network which eliminates

the major chunk of background regions. FA-RPN is closer to this line of work but, in

contrast, it supports iterative refinement of region proposals during inference.

We briefly review some recent work on face detection. With the availability of

large scale datasets like WIDER [101] which contain many small faces in high resolution

images, multiple new techniques for face detection have been proposed [110, 124, 100,

112, 121, 125, 126, 123, 130]. A lot of focus has been on scale, combining features of

different layers [100, 31, 126, 124, 131, 132] and improving configurations of the region

proposal network [126, 124]. For example, in finding tiny faces [100], it is proposed to

perform detection on an image pyramid and to have different scale filters for objects of

different sizes. SSH [31] and S3FD [124] efficiently utilize the intermediate layers of the
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network. PyramidBox [133] replaces the context module in SSH by deeper and wider

sub-networks to better capture the contextual information for face detection. Recently,

even GANs [134] have been used to improve the performance on tiny faces [130].

In face detection, the choice of anchors and their placement on the image is very im-

portant [126, 124]. For example, using extra strided anchors were shown to be beneficial

[126]. Geometric constraints of the scene have also been used to prune region proposals

[135]. Some of these changes require re-training RPN again. In our framework, design

decisions such as evaluating different anchor scales, changing the stride of anchors, and

adding fractional anchors can simply be made during inference as we share filters for all

object sizes and only pooling is performed for them. Moreover, a pooling-based design

also provides precise spatial features.

5.3 Background

We provide a brief overview of the R-FCN detector in this section. This detector

uses RPN to generate region proposals. It classifies the top 2000 ranked proposals using

the R-FCN detector. Classification is performed over all the foreground classes and the

background class. The key component in R-FCN is local convolutions. It applies differ-

ent filters in different sub-regions of an RoI for inferring the spatial extent of an object.

These sub-regions may correspond to parts of an object. To accelerate this process over

thousands of RoIs, convolution for each part in each object class is performed in the final

layer. So, as an example, if there are 21 classes, the last feature-map would contain 21

× 49 channels. Then, given an RoI, Position Sensitive RoIPooling is performed on this
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feature-map to obtain the effect of local convolutions [127]. We refer the reader to the

R-FCN [127] paper for further details on PSRoIPooling. Finally, the response is aver-

age pooled and used as the classification score of the object. In Deformable-RFCN [32],

the regions for each bin where pooling is performed are also adjusted based on the input

feature-map, which is referred to as deformable PSRoIPooling.

5.4 FA-RPN - Floating Anchor Region Proposal Network

In this section, we discuss the training of FA-RPN, which performs iterative clas-

sification and regression of anchors placed on an image for generating accurate region

proposals. An overview of our approach is shown in Fig. 5.3.

5.4.1 Anchor Placement

In this architecture, classification of anchors is not performed using a single high-

dimensional feature vector but by pooling features inside the RoI. Hence, there are no

restrictions on how anchors can be placed during training and inference. As long as the

convolutional filters can learn objectness, we can apply the model on RoIs of different

sizes and aspect ratios, even if the network was not trained explicitly for those particular

scales and aspect-ratios.

FA-RPN places anchors of different scales and aspect ratios on a grid, as generated

in the region proposal network, and clips the anchors which extend beyond the image.

While placing anchors, we vary the spatial stride as we increase the anchor size. Since

nearby anchors at larger scales have a very high overlap, including them is not necessary.
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Figure 5.3: FA-RPN framework. FA-RPN uses multi-scale training. At each training
iteration, an image scale is randomly selected and suitable anchor scales are placed over
the image. This set of initial anchors are used to pool objectness scores and localization
information from position sensitive filters (for simplicity only the localization branch is
depicted in the figure). For improving localization, the top scoring initial anchors are
further refined with subsequent poolings. The refinement process for an initial anchor
([A0]) is depicted in the figure. This anchor is first refined to [A1] based on the network
prediction. Another pooling is performed over [A1] to form a new prediction for refining
it further to the final anchor [A2]. Finally, a Faster-RCNN head is used to perform the
final classification and regression.

We change the stride of anchor-boxes to max(c, s/d), where s is square-root of the area

of an anchor-box, c is a constant and d is the scaling factor, shown in Fig. 5.3. In prac-

tice, we set c to 16 and d to 5. This ensures that not too many overlapping anchor-boxes

are placed on the image, while ensuring significant overlap between adjacent anchors to

cover all objects. Naive placement of anchor boxes of 3 aspect ratios and 5 scales with

stride equaling 16 pixels in an 800 × 1280 image leads to a 2-3× slow-down when per-

forming inference. With the proposed placement method, we reduce the number of RoIs

per image from 400,000 to 100,000 for a 1280 × 1280 image for the above-mentioned
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anchor configuration. When we increase the image size, the computation for convolution

also increases proportionally, so as long as the time required for pooling is not significant

compared to convolution, we will not observe a noticeable difference in performance.

There is no restriction that the stride of anchors should be the same as the stride of

the convolutional feature-map. We can even place RoIs between two pixels in the convo-

lutional feature-map without making any architectural change to the network. This allows

us to augment the ground-truth bounding boxes as positive RoIs during training. This is

unlike RPN, where the maximum overlapping anchor is assigned as positive when no

anchor matches the overlap threshold criterion. We show qualitative examples of anchor

placement for different scales and aspect ratios in FA-RPN in Fig. 5.3.

5.4.2 Sampling

Since there are hundreds of thousands of anchors which can be placed on an image,

we sample anchors during training. We observe that using focal loss [39] reduced recall

for RPN (hyper-parameter tuning could be a reason), so we did not use it for FA-RPN. We

use the commonly used technique of sampling RoIs for handing class imbalance. In FA-

RPN, an anchor-box is marked as positive if its overlap with a ground-truth box is greater

than 0.5. An anchor is marked as negative if its overlap is less than 0.4. A maximum

of 128 positive and negative anchors are sampled in a batch. Since the probability of a

random anchor being an easy sample is high, we also sample 32 anchor-boxes which have

an overlap of at least 0.1 with the ground-truth boxes as hard negatives. Just for training

FA-RPN proposals, all other RoIs can be ignored. However, for training an end-to-end
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detector, we also need to score other RoIs in the image. When training an end-to-end

detector, we select a maximum of 50,000 RoIs in an image (prioritizing those which have

at-least 0.1 overlap with ground-truth boxes first).

5.4.3 Iterative Refinement

The initial set of placed anchors are expected to cover the ground-truth objects

present in the image. However, these anchors may not always have an overlap greater than

0.5 with all objects and hence would be given low scores by the classifier. This problem

is amplified for small object instances as mentioned in several methods [124, 100]. In this

case, no anchor-boxes may have a high score for some ground-truth boxes. Therefore,

the ground-truth boxes may not be covered in the top 500 to 1000 proposals generated in

the image. In FA-RPN, rather than selecting the top 1000 proposals, we generate 20,000

proposals during inference and then perform pooling again on these 20,000 proposals

from the same feature-map (we can also have another convolutional layer which refines

the first stage region proposals). The hypothesis is that after refinement, the anchors

would be better localized and hence the scores which we obtain after pooling features

inside an RoI would be more reliable. Therefore, after refinement, the ordering of the top

1000 proposals would be different because scores are pooled from refined anchor-boxes

rather than the anchor-boxes which were placed uniformly on a grid. Since we only need

to perform pooling for this operation, it is efficient and can be easily implemented when

the number of RoIs is close to 100,000. Note that our method is entirely pooling-based

and does not have any fully connected layers like cascade-RCNN [99] or G-CNN [113].
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Therefore, it is much more efficient for iterative refinement.

5.4.4 Complexity and Speed

FA-RPN is efficient. Namely, on 800 × 1280 size images, it takes 50 milliseconds

to perform forward propagation for our network on a P6000 GPU. We also discuss how

much time it takes to use R-FCN for end-to-end detection. For general object detection,

when the number of classes is increased, to say 100, the contribution from the pooling

layer also increases. This is because the complexity of pooling is linear in the number of

classes. So, if we increase the number of classes to 100, this operation would become 100

times slower and at that stage, pooling will account for a significant portion of the time

in forward-propagation. For instance, without our anchor placement strategy, it takes 100

seconds to perform inference for 100 classes in a single image on a V100 GPU. However,

as for face detection, we only need to perform pooling for 2 classes and use a different

anchor placement scheme, we do not face this problem and objectness can be efficiently

computed even with tens of thousands of anchor boxes.

5.4.5 Scale Normalized Training

The positional correspondence of R-FCN is lost when RoI bins become too small.

The idea of local convolution or having filters specific to different parts of an object

is relevant when each bin corresponds to a unique region in the convolutional feature-

map. The position-sensitive filters implicitly assume that features in the previous layer

have a resolution which is similar to that after PSRoIPooling. Otherwise, if the RoI is
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too small, then all the position sensitive filters will pool from more or less the same

position, nullifying the hypothesis that these filters are position sensitive. Therefore, we

perform scale normalized training [8], which performs selective gradient propagation for

RoIs which are close to a resolution of 224 × 224 and excludes those RoIs which can

be observed at a better resolution during training. In this setting, the position-sensitive

nature of filters is preserved to some extent, which helps in improving the performance of

FA-RPN.

5.5 Datasets

We perform experiments on three benchmark datasets, WIDER [101], AFW [103],

and Pascal Faces [117]. The WIDER dataset contains 32,203 images with 393,703 an-

notated faces, 158,989 of which are in the train set, 39,496 in the validation set, and the

rest are in the test set. The validation and test set are divided into “easy”, “medium”, and

“hard” subsets cumulatively (i.e. the “hard” set contains all faces and “medium” contains

“easy” and “medium”). This is the most challenging public face dataset mainly due to the

significant variation in the scale of faces and occlusion. We train all models on the train

set of the WIDER dataset and evaluate on the validation set. We mention in our experi-

ments when initialization of our pre-trained model is from ImageNet or COCO. Ablation

studies are also performed on the validation set (i.e. “hard” subset which contains the

whole dataset). Pascal Faces and AFW have 1335 and 473 faces respectively. We use

Pascal Faces and AFW only as test sets for evaluating the generalization of our trained

models. When performing experiments on these datasets, we apply the model trained on
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the WIDER train set out of the box.

5.6 Experiments

We train a ResNet-50 [21] based Faster-RCNN detector with deformable convolu-

tions [32] and SNIP [8]. FA-RPN proposals are generated on the concatenated Conv4 and

Conv5 features. On WIDER we train on the following image resolutions (1800, 2800),

(1024, 1440) and (512, 800). The SNIP ranges we use for WIDER are as follows, [0, 200)

for (1800, 2800), [32, 300) for (1024, 1440) and [80,∞) for (512, 800) as the size of the

shorter side of the image is around 1024. We train for 8 epochs with a stepdown at 5.33

epochs. In all experiments, we use a learning rate and weight decay of 0.0005 and train

on 8 GPUs. We use the same learning rate and training schedule even when training on

4 GPUs. In all our experiments, we use online hard example mining (OHEM) [14] to

train the 2 fully connected layers in our detector. Hard example mining is performed on

900 proposals with a batch size of 512. RoIs which have an overlap greater than 0.5 with

ground-truth bounding boxes are marked as positive and anything less than that is labeled

as negative. We use Soft-NMS [24] with σ = 0.35 when performing inference. Since

Pascal Faces and AFW contain low-resolution images and also do not contain faces as

small as the WIDER dataset, we do not perform inference on the 1800× 2800 resolution.

All other parameters remain the same as the experiments on the WIDER dataset.

On the WIDER dataset, we remove anchors for different aspect ratios (i.e. we only

have one anchor per scale with an aspect ratio of 1) and add a 16 × 16 size anchor for

improving the recall for small faces. Note that extreme size anchors are removed during
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Method AP
Baseline 87.2
Baseline + SNIP 88.1
Baseline + SNIP + COCO pre-training 89.1
Baseline + SNIP + COCO pre-training + Iteration 89.4

Table 5.1: Ablation analysis with different core-components of our face detector on the
hard-set of the WIDER dataset (hard-set contains all images in the dataset).

training with SNIP using the same rules which are used for training the detector. With

these settings, we outperform state-of-the-art results on the WIDER dataset demonstrating

the effectiveness of FA-RPN. However, the objective of this work is not to show that

FA-RPN is necessary to obtain state-of-the-art performance. FA-RPN is an elegant and

efficient alternative to RPN and can be combined with multi-stage face detection methods

to improve performance.

5.6.1 Effect of Multiple Iterations in FA-RPN

We evaluate FA-RPN on WIDER when we perform multiple iterations during infer-

ence. Since FA-RPN operates on RoIs rather than classifying single-pixel feature-maps

like RPN, we can further refine the RoIs which are generated after applying the regression

offsets. As the initial set of anchor boxes are coarse, the RoIs generated after the first step

are not very well localized. Performing another level of pooling on the generated RoIs

helps to improve recall for our proposals. As can be seen in Table 5.1 and Fig. 5.4a, this

refinement step helps to improve precision and recall. We also generate anchors with dif-

ferent strides - 16 and 32 pixels - and show how the final detection performance improves

as we iteratively refine proposals.
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Figure 5.4: Ablation analysis: improving precision at inference time. FA-RPN-32-32
represents a model which is trained by increasing the stride between anchors to 32 and
uses the same stride at inference time. (a) FA-RPN-32-Iter is the same model when an
additional anchor refinement step is performed at inference. (b) FA-RPN-32-Dense on
the other hand, improves precision by reducing the anchor stride at inference time to our
original FA-RPN stride.

5.6.2 Modifying Anchors and Strides during Inference

In this section, we show the flexibility of FA-RPN for generating region proposals.

We train our network with a stride of 32 pixels and during inference, we generate anchors

at a stride of 16 pixels on the WIDER dataset. The result is shown in the right-hand side

plot in Fig. 5.4. We notice that the dense anchors improve performance by 3.8%. On the

left side of the plot, we show the effect of iterative refinement of FA-RPN proposals. This

further provides a boost of 1.4% on top of the denser anchors. This shows that our network

is robust to changes in the anchor configuration, and can detect faces even on anchor sizes

which were not provided during training. To achieve this with RPN, one would need to

re-train it again, while in FA-RPN it is a simple inference time hyper-parameter which

can be tuned on a validation set even after the training phase.
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5.6.3 Effect of Scale and COCO pre-training on Face Detection

Variation of scale is among the main challenges in detection datasets. Datasets

like WIDER consist of many small faces which can be hard to detect for a CNN at the

original image scale. Therefore, upsampling images is crucial to obtaining good perfor-

mance. However, as shown in [8], when we upsample images, large objects become hard

to classify and when we downsample images to detect large objects, small objects become

harder to classify. Therefore, standard multi-scale training is not effective when using ex-

treme resolutions. In Table 5.1 we show the effect of performing SNIP based multi-scale

training in our FA-RPN based Faster-RCNN detector. When performing inference on the

same resolutions, we observe an improvement in detection performance on the WIDER

dataset by 1%. Note that this improvement is on top of multi-scale inference. We also

initialized our ResNet-50 model which was pre-trained on the COCO detection dataset.

We show that even pre-training on object detection helps in improving the performance

of face detectors by a significant amount, Table 5.1.

5.6.4 Comparison on the WIDER Dataset

We compare our method with MSCNN [37], HR [100], SSH [31], S3FD [124],

MSO [126], and PyramidBox [133] which are the published state-of-the-art methods on

the WIDER dataset. Our simple detector outperforms other methods on the “hard” set,

which includes all the annotations in the WIDER dataset while achieving an average

precision of 89.4%. We also perform well in the “easy” and “medium” subsets. The

precision-recall plots for each of these cases are shown in Fig. 5.5. Note that we did not
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Figure 5.5: We compare with recently published methods on the WIDER dataset. The
plots are for “easy”, “medium” and “hard” respectively from left to right. As can be seen,
FA-RPN outperforms published baselines on this dataset. Note that, “hard” set contains
the whole dataset while “easy” and “medium” are subsets.

FA-RPN(Baseline)-0.872 
RPN-0.852

Recall

Figure 5.6: Comparison with RPN on the WIDER dataset.

use feature-pyramids or lower layer features from Conv2 and Conv3 [31, 124, 100] ,

enhancing predictions with context [100] or with deeper networks like ResNext-152 [27]/

Xception [28] for obtaining these results. We also compare FA-RPN (baseline version in

Table 5.1) with RPN quantitatively and qualitatively in Fig. 5.6 and Fig. 5.7 respectively.

These results demonstrate that FA-RPN is competitive with existing proposal techniques

as it can lead to a state-of-the-art face detector. We also do not use recently proposed

techniques like stochastic face lifting [126], having different filters for different size ob-

jects [100] or maxout background loss [124]. Our performance can be further improved

if the above mentioned architectural changes are made to our network or better training

methods which also fine-tune batch-normalization statistics are used [16, 55].
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Figure 5.7: Qualitative comparison between RPN and FA-RPN (Baseline). Gold rectan-
gles are those detected by both, greens are detected by FA-RPN but missed by RPN.
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Figure 5.8: Comparison with other methods on (a) Pascal Faces, and (b) AFW datasets.

5.6.5 Pascal Faces and AFW Datasets

To show the generalization of our trained detector, we also apply it out-of-the-box to

the Pascal Faces [117] and AFW [103] datasets without fine-tuning. The performance of

FA-RPN is compared with SSH [31], Face-Magnet [136], HyperFace [123], HeadHunter

[106], and DPM [122] detectors which reported results on these datasets. The results are

shown in Fig. 5.8. Compared to WIDER, the resolution of PASCAL images is lower and

they do not contain many small images, so it is sufficient to apply FA-RPN to the two

lower resolutions in the pyramid. This also leads to faster inference. As can be seen, FA-

RPN out-of-the-box generalizes well to these datasets. FA-RPN achieves state-of-the-art
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result on the PascalFaces and reduces the error rate to 0.68% on this dataset.

5.6.6 Efficiency

Our FA-RPN based detector is efficient and takes less than 0.05 seconds on a 1080Ti

GPU to perform inference on an image of size 800× 1280. With advances in GPUs over

the last few years, performing inference even at very high resolutions is efficient. Our

detector takes less than 0.4 seconds to process an image of size 1800× 2800 on a 1080Ti

GPU. With improved GPU architectures and the use of lower precision like 16 or 8 bits,

the speed can be further improved by two to four times (depending on the precision used in

inference). As a comparison, the original implementation of SSH 1 takes 0.45s on a Titax

X GPU (ours takes 0.41s on the same machine) to process a 1800× 2800 pixels image. It

should be noted that in high resolutions, the runtime is dominated by convolutional layers

and the small difference may be because e.g. SSH uses a custom architecture with feature

pyramids, we use a standard ResNet50 backbone, SSH is in Caffe, ours is in MxNet,etc.

SSH has a better runtime at low-resolutions (e.g. on the 512x600 resolution, SSH takes

0.05 and FA-RPN takes 0.07 seconds). However, the runtime of current state-of-the-art

methods largely depends on the high-resolution scale. The multi-scale inference used in

FA-RPN can be further accelerated with AutoFocus [137].

5.6.7 Qualitative Results

Figure 5.9 shows qualitative results on the WIDER validation subset. We picked

20 diverse images to highlight the results generated by FA-RPN. Detections are shown

1http://www.github.com/mahyarnajibi/SSH
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by green rectangles and the brightness encodes the confidence. As can be seen, our face

detector works very well in crowded scenes and can find hundreds of small faces in a

wide variety of images. This shows that FA-RPN has a high recall and can detect faces

accurately. It generalizes well in both indoor and outdoor scenes and under different

lighting conditions. Our performance across a wide range of scales is also good without

using diverse features from different layers of the network. It is also robust to changes in

pose, occlusion, blur, and even works on old photographs.

Figure 5.9: Qualitative results on the validation set of the WIDER dataset. Green rectan-
gles show the detection and brightness encodes the detection confidence.

5.7 Conclusion

We introduced FA-RPN, a novel method for generating pooling-based proposals for

face detection. We proposed techniques for anchor placement and label assignment which

were essential in the design of such pooling-based proposal algorithm. FA-RPN has sev-

eral benefits like efficient iterative refinement, flexibility in selecting scale and anchor
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stride during inference, sub-pixel anchor placement etc. Using FA-RPN, we obtained

state-of-the-art results on the challenging WIDER dataset, showing the effectiveness of

FA-RPN for this task. FA-RPN also achieved state-of-the-art results out-of-the-box on

datasets like PascalFaces showing its generalizability.
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Chapter 6: G-CNN: an Iterative Grid-based Object Detector

6.1 Introduction

Object detection, i.e. the problem of finding the locations of objects and determining

their categories, is an intrinsically more challenging problem than classification since

it includes the problem of object localization. The recent and popular trend in object

detection uses a pre-processing step to find a candidate set of bounding-boxes that are

likely to encompass the objects in the image. This step is referred to as the bounding-

box proposal stage. The proposal techniques are a major computational bottleneck in

state-of-the-art object detectors [11]. There have been attempts [77, 138] to take this

pre-processing stage out of the loop but they lead to performance degradations.

We show that without object proposals, we can achieve detection rates similar to

state-of-the-art performance in object detection. Inspired by the iterative optimization in

[139], we introduce an iterative algorithm that starts with a regularly sampled multi-scale

grid of boxes in an image and updates the boxes to cover and classify objects. One step

regression can-not handle the non-linearity of the mapping from a regular grid to boxes

containing objects. Instead, we introduce a piecewise regression model that can learn this

non-linear mapping through a few iterations. Each step in our algorithm deals with an

easier regression problem than enforcing a direct mapping to actual target locations.
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Figure 6.1: This figure shows a schematic illustration of our iterative algorithm ”G-CNN”.
It starts with a multi-scale regular grid over the image and iteratively updates the boxes in
the grid. Each iteration pushes the boxes toward the objects of interest in the image while
classifying their category.

Figure 6.1 depicts an overview of our algorithm. Initially, a multi-scale regular grid

is superimposed on the image. For visualization we show a grid of non-overlapping, but

in actuality the boxes do overlap. During training, each box is assigned to a ground-truth

object by an assignment function based on intersection over union with respect to the

ground truth boxes. Subsequently, at each training step, we regress boxes in the grid to

move themselves towards the objects in the image to which they are assigned. At test

time, for each box at each iteration, we obtain confidence scores over all categories and

update its location with the regressor trained for the currently most probable class.

Our experimental results show that G-CNN achieves the state-of-the-art results ob-

tained by Fast-RCNN on PASCAL VOC datasets without computing bounding-box pro-

posals. Our method is about 5X faster than Fast R-CNN for detection.

6.2 Related Work

Prior to CNN: For many years the problem of object detection was approached by

techniques involving sliding window and classification [140, 141]. Lampert et al. [142]

proposed an algorithm that goes beyond sliding windows and was guaranteed to reach
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the global optimal bounding box for an SVM-based classifier. Implicit Shape Models

[143, 144] eliminated sliding window search by relying on key-parts of an image to vote

for a consistent bounding box that covers an object of interest. Deformable Part-based

Models [145] employed an idea similar to Implicit Shape Models, but proposed a direct

optimization via latent variable models and used dynamic programming for fast inference.

Several extension of DPMs emerged [146, 147] until the remarkable improvements due

to the convolutional neural networks was shown by [9].

CNN age: Deep convolutional neural networks (CNNs) are the state-of-the-art im-

age classifiers and successful methods have been proposed based on these networks [1].

Driven by their success in image classification, Girshick et al. proposed a multi-stage ob-

ject detection system, known as R-CNN [9], which has attracted great attention due to its

success on standard object detection datasets.

To address the localization problem, R-CNN relies on advances in object proposal

techniques. Recently, proposal algorithms have been developed which avoid exhaustive

search of image locations [2, 13]. R-CNN uses these techniques to find bounding boxes

which include an object with high probability. Next, a standard CNN is applied as feature

extractor to each proposed bounding box and finally a classifier decides which object class

is inside the box.

The main drawback of R-CNN is the redundancy in computing the features. Gen-

erally, around 2K proposals are generated; for each of them, the CNN is applied indepen-

dently to extract features. To alleviate this problem, in SPP-Net [12] the convolutional

layers of the network are applied only once for each image. Then, the features of each

region of interest are constructed by pooling the global features which lie in the spatial
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support of the region. However, learning is limited to fine-tuning the weights of fully con-

nected layers. This drawback is addressed in Fast-RCNN [11] in which all parameters are

learned by back propagating the errors through the augmented pooling layer and packing

all stages of the system, except generation of the object proposals, into one network.

The generation of object proposals, in CNN-based detection systems has been re-

garded as crucial. However, after proposing Fast-RCNN, this stage became the bottle-

neck. To make the number of object proposals smaller, Multibox[148] introduced a pro-

posal algorithm that outputs 800 bounding boxes using a CNN. This increases the size

of the final layer of the CNN to 4096x800x5 and introduces a large set of additional

parameters. Recently, Faster-RCNN [5] was proposed, which decreased the number of

parameters; however it needs to start from thousands of anchor points to propose 300

boxes.

In addition to classification, using a regressor for object detection has been also

studied previously. Before proposing R-CNN, Szegedy et al. [149], modeled object de-

tection as a regression problem and proposed a CNN-based regression system. More

recently, AttentionNet [150] is a single category detection that detects a single object in-

side an image using iterative regression. For multiple objects, the model is applied as a

proposal algorithm to generate thousands of proposals and then is re-applied iteratively

on each proposal for single category detection, which makes detection inefficient.

Although R-CNN and its variants attack the problem using a classification ap-

proach, they employ regression as a post-processing stage to refine the localization of

the proposed bounding boxes.

The importance of the regression stage has not received as much attention as im-
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proving the object proposal stage for more accurate localization. The necessity of an

object proposal algorithm in CNN based object detection systems has recently been chal-

lenged by Lenc et al. [138]. Here, the proposals are replaced by a fixed set of bounding

boxes. A set with a distribution derived from an object proposal method is selected using

a clustering technique. However, for achieving comparable results, even more boxes need

to be used compared to R-CNN. Another recent attempt for removing the proposal stage

is Redmon et al. [77] which conducts object detection in a single shot. However, the con-

siderable gap between the best detection accuracy of these systems and systems with an

explicit proposal stage suggests that the identification of good object proposals is critical

to the success of these CNN based detection systems.

6.3 G-CNN Object Detector

6.3.1 Network structure

G-CNN trains a CNN to move and scale a fixed multi-scale grid of bounding boxes

towards objects. The network architecture for this regressor is shown in Figure 6.2. The

backbone of this architecture can be any CNN network (e.g. AlexNet [1], VGG [102],

etc.). As in Fast R-CNN and SPP-Net, a spatial region of interest (ROI) pooling layer is

included in the architecture after the convolutional layers. Given the location information

of each box, this layer computes the feature for the box by pooling the global features

that lie inside the ROI. After the fully connected layers, the network ends with a linear

regressor which outputs the change in the location and scale of each current bounding

box, conditioned on the assumption that the box is moving towards an object of a class.
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Figure 6.2: Structure of G-CNN regression network as well as an illustration of the idea
behind the iterative training approach. The bounding box at each step is shown by the
blue rectangle and its target is represented by a red rectangle. The network is trained to
learn the path from the initial bounding box to its assigned target iteratively.

6.3.2 Training the network

Despite the similarities between the Fast R-CNN and G-CNN architectures, the

training goals and approaches are different. G-CNN defines the problem of object de-

tection as an iterative search in the space of all possible bounding boxes. G-CNN starts

from a fixed multi-scale spatial pyramid of boxes. The goal of learning is to train the

network so that it can move this set of initial boxes towards the objects inside the image

in S steps iteratively. This iterative behaviour is essential for the success of the algo-

rithm. The reason is the highly non-linear search space of the problem. In other words,

although learning how to linearly regress boxes to far away targets is unrealistic, learning

small changes in the search space is tractable. Section 6.4.3 shows the importance of this

step-wise training approach.
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6.3.2.1 Loss function

G-CNN is an iterative method that moves bounding boxes towards object locations

in Strain steps. For this reason, the loss function is defined not only over the training

samples but also over the iterative steps.

More formally, let B represent the four-dimensional space of all possible bounding

boxes represented by the coordinates of their center, their width, and height. Bi ∈ B is the

i’th training bounding box. We use the superscript 1 ≤ s ≤ Strain to denote the variables

in step ’s’ of the G-CNN training, i.e. Bs
i is the position of the i’th training bounding box

in step s.

During training, each bounding box with an IoU higher than a small threshold (0.2)

is assigned to one of the ground truth bounding boxes inside its image. The following

many-to-one function, A, is used for this assignment.

A(Bs
i ) = argmax

G∈Gi
IoU(B1

i ,G) (6.1)

where Gi = {Gi1 ∈ B, . . . ,Gin ∈ B}, is the set of ground truth bounding boxes which

lie in the same image as Bi. IoU is the intersection over union measure. Note that B1
i

represents the position of the i’th bounding box in the initial grid. In other words, for

each training bounding box, the assignment is done in the initial training step and is not

changed during the training.

Since regressing the initial training bounding boxes to their assigned ground truth

bounding box can be highly non-linear, we tackle the problem with a piece-wise regres-
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sion approach. At step s, we solve the problem of regressing Bs
i to a target bounding box

on the path from Bs
i to its assigned ground truth box. The target bounding box is moved

step by step towards the assigned bounding box until it coincides with the assigned ground

truth in step Strain. The following function is used for defining the target bounding boxes

at each step:

Φ(Bs
i ,G

∗
i , s) = Bs

i +
G∗i −Bs

i

Strain − s+ 1
(6.2)

where G∗i = A(Bs
i ) represents the assigned ground truth bounding box to Bs

i .

That is, at each step, the path from the current representation of the bounding box to the

assigned ground truth is divided by the number of remaining steps and the target is defined

to be one unit away from the current location.

G-CNN regression network outputs four values for each class, representing the pa-

rameterized change for regressing the bounding boxes assigned to that class. Follow-

ing [9], a log-scale shift in width and height and a scale invariant translation is used to

parametrize the relative change for mapping a bounding box to its assigned target. This

parametrization is denoted by ∆(Bs
i ,T

s
i ), where Ts

i is the assigned target to Bs
i computed

by 6.2.

So the loss function for G-CNN is defined as follows:

L({Bi}Ni=1) =

Strain∑
s=1

N∑
i=1

[
I(B1

i 6∈ BBG)× (6.3)

Lreg(δ
s
i,li
−∆(Bs

i ,Φ(Bs
i ,A(Bs

i ), s)))
]

94



where δsi,li is the four-dimensional parameterized output for class li representing

the relative change in the representation of bounding box Bs
i . li is the class label of the

assigned ground truth bounding box to Bi. Lreg is the regression loss function. The

smooth l1 loss is used as defined in [11]. I(.) is the indicator function which outputs

one when its condition is satisfied and zero otherwise. BBG represents the set of all

background bounding boxes.

During training, the representation of bounding box Bi at step s, Bs
i , can be deter-

mined based on the actual output of the network by the following update formula:

Bs
i = Bs−1

i + ∆−1(δs−1i,li
) (6.4)

where ∆−1 projects back the relative change in the position and scale from the defined

parametrized space into B. However for calculating 6.4, the forward path of the network

needs to be evaluated during training, making training inefficient. Instead, we use an

approximate update by assuming that in step s, the network could learn the regressor for

step s − 1 perfectly. As a result the update formula becomes Bs
i = Φ(Bs−1

i ,G∗i , s − 1).

This update is depicted in Figure 6.2.

6.3.2.2 Optimization

G-CNN optimizes the objective function in 6.3 with stochastic gradient descent.

Since G-CNN tries to map the bounding boxes to their assigned ground-truth boxes in

Strain steps, we use a step-wised learning algorithm that optimizes Eq. 6.3 step by step.

To this end, we treat each of the bounding boxes in the initial grid together with its
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target in each of the steps as an independent training sample i.e. for each of the bounding

boxes we have Strain different training pairs. The algorithm first tries to optimize the loss

function for the first step using Niter iterations. Then the training pairs of the second step

are added to the training set and training continues step by step. By keeping the samples

of the previous steps in the training set, we make sure that the network does not forget

what was learned in the previous steps.

The samples for the earlier steps are part of the training set for a longer period of

time. This choice is made since the earlier steps determine the global search direction and

have a greater impact on the chance that the network will find the objects. On the other

hand, the later steps only refine the bounding boxes to decrease localization error. Given

that the search direction was correct and a good part of the object is now visible in the

bounding box, the later steps solve a relatively easier problem.

Algorithm 2 is the method for generating training samples from each bounding box

during each G-CNN step.

6.3.3 Fine-tuning

All models are fine-tuned from pre-trained models on ImageNet. Following [11],

we fine-tune all layers except early convolutional layers (i.e. conv2 and up for AlexNet

and conv3 1 and up for VGG16). During training, mini-batches of two images are used.

At each step of G-CNN, 64 training samples are selected randomly from all possible

samples of the image at the corresponding step.
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Algorithm 2: G-CNN Training Algorithm
1 for i = 1 to Strain do
2 TrainTuples← {} ;
3 for s = 1 to c do
4 if s = 1 then
5 B1 ← Spatial pyramid grid of boxes ;
6 G∗ ← A(B1) ;
7 end
8 else
9 Bs ← Ts−1 ;

10 end
11 Ts ← Φ(Bs,G∗, s) ;
12 ∆s ← ∆(Bs,Ts) ;
13 Add (Bs,∆s) to TrainTuples ;
14 end
15 Train G-CNN Niter iterations with TrainTuples ;
16 end

6.3.4 G-CNN Test Network

The G-CNN regression network is trained to detect objects in an iterative fashion

from a set of fixed bounding boxes in a multi-scale spatial grid. Likewise at test time, the

set of bounding boxes is initialized to boxes inside a spatial pyramid grid. The regressor

moves boxes towards objects using the classifier score to determine which class regressor

to apply to update the box. The detection algorithm is presented in Algorithm 3.

During the detection phase, G-CNN is run Stest times. However, like SPP-Net

and Fast R-CNN there is no need to compute activations for all layers at every iteration.

During test time, we decompose the network into global and regression parts as depicted

in Figure. 6.3. The global net contains all convolutional layers of the network. On the

other hand, the regression part consists of the fully connected layers and the regression

weights. The input to the global net is the image and the forward path is computed only
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Figure 6.3: Decomposition of the G-CNN network into global (upper) and regression part
(lower) for detection after the training phase. Global part is run only once to extract global
features but regression part is run at every iteration. This leads to a considerable speed up
at test time.

once for each image, outside the detection loop of Algorithm 3. Inside the detection loop,

we only operate the regression network, which takes the outputs of the last layer of the

global net as input and produces the bounding box modifications.

Algorithm 3: Detection algorithm
Input : The feed-forward G-CNN regression network f(.), The classifier

function c(.)
Output: Final Detections BStest+1

1 B1 ← Spatial pyramid grid of boxes ;
2 for s = 1 to Stest do
3 l← c(Bs) ;
4 δsl ← f(Bs) ;
5 Bs+1 ← Bs + ∆−1(δsl ) ;
6 end
7 return BStest+1 ;

This makes the computational cost of the algorithm comparable to Fast R-CNN

(without considering the object proposal stage of Fast R-CNN). The global net is called

once in both Fast R-CNN and G-CNN. Afterward, Fast R-CNN does Nproposal forward

calculations of the regression network (where Nproposal is the number of generated object
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proposals for each image). G-CNN, on the other hand, does this forward calculation

Stest × Ngrid times (where Ngrid is the number of bounding boxes in the initial grid). In

section 6.4.2, we show that for Stest = 5 and Ngrid ∼ 180, G-CNN achieves comparable

results to Fast R-CNN which uses Nproposal ∼ 2K object proposals.

6.4 Experiments

6.4.1 Experimental Setup

We report results on the Pascal VOC 2007 and Pascal VOC 2012 datasets. The

performance of G-CNN is evaluated with AlexNet [1] as a small and VGG16 [102] as a

very deep CNN structure. Following [9], we scale the shortest side of the image to 600

pixels not allowing the longer side of the image to be more than 1000 pixels. However, we

always maintain the aspect ratio of the image, so the shortest side might include fewer than

600 pixels. Each model is pre-trained with weights learned from the imagenet dataset.

In all the experiments, the G-CNN regression network is trained on an initial over-

lapping spatial pyramid with [2,5,10] scales (i.e. the bounding boxes in the coarsest level

are (imwidth/2, imheight/2) pixels etc.). During training, we used [0.9,0.8,0.7] overlap for

each spatial scale respectively. By overlap of α we mean that the horizontal and vertical

strides are widthcell ∗ (1− α) and heightcell ∗ (1− α) respectively. However, during test

time, as will be shown in the following sections, overlaps of [0.7,0.5,0] (non-overlapping

grid at the finest scale) is sufficient to obtain results comparable to Fast R-CNN. This leads

to a grid of almost 180 initial boxes at test time. The G-CNN regression network is trained

for S = 3 iterative steps. According to our experiments, no substantial improvement is
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achieved by training the network for a larger number of steps.

6.4.2 Results on VOC datasets

The goal of G-CNN is to replace object proposals with a fixed multi-scale grid of

boxes. To evaluate this, we fix the classifier in Algorithm 3 to the Fast R-CNN classi-

fier and compare our results to the original Fast R-CNN with selective search proposal

algorithm.

6.4.2.1 VOC 2007 dataset

Table 6.1 compares the mAP between G-CNN and Fast R-CNN on the VOC2007

test set. AlexNet is used as the basic CNN for all methods and models are trained on

VOC2007 trainval set. G-CNN(3) is our method with three iterative steps during test

time. In this version, we used the same grid overlaps used during training. This leads to a

set of around 1500 initial boxes. G-CNN(5) is our method when we increase the number

of steps at test time to 5 but reduce the overlaps to [0.7,0.5,0] (see 6.4.1). This leads to

around 180 boxes per image. According to the result, 180 boxes is enough for G-CNN to

surpass the performance of Fast R-CNN, which uses around 2K selective search proposed

boxes. In the remainder of this section, we use G-CNN to refer to the G-CNN(5) version

of our method.

Table 6.2 shows mAP for various methods trained on VOC2007 trainval set and

tested on VOC2007 test set. All methods used VGG16. The results validate our claim

that G-CNN effectively moves its relatively small set of boxes toward objects. In other
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words, there seems to be no advantage to employing the larger set of selective search

proposed boxes for detection in this dataset.

VOC 2007 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

FR-CNN [11] 66.4 71.6 53.8 43.3 24.7 69.2 69.7 71.5 31.1 63.4 59.8 62.2 73.1 65.9 57 26 52 56.4 67.8 57.7 57.1
G-CNN(3) [ours] 63.2 68.9 51.7 41.8 27.2 69.1 67.7 69.2 31.8 60.6 60.8 63.9 75.5 67.3 54.9 26.1 51.2 57.2 69.6 56.8 56.7
G-CNN(5) [ours] 65 68.5 52 44.9 24.5 69.3 69.6 68.9 34.6 60.3 58.1 64.6 75.1 70.5 55.2 28.5 50.7 56.8 70.2 56.1 57.2

Table 6.1: Average Precision on VOC 2007 test data. Both Fast R-CNN and our methods
use AlexNet CNN structure. Models are trained using VOC 2007 trainval set.

VOC 2007 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

SPPnet BB[12] 73.9 72.3 62.5 51.5 44.4 74.4 73.0 74.4 42.3 73.6 57.7 70.3 74.6 74.3 54.2 34.0 56.4 56.4 67.9 73.5 63.1
R-CNN BB[151] 73.4 77.0 63.4 45.4 44.6 75.1 78.1 79.8 40.5 73.7 62.2 79.4 78.1 73.1 64.2 35.6 66.8 67.2 70.4 71.1 66.0
FR-CNN[11] 74.5 78.3 69.2 53.2 36.6 77.3 78.2 82.0 40.7 72.7 67.9 79.6 79.2 73.0 69.0 30.1 65.4 70.2 75.8 65.8 66.9
G-CNN[ours] 68.3 77.3 68.5 52.4 38.6 78.5 79.5 81 47.1 73.6 64.5 77.2 80.5 75.8 66.6 34.3 65.2 64.4 75.6 66.4 66.8

Table 6.2: Average Precision on VOC 2007 Test data. All reported methods used VGG16.
Models are trained using VOC 2007 trainval set.

6.4.2.2 VOC 2012 dataset

The mAP for VOC2012 dataset is reported in Table 6.3. All methods use VGG16

as their backbone. Methods are trained on trainval set and tested on the VOC2012 test

set. The results of our method are obtained using the ”comp4” evaluation server with the

parameters mentioned in 6.4.1 and the results of other methods are obtained from their

papers.

VOC 2012 train aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

R-CNN BB[151] 12 79.6 72.7 61.9 41.2 41.9 65.9 66.4 84.6 38.5 67.2 46.7 82.0 74.8 76.0 65.2 35.6 65.4 54.2 67.4 60.3 62.4
YOLO[77] 12 71.5 64.2 54.1 35.3 23.3 61.0 54.4 78.1 35.3 56.9 40.9 72.4 68.6 68.0 62.5 26.0 51.9 48.8 68.7 47.2 54.5
FR-CNN[11] 12 80.3 74.7 66.9 46.9 37.7 73.9 68.6 87.7 41.7 71.1 51.1 86.0 77.8 79.8 69.8 32.1 65.5 63.8 76.4 61.7 65.7
FR-CNN[11] 07++12 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2 68.4
G-CNN [ours] 12 82 74 68.2 49.5 38.9 74.4 68.9 85.4 40.6 70.9 50 85.5 77 77.4 67.9 33.7 67.6 60 77.6 60.8 65.5
G-CNN [ours] 07+12 82 76.1 69.3 49.9 40.1 75.2 69.5 86.3 42.3 72.3 50.8 84.7 77.8 77.2 68 38.1 68.4 59.8 79.1 61.9 66.4*

Table 6.3: Average Precision on VOC2012 test data. All reported methods used VGG16.
The training set for each image is mentioned in the second column (12 stands for
VOC2012 trainval, 07+12 represents the union of the trainval of VOC2007 and VOC2012,
and 07++12 is the union of VOC 2007 trainval, VOC 2007 test and VOC 2012 trainval.
The * emphasises that our method is trained on fewer data compared to FR-CNN trained
on 07++12 training data)
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G-CNN obtains almost the same result as Fast R-CNN when both methods are

trained on VOC 2012 trainval. Although in this table the best-reported mAP for Fast

RCNN is slightly higher than G-CNN, it should be noted that unlike G-CNN, Fast R-

CNN used the VOC 2007 test set as part of its training. It is worth noting that all methods

except YOLO use proposal algorithms with high computational complexity. Compared to

YOLO, which does not use object proposals, our method has a considerably higher mAP.

To the best of our knowledge, this is the best-reported result among methods without an

object proposal stage.

6.4.3 Stepwise training matters

G-CNN uses a stepwise training algorithm and defines its loss function with this

goal. In this section, we investigate the question of how important this stepwise training

is and whether it can be replaced by a simpler, single step training approach.

To this end, we compare G-CNN with two simpler iterative approaches in table

6.4. First we consider the iterative version of Fast R-CNN (IF-RCNN). In this method,

we use the regressor trained with Fast R-CNN in our iterative framework. Clearly, this

regressor was not designed for grid-based object detection, but for small post-refinement

of proposed objects.

Also, we consider a simpler algorithm for training the regressor for a grid-based

detection system. Specifically, we collect all training tuples created in different steps of

G-CNN and train our regressor in one step on this training set. So the only difference

between G-CNN and this method is stepwise training. We call this method 1Step-Grid.

102



Number of iterations
1 2 3 4 5

m
A

P 
on

 V
O

C
20

07
 T

es
t

34

37

40

43

46

49

52

55
57.5

G-CNN
IF-RCNN

Figure 6.4: Mean average precision on VOC2007 test set vs. number of regression steps
for G-CNN and IF-RCNN. Both methods use AlexNet and trained on VOC2007 trainval.

All methods are trained on VOC 2007 trainval set and tested on VOC 2007 test set

and AlexNet is used as the core CNN structure. All methods are applied five iterations

during test time to the same initial grid. Table 6.4 shows the comparison among the meth-

ods and Figure 6.4 compares IF-RCNN and G-CNN for different numbers of iterations.

VOC 2007 aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

IF-RCNN 51.3 67.1 51.6 33.7 26.2 67.8 66.3 70.3 31.5 56.3 55.9 62.6 74.7 64.6 55.6 22.2 46.5 54.3 67.4 55 54.1
1Step-Grid 59.6 63.3 52.4 40.2 20.9 68.1 67.1 68.6 29.7 59.6 62.1 63 70.7 64 53.2 23.4 50.1 56 63.5 53.9 54.5
G-CNN [ours] 65 68.5 52 44.9 24.5 69.3 69.6 68.9 34.6 60.3 58.1 64.6 75.1 70.5 55.2 28.5 50.7 56.8 70.2 56.1 57.2

Table 6.4: Comparison among different strategies for grid-based object detection trained on
VOC2007 trainval. All methods used AlexNet.

The results show that step-wise training is crucial to the success of G-CNN. Even

though the training samples are the same for G-CNN and 1Step-Grid, G-CNN outper-

forms it by a considerable margin.

6.4.4 Analysis of the detection results

G-CNN removes the proposal stage from CNN-based object detection networks.

Since the object proposal stage is known to be important for achieving good localization

in CNN-based techniques, we compare the localization of G-CNN with Fast R-CNN.

To this end, we use the powerful tool of Hoeim et al. [152]. Figure 6.5 shows the
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(c) 1Step-Grid
Figure 6.5: The distribution of top-ranked types of false positives (FPs). FPs are catego-
rized into four different subcategories. The diagram shows the change in the distribution
of these types when more FPs with decreasing scores are considered. Loc represents those
FPs caused by poor localization (a duplicate detection or detection with IoU between 0.1
and 0.5). Sim shows those coming from confusion with one of the similar classes. BG
stands for FPs on background and Oth represents other sources.

distribution of top-ranked false positive rates for G-CNN, Fast R-CNN and the 1Step-Grid

approach defined in the previous subsection. Comparing the distributions for G-CNN and

Fast R-CNN, it is clear that removing the proposal stage from the system using our method

did not hurt the localization and for the furniture class, it slightly improved the FPs due

to localization error. Note that 1Step-Grid is trained on the same set of training tuples as

G-CNN. However, the higher rate of false positives due to localization in 1Step-Grid is

another indication of the importance of G-CNN’s multi-step training strategy.
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6.4.5 Qualitative results

Figure 6.6 shows some of the paths found by G-CNN in the space of bounding

boxes starting from an initial grid with three scales. This example shows how G-CNN is

capable of changing the position and scale of the boxes to fit them to different objects.

The first four rows show successful examples while the last ones show failure examples.

6.4.6 Detection run time

Here we compare the detection time of our algorithm with Fast R-CNN. For both

methods, we used the truncated SVD technique proposed in [11] and compressed fc6 and

fc7 layers by keeping their top 1024 singular values and 256 singular values respectively.

Timings are performed on a system with two K40 GPUs. The VGG16 network structure

is used for both detection techniques and G-CNN uses the same classifier as Fast R-CNN.

We used Selective Search proposal to generate around 2K bounding boxes as sug-

gested by [11]. This stage takes 1830 ms to complete on average (selective search algo-

rithm is not implemented in GPU mode). Fast R-CNN itself takes 220 ms on average for

detecting objects. This leads to a total detection time of 2050 ms/im.

On the other hand, G-CNN does not need any object proposal stage. However, it

iterates S=5 times with a grid of around 180 boxes. The global part of the network (See

6.3.4) takes 188 ms for each image. Each iteration of the segmentation network takes 35

ms. The classification network can be run in parallel. This would lead to a detection time

of 363 ms/im (around 3 fps) in total.
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Figure 6.6: A sample of paths G-CNN found towards objects in the VOC2007 test set.
The first four rows show some success examples while the last rows show some failure
cases. The most common failures of G-CNN can be categorized into the following sub-
categories: false firing of the classifier on similar objects (first three failure cases in the
fifth row where G-CNN fits into picture frames instead of monitors); bad localization due
to high overlapping similar objects (next three examples); false firing of the classifier on
small boxes (last two cases in the sixth row); localization error due to hard object pose or
small initial box compared to the actual size of the object (examples in the last row).
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6.5 Conclusion

We proposed G-CNN, a CNN-based object detection technique which models the

problem of object detection as an iterative search in the space of all possible bounding

boxes. Our model starts from a grid of fixed boxes regardless of the image content and

migrates them to objects in the image. Since this search problem is nonlinear, we pro-

posed a piece-wise regression model that iteratively moves boxes towards objects step by

step. We showed how to learn the CNN architecture in a stepwise manner. The main

contribution of the proposed technique is removing the object proposal stage from the

detection system, which is the current bottleneck for CNN-based detection systems. G-

CNN is 5X faster than ”Fast R-CNN” and achieves comparable results to state-of-the-art

detectors.
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Chapter 7: Towards the Success Rate of One: Real-time Unconstrained

Salient Object Detection

7.1 Introduction

Saliency detection is the problem of finding the most distinct regions from a vi-

sual scene. It attracts a great amount of attention due to its importance in object de-

tection [153], image segmentation [154], image thumb-nailing [155], video summariza-

tion [156], etc.

Saliency detection has been studied under three different scenarios. Early works

attempt to predict human eye-fixation over an image [79], while later works increasingly

focus on salient foreground segmentation [157, 158, 159, 160, 161], i.e., predicting a

dense, pixel-level binary map to differentiate salient objects from background. However,

it cannot separate overlapping salient objects and requires pixel-level annotations that are

expensive to acquire for large datasets. Different from salient foreground segmentation,

salient object detection aims to locate and draw bounding boxes around salient objects. It

only requires bounding box annotations, which significantly reduces the effort for human

labeling, and can easily separate overlapping objects. These advantages make the problem

of salient object detection more valuable to investigate in terms of applicability to the real
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world.

With the re-emergence of convolutional neural networks (CNN), computer vision

community has witnessed numerous breakthroughs, including salient object detection,

thanks to the extraordinary discriminative ability of CNNs [162]. Prior to CNNs, Some

works [163, 164, 165, 166] have proposed heuristics to detect single salient object in an

image, while others [167, 168] rank a fixed-sized list of bounding boxes which might

contain salient objects without determining the exact detections. However, most of these

methods do not solve the existence problem, i.e., determining whether any salient objects

exist in an image at all, and simply rely on external binary classifiers to address this

problem. Recently, saliency detection based on deep networks has achieved state-of-the-

art performance. Zhang et al. [162] propose to use the MultiBox proposal network [148]

to generate hundreds of candidate bounding boxes that are further ranked to output a

compact set of salient objects. A probabilistic approach is proposed to filter and re-

rank candidate boxes as a substitution for non-maxima suppression (NMS). To accurately

localize salient objects, [162] requires a large number of class-agnostic proposals covering

the whole image (see Figure 7.1). However, its precision and recall significantly drop

if one only uses tens of boxes. The reason is that generic object proposals have very

low success rate of locating an object, i.e., only few of them tightly enclose the ground-

truth objects, while most are redundant. Even though additional refinement steps are

applied [162], there are still a lot of false positives (see Figure 7.1). The additional steps

add more overhead and make this framework infeasible for real-time applications.

In this section, we address this problem by moving towards the success rate of one,

i.e., generating the exact number of boxes for salient objects without object proposals.
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Figure 7.1: (a) Ground-truth image (b) Output of MultiBox [148] (c) Remaining Multi-
Box bounding boxes after pruning steps in [162] (d) Saliency map predicted by our
method without pixel-level labeling (e) Bounding boxes generated by our method from
(d) without proposals.

We present an end-to-end deep network for real-time salient object detection, dubbed

as RSD. Rather than generating lots of candidate boxes and filtering them, our network

directly predicts a saliency map with Gaussian distributions centered at salient objects,

and infers bounding boxes from these distributions. Our network consists of two branches

trained with multi-task loss to perform saliency map prediction, salient object detection

and subitizing simultaneously, all in a single pass within a unified framework. Notably,

our RSD with VGG16 achieves more than 100 fps on a single GPU during inference,

significantly faster than existing CNN-based approaches. To the best of our knowledge,

this is the first work on real-time non-redundant bounding box prediction for simultaneous

salient object detection, saliency map estimation and subitizing, without object proposals.

We also show the possibility of generating accurate saliency maps without pixel-level

annotations, formulating it as a weakly-supervised approach that is more practical than

fully-supervised approaches.
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Our contributions are summarized as follows. First, we present a unified deep net-

work performing salient object detection, saliency map prediction and subitizing simul-

taneously in a single pass. Second, our network is trained with Gaussian distributions

centered at ground-truth salient objects that are considered to be more informative and

discriminative than bounding boxes to distinguish multiple salient objects. Third, our

approach outperforms state-of-the-art methods using object proposals by a large margin,

and also produces comparable results on salient foreground segmentation datasets, even

though we do not use any pixel-level annotations. Finally, our network achieves 100+ fps

during inference and is applicable to real-time systems.

7.2 Related Works

Salient object detection aims to mark important regions by rectangles in an im-

age. Early works assume that there is only one dominant object in an image and utilize

various hand-crafted features to detect salient objects [81, 166]. Salient objects are seg-

mented out by a CRF model [81] or bounding box statistics learned from a large image

database [166]. Some works [167, 168] demonstrate the ability of generating multiple

overlapping bounding boxes in a single scene by combining multiple image features.

Recently, Zhang et al. [162] apply deep networks with object proposals to achieve state-

of-the-art results. However, these methods are not scalable for real-time applications due

to the use of sliding windows, complex optimization or expensive box sampling process.

Object proposal have been used widely in object detection, which are either gen-

erated from grouping superpixels [128, 169, 2] or sliding windows [170, 13]. However,
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it is a bottleneck to generate a large number of proposals for real-time detection [11, 9].

Recently, deep networks are trained to generate proposals in an end-to-end manner to im-

prove efficiency [148, 5]. While methods such as [42, 77, 113, 31] instead adopt regular

grid structures, they still rely on filtering a set of refined boxes. Different from previous

methods, our approach does not use any proposals.

Object subitizing addresses the object existence problem by learning an external

binary classifier [171, 166]. Zhang et al. [172] present a salient object subitizing model

to remove detected boxes in images with no salient object. While the method in [162]

addresses existence and localization problems at the same time, it still requires generating

proposals recursively, which is inefficient.

Saliency map prediction produces a binary mask to segment salient objects from

background. While both bottom-up methods using low-level image features [173, 174,

174, 175, 176] and top-down methods [81, 166] have been proposed for decades, many

recent works utilize deep neural networks for this task [161, 158, 160, 159, 177, 178, 179].

Li et al. [158] propose a model for visual saliency using multi-scale deep features com-

puted by CNNs. Wang et al. [160] develop two deep neural networks to learn local

features and global contrast with geometric features to predict saliency score of each re-

gion. In [161], both global and local context are combined into a single deep network,

while a fully convolutional network is applied in [177]. Note that existing methods heav-

ily rely on pixel-level annotations [161, 159, 177] or external semantic information, i.e.,

superpixels [178], which is not feasible for large-scale problems, where human labeling

is extremely sparse. In contrast, our approach, as a weakly-supervised approach, only

requires bounding box annotations and produces promising results as a free by-product,
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along with salient object detection and subitizing.

7.3 Proposed Approach

Existing detection methods based on CNNs and object proposals [148, 11, 9, 5, 162]

convert the problem of selecting candidate locations in an image in the spatial domain to

a parameter estimation problem, e.g., finding independent numbers as the coordinates of

the bounding boxes. They use as many as billions of parameters in fully connected (fc)

layers [11, 9], which is computationally expensive and increases the possibility of over-

fitting on small datasets. In contrast, our RSD approach discards proposals and directly

solves the problem in the spatial domain. It reduces the number of parameters from bil-

lions to millions and achieves real-time speed. We predict a rough saliency map, from

which we infer the exact number of boxes as the ground-truth objects based on the guid-

ance of the subitizing output of our network. This unified framework addresses three

closely related problems, saliency map prediction, subitizing and salient object detection,

without allocating separate resources for each.

7.3.1 Network architecture

Our network is composed of the following components (see Figure 7.2). Images

first go through a series of convolutional layers that can be any widely used models, such

as VGG16 and ResNet-50. Specifically, we use the convolutional layers conv1 1 through

conv5 3 from VGG16 [102], and conv1 through res4f from ResNet-50 [21]. These lay-

ers capture low-level cues and high-level visual semantics. Two branches are connected
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Figure 7.2: Our RSD network based on VGG16.

to the feature maps from the last convolutional layer: saliency map prediction branch

and subitizing branch. The saliency map prediction branch consists of two convolutional

layers, conv s1 and conv s2, to continue processing the image in the spatial domain and

produce a rough saliency map. The layer conv s1 has 80 3× 3 filters to produce interme-

diate saliency maps conditioned on different latent distributions of the objects (e.g., latent

object categories). For instance, each of the 80 filters can be seen as a way to generate a

rough saliency map for a specific type of category. The layer conv s2 summarizes these

conditional maps into a single saliency map by a 1× 1 filter followed by a sigmoid func-

tion. The subitizing branch predicts the number of salient objects that can be 0, 1, 2, or

3+. It contains the final fc layers for VGG16, and all the remaining convolutional layers

followed by a global average pooling layer and a single fc layer for ResNet-50.

7.3.2 Ground-truth preparation

The ground-truth for salient object detection only contains a set of numbers defining

coordinates of bounding boxes tightly enclosing the objects. Although we can generate a

binary mask based on these coordinates, i.e., 1 inside the bounding boxes and 0 elsewhere,
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it cannot easily separate overlapping objects or encode non-rigid boundaries well if we

use rectangular boxes.

To address this problem, we propose to generate Gaussian distributions to represent

salient objects, and use images with Gaussian distributions as ground-truth saliency maps.

Given a ground-truth bounding box Bi for an image with width W and height H , let

(cxi, cyi, wi, hi) represent the coordinates of its center, width, and height. If the network

has the stride of s at the beginning of the saliency map prediction branch (e.g., 16 for

VGG16), the ground-truth saliency mapMg is an image of size bW/sc × bH/sc, where

b.c is the floor function. Its (x, y)-th element is then defined as

Mg(x, y) =
N∑
i=1

e−
1
2
(vxy−µi)T Σi(vxy−µi)1vxy∈RBi

, (7.1)

where vxy = [x, y]T is the location vector, and µi = [bcxi/sc, bcyi/sc]T is the mean

value. N is the number of ground-truth bounding boxes in the image. RBi
represents the

ROI inside bounding box Bi. 1 is an indicator function. The covariance matrix Σn can

be represented as

Σi =

bwi

s
c2/4, 0

0, bhi
s
c2/4

 . (7.2)

By (7.1), we represent each bounding box as a normalized 2D Gaussian distribu-

tion, located at the center of the bounding box, with the co-variance determined by the

bounding box’s height and width and truncated at the box boundary. As shown in Fig-

ure 7.3, the Gaussian shape ground-truth provides better separation for multiple objects

compared to rectangular bounding boxes. It also naturally acts as spatial weighting to the
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Figure 7.3: Samples of generated ground-truth saliency maps.

ground-truth, so that the network learns to focus more on the center of objects instead of

being distracted by background.

7.3.3 Multi-task loss

Our network predicts a saliency map from an image and performs subitizing as

well. During training, the network tries to minimize the difference between the ground-

truth map and the predicted saliency map. Although Euclidean loss is widely used to

measure the pixel-wise distance, it pushes gradients towards 0 if the values of most pixels

are 0, which is the case in our application when there are images with no salient object.

Therefore, we use a weighted Euclidean loss to better handle this scenario, defined as

`sal(x,g) =
1

2d

d∑
i=1

α1gi>0.5(xi − gi)2, (7.3)

where x ∈ Rd and g ∈ Rd are the vectorized predicted and ground-truth saliency maps,

respectively. xi and gi represent the corresponding i-th element. α is a constant weight
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set to 5 in all our experiments. Essentially, the loss `sal assigns more weight to the pixels

with the ground-truth value higher than 0.5, compared to those with the value close to 0.

In this way, the problem of gradient vanishing is alleviated since the loss focuses more

on pixels belonging to the real salient objects and is not dominated by background pixels.

As a classifier, the subitizing branch minimizes the multinomial logistic loss `sub(y, n)

between the ground-truth number of objects n, and the predicted number of objects y.

The two losses are combined as our final multi-task loss

`(x,g, y, n) = `sal(x,g) + λ`sub(y, n), (7.4)

where λ is a weighting factor to balance the importance of the two losses. We empirically

set λ = 0.25 to make the magnitude of the loss values comparable.

7.3.4 Training

The loss in (7.4) defines a multi-task learning problem previously studied by other

vision applications [11, 5]. It reduces required resources by sharing weights between

different tasks, and acts as a regularization to avoid over-fitting. We use standard SGD

with momentum and weight decay for learning the parameters of the network.

To ensure fair comparison, we adopt the same two-stage training scheme suggested

by [162]. In the first stage, we initialize the network using the weights trained on Ima-

geNet [180] for classification and fine-tune it on the ILSVRC2014 detection dataset [181]

by treating all objects as salient. In the second stage, we continue fine-tuning the net-

work on the SOS dataset [172] for salient object subitizing and detection. Although
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all the images in SOS are annotated for subitizing, some are not labled for detection.

Therefore, we do not back-propagate gradients to our saliency map prediction branch

for these images labeled as containing salient objects but without bounding box anno-

tations. The loss function to fine-tune on the SOS dataset `(x,g, y, n) is denoted as

1nbox≥n`sal(x,g) + λ`sub(y, n), where nbox indicates the number of bounding box an-

notations in the image.

7.3.5 Bounding box generation

Our method leverages the saliency prediction branch and subtizing branch to infer

the correct number and location of bounding boxes. Given the output of the subitizing

branch nsub and the rough saliency prediction map M, the goal is to find K Gaussians

N (µk, σ
2
k), k = 1, . . . , K that align with the predicted saliency map and are supported by

the subitizing output, which can be formulated as

arg min
{µk},{σk},K

`s(
K∑
k=1

N (µk, σ
2
k),M)

+ 1nsub<nM
1θsub>θc`c(K,nsub), (7.5)

where `s captures the discrepancy between the predicted saliency map and the gener-

ated Gaussian map. `c measures the disagreement between the subitizing branch and the

number of Gaussians, from which boxes’ locations can be inferred. nM is the maximal

possible output of the subitizing branch, i.e., maximal number of salient objects. θsub is

the confidence score of the subitizing branch, and θc is a fixed confidence threshold that
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will be discussed later. In other words, if nsub = nM or θsub is lower than the thresh-

old, we rely only on the predicted saliency map to determine the number and locations

of salient objects. Since solving (7.5) directly is intractable, we propose a feasible and

efficient greedy algorithm to approximate it, which predicts the center and scale of boxes,

while optimizing the objective function. f nsub = 0, our method does not generate any

bounding boxes; otherwise it generates either single or multiple objects.

7.3.5.1 Single salient object detection

If nsub = 1 and the confidence of subitizing branch c is larger than a pre-defined

threshold θc, we think there is only a single object. We convert the saliency mapM to

a binary mapMb using θc, and then perform contour detection using the fast Teh-Chin

chain approximation [182] onMb to detect connected components C and infer bounding

boxes B. We define the ROI of box Bi on the original map as MRBi
, from which the

maximal value is assigned as its score SBi
. The one with the highest score is selected as

the salient object. The entire process is summarized in Algorithm 4.

7.3.5.2 Multiple salient object detection

If nsub > 1, there may be multiple salient objects. When the subitizing branch out-

puts nM , or its confidence score θsub < θc, we rely on the predicted saliency mapM to

find as many reliable peaks as possible. Therefore, our method is able to detect arbitrary

number of salient objects (see Table 7.1). Otherwise, we try to find at least nsub reliable

peaks. A multi-level thresholding scheme is proposed for robust peak detection and bal-
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Algorithm 4: Single bounding box generation
Input :M, θc ;

M is the predicted saliency map;
θc is a fixed confidence threshold;

1 procedure SINGLEDETECT(M, θc)
2 Mb← threshold(M, θc) ;
3 C ← detectContours(Mb) ;
4 B ← generateBoxes(C) ;
5 for Bi ∈ B do
6 RBi

← ROI of box Bi ;
7 SBi

← maxMRBi
;

8 end
9 return B = arg max

Bi

SBi
;

10 end

ancing the losses, `s and `c, in (7.5). Starting from a high threshold, a peak Pi = [xi, yi]
T

is discovered from M following similar steps in Algorithm 4. Peaks are continuously

identified and added to the set of peaks P by reducing the threshold and repeating the

process until the cardinality of P reaches or exceeds nsub. Note that the predicted num-

ber of boxes depends on both the subitizing and saliency map prediction branches, which

could be less or more than nsub, if no threshold can separate nsub reliable peaks or more

peaks are detected in different thresholds.

After the initial set of peaks are determined, peaks with low confidence are treated

as noise and removed. Then we try to find separating lines L to isolate remaining peaks

into different non-overlapping regions. Each line perpendicular to the line segment con-

necting a pair of peaks is associated with a score. The score is the maximal value of the

pixels this line passes onM. The one with the minimal score is selected as the separating

line of the two peaks. In this way, we ensure that the separating line passes through the

boundaries between objects rather than the objects themselves. These lines L divideM
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Algorithm 5: Multiple bounding box generation
Input :M, Θ, θc ;

M is the predicted saliency map;
Θ is the set of fixed thresholds for peak detection;
θc is a fixed confidence threshold;

1 procedure MULTIDETECT(M, θc)
2 P ← ∅, B ← ∅;
3 while |P| ≤ nsub do
4 for θi ∈ Θ do
5 Mb← threshold(M, θi);
6 C ← detectContours(Mb);
7 for Cj ∈ C do
8 P ← P ∪ arg maxMCj

;
9 end

10 end
11 end
12 P ← P \ Pi whereM(Pi) < θc, ∀i;
13 L← findSeparatingLines (Pi, Pj), ∀i 6= j;
14 for Pi ∈ P do
15 RPi

← ROI formed by L containing Pi;
16 B ← B ∪ SINGLEDETECT(MRPi

, θc);
17 end
18 return B;
19 end

into different regions. Finally, for each peak Pi ∈ P , we apply Algorithm 4 to its corre-

sponding region on the saliency map to obtain a bounding box. Algorithm 5 summarizes

the process.

7.4 Experiments

7.4.1 Experimental setup

Datasets. We evaluate our salient object detection method on four datasets, MSO[172],

PASCAL-S[183], MSRA[81] and DUT-O[174]. The MSO dataset is the test set of the

SOS dataset annotated for salient object detection. It contains images of multiple salient

objects and many background images with no salient object. PASCAL-S is a subset of
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PASCAL VOC 2010 validation set [118] annotated for saliency segmentation problem.

It contains images with multiple salient objects and 8 subjects decided on the saliency of

each object segment. As suggested by [183], we define salient objects as those having

a saliency score of at least 0.5, i.e., half of the subjects believe that the object is salient,

and consider the surrounding rectangles as the ground-truth. We also compare the per-

formance of our method and existing methods for subitizing on this dataset. The MSRA

and DUT-O datasets only contain images of single salient object. For every image in the

MSRA and DUT-O datasets, five raw bounding box annotations are provided, which are

later converted to one ground-truth following the same protocol in [162]. We use only the

SOS dataset for training and others for evaluation. To verify that our RSD can also gener-

ate accurate pixel-wise saliency map, we additionally compare our method with existing

methods on ESSD [184] and PASCAL-S [183] datasets.

Parameters and settings. In Algorithm 4 and 5, we set θc = 0.7 as our strong evidence

threshold, Θ = [0.95, 0.9, 0.8, 0.6] as our peak detection thresholds, and use vertical and

horizontal lines as our separating lines. In our real-time network based on VGG16, we

use an image size of 224×224 and for our network based on ResNet-50 we use 448×448

instead. We smooth predicted saliency maps by a Gaussian filter before converting them

to binary maps. We use a Gaussian kernel with standard deviation of 10 for 448 × 448

input and 2 for 224× 224 input. In the first training step, we use Xavier initialization for

conv s1 and conv s2 and Gaussian initializer for the final fc layer in the subitizing branch.

For fine-tuning on SOS, we use a momentum of 0.9, weight decay of 5e−4, and learning

rates of 1e−4 and 1e−5 for our VGG16 and ResNet-50 based methods, respectively. All
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Figure 7.4: Comparisons of precision/recall by different methods on MSO, PASCAL-S,
MSRA, and DUT-O (from left to right) datasets. We let others methods to generate differ-
ent number of boxes by varying the threshold for confidence scores of boxes and present
the performance change as precision-recall curves. The IoU threshold for evaluation is
set to 0.5.

timings are measured on an NVIDIA Titan X Pascal GPU, and a system with 128GB

RAM and Intel Core i7 6850K CPU.

7.4.2 Results

Salient Object detection. We compare RSD with several existing methods including the

state-of-the-art approach in [162], which are SalCNN+MAP, SalCNN+NMS, SalCNN

with Maximum Marginal Relevance (SalCNN+MMR), and MultiBox [148] with NMS.

Unlike our RSD that generates the exact number of bounding boxes as salient objects,

other methods have free parameters to determine the number of selected bounding boxes

from hundreds of proposals, which greatly changes their performance. For fair compar-

ison, we change these free parameters and show their best results with our performance

point in Figure 7.4. It should be noted that we use the same set of parameters on all

datasets, while for other methods different parameters lead to their best performance on

different datasets.

On the MSO and PASCAL-S datasets that contain multiple salient objects, our

RSD-ResNet produces the best results at the same precision or recall rate. RSD-VGG

achieves comparable precision/recall as the state-of-the-art methods while being nearly
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Method RSD-ResNet/RSD-VGG SalCNN[162]+MAP SalCNN+MMR SalCNN+NMS
False Positives 36/30 54/40 95/50 53/34

F1 Score (1 ∼ 3 objects) 79.2/77.4 78.9/77.0 71.6/72.6 72.5/70.7
F1 Score (4+ objects) 57.5/26.8 55.2/50.9 46.1/47.7 47.7/48.5

Table 7.1: Number of false positives in images containing no salient objects and F1 score
for different number of ground-truth objects in the MSO dataset. For fair comparison,
results of other methods are obtained at the same recall rate of RSD-ResNet and RSD-
VGG respectively (seperated by “/”).

12× faster. Although our subitizing branch has a range of three, Table 7.1 shows that

our RSD-ResNet also achieves the best results on images with 4+ objects based on the

predicted saliency map. On the MSRA and DUT-O datasets that contain single salient

object in an image, both of our RSD-VGG and RSD-ResNet outperform the state-of-the-

arts by a large margin. Notably, our RSD-ResNet achieves nearly 15% and 10% absolute

improvement in precision at the same recall rate on the MSRA and DUT-O datasets, re-

spectively, which clearly indicates that our method, without any object proposals, is more

powerful and robust even when it is allowed to generate only a single bounding box.

Object subitizing. We evaluate the subitizing performance of our RSD on the MSO

dataset. First, we compare our RSD with state-of-the-art methods in terms of solving the

existence problem in Table 7.1. While our parameters are fixed, we vary the parameters

of other methods on different datasets to match their performance. For example, we tune

the parameters of other methods when comparing with our RSD-ResNet, so that they can

achieve the same recall as ours. Then we compare the number of false positives in the

background images. We do the same thing for the comparison with our RSD-VGG as

well.

For predicting existence, both our RSD-ResNet and RSD-VGG produce fewer false

positives when there is no salient object. Additionally, we compare the counting perfor-
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Method ResNet [21] RSD-ResNet VGG [102] RSD-VGG
Accuracy 83.33 86.19 83.25 83.97

Table 7.2: The accuracy of the counting branch and comparison with the baselines.

mance of RSD with two baselines using vanilla ResNet-50 and VGG16 in Table 7.2. For

fair comparison, we use exactly the same training scheme and initialization for all net-

works. Our RSD method successfully produces better accuracy compared with vanilla

ResNet-50 and VGG16, verifying that the multi-task training facilitates the subitizing

branch to learn a better classifier by utilizing the information from saliency map predic-

tion.

Saliency map prediction. In real world scenarios, pixel-level annotations are difficult to

collect. It is challenging to generate precise saliency maps without such detailed label-

ing. As a weakly-supervised approach only using bounding boxes for salient foreground

segmentation, we will show that our RSD still generates accurate saliency map that aligns

well with multiple salient objects in the scene. Figure 7.5 compares our RSD against five

unsupervised salient object segmentation algorithms, RC [175], SF [173], GMR [174],

PCAS [185], GBVS [186] and three supervised methods, HDCT [187], DRFI [188],

GBVS+PatchCut [189]. While we focus on the comparison with supervised approaches,

the comparison with those unsupervised methods is included for completeness and pro-

vides the context of how our approach fits into the pixel-level saliency prediction task. We

also evaluate the performance using precision-recall curves. Specifically, the precision

and recall are computed by binarizing the grayscale saliency map using varying thresh-

olds [190, 173, 174, 184] and comparing the binary mask against the ground-truth. Our

RSD approach is surprisingly good considering that it only uses rough Gaussian maps as
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Figure 7.5: The pixel-wise saliency map prediction performance on the ESSD [184] (left)
and PASCAL-S [183] (right) datasets.

ground-truth. In particular, the RSD-ResNet approach produces comparable results with

the fully-supervised methods in terms of precision/recall, making it readily applicable for

salient foreground segmentation without any pixel-level annotations.

7.4.3 Ablation study

Localization. Although we do not use proposals and pruning stage like NMS, our straight-

forward bounding box generation algorithm generates good results. Moreover, bounding

boxes generated by our method align with the ground-truth better compared to existing

approaches, leading to the best precision and recall, as shown in Figure 7.6. In this ex-

periment, we let other methods to pick their parameters to get the same recall as ours at

IoU= 0.5, and then change the IoU threshold to evaluate the performance change. No-

tably, if we have a more strict IoU criteria, such as 0.8, RSD still maintains a relatively

high precision and recall, while the precision and recall of all the other methods greatly

drop. At this IoU, even our fast RSD-VGG is able to outperform the state-of-the-art meth-

ods on all datasets by an average margin of around 10% in terms of both precision and

recall. The results clearly demonstrate that our network successfully predicts an accurate
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Figure 7.6: Comparison of RSD-ResNet (top), RSD-VGG (bottom) with other methods
in terms of precision at the same recall and recall at the same precision under different
localization thresholds. “P” stands for precision and “R” stands for recall.

saliency map and easily generates only a few bounding boxes tightly enclosing the correct

salient objects. Some qualitative results are presented in Figure 7.7. Our RSD approach

clearly outperforms SalCNN+MAP in generating better bounding boxes that more tightly

enclose the ground-truth.

Object size. The behavior of detection methods usually differs when dealing with small

and large objects. To better understand how our method works compared to existing

methods, we further analyze its performance with respect to different sizes of objects.

Objects with an area larger than 200× 200 pixels are counted as large objects. For MSO
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Figure 7.7: Qualitative results of our RSD-ResNet and SalCNN+MAP. Note that our
method locates multiple salient object in the scene more accurately than SalCNN+MAP.
The last two columns show hard examples where both SalCNN+MAP and ours cannot
locate all the salient objects.

and DUT-O datasets, the ground-truth boxes with an area less than 75 × 75 pixels are

defined as small objects. We increase this size to 125× 125 pixels for the MSRA dataset

to obtain a statistically reliable subset for performance estimation since the salient objects

in this dataset are generally larger. We evaluate the precision and recall on small and large

objects separately and show the results in Table 7.3.

Method

MSO Dataset MSRA Dataset DUT-O Dataset PASCAL-S Dataset
Precision Recall Precision Recall Precision Recall Precision Recall

S Ss Sl S Ss Sl S Ss Sl S Ss Sl S Ss Sl S Ss Sl S Ss Sl S Ss Sl

SalCNN[162]+NMS 63.0 23.3 76.1 74.2 42.7 81.4 65.4 11.4 78.6 81.9 74.0 83.4 51.7 19.6 70.0 44.5 25.9 46.7 68.8 28.1 82.2 55.7 17.4 73.8
SalCNN+MMR 61.4 23.7 72.6 74.9 38.5 84.9 70.6 15.9 78.9 82.0 71.9 84.3 57.9 24.4 69.9 44.2 24.0 48.1 74.2 35.9 81.7 55.1 16.0 74.2
SalCNN+MAP 77.5 43.8 79.2 74.1 40.6 84.6 77.1 20.7 79.4 81.5 72.7 83.7 65.5 31.6 70.3 43.7 23.3 47.3 76.8 28 82.1 55.8 9.7 77.3
RSD-ResNet 79.7 69.1 81.8 74.9 49.0 85.5 90.1 39.9 85.2 82.0 67.8 87.1 76.0 61.2 80.0 44.6 25.6 45.3 78.2 72.7 82.1 56.0 16.7 77.8

Table 7.3: The precision/recall of our RSD-ResNet and other methods on different
datasets and objects of different sizes. The IoU threshold is 0.5. S, Ss and Sl denote
all objects, objects of small and large size.

Our RSD-ResNet clearly outperforms all the compared methods, achieving the best

performance on the MSO dataset for both small and large objects. It also produces the

best recall at the same precision for large objects on MSRA dataset and small objects on

DUT-O dataset, indicating that it discovers objects of different sizes well under various
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conditions. At the same recall, our RSD-ResNet greatly improves the precision, espe-

cially for small objects that are difficult to locate by object proposal based approaches.

7.4.4 Run-time efficiency

By directly generating the saliency map through network forward without propos-

als, our approach is extremely efficient for salient object detection during inference. We

compare the run-time speed of SalCNN [162] and our approach in Table 7.4. With

ResNet, our approach achieves nearly 20 fps, while SalCNN only runs at 10 fps. With

VGG16, our method achieves an impressive speed at 120 fps, 12× faster than SalCNN,

and readily applicable to real-time scenarios. This experiment confirms that we success-

fully improve the run-time speed of the network by removing the bottleneck of proposal

generation and refinement.

Method RSD-VGG-S RSD-VGG-M RSD-ResNet-S RSD-ResNet-M SalCNN+MAP SalCNN+NMS SalCNN+MMR
Speed 120.48 113.63 19.05 18.65 10.64 10.72 10.71

Table 7.4: The run-time speed (in fps) of our RSD and compared methods during infer-
ence. Our methods with suffix “S” are for single salient object detection, while the ones
with suffix “M” are for multiple salient object detection.

7.5 Conclusion

We have presented a real-time unconstrained salient object detection framework us-

ing deep convolutional neural networks, named RSD. By eliminating the steps of propos-

ing and refining thousands of candidate boxes, our network learns to directly generates

the exact number of salient objects. Our network performs saliency map prediction with-

out pixel-level annotations, salient object detection without object proposals, and salient
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object subitizing simultaneously, all in a single pass within a unified framework. Exten-

sive experiments show that our RSD approach outperforms existing methods on various

datasets for salient object detection and subitizing, and produces comparable results for

salient foreground segmentation. In particular, our approach based on VGG16 network

achieves more than 100 fps on average on GPU during inference time, which is 12× faster

than the state-of-the-art approach, while being more accurate.
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Chapter 8: Conclusion and Future Work

In this dissertation, we studied the shortcomings that arise when deep convolutional

neural networks are applied to the tasks of object and face detection. We first focused on

the problem of lack of scale-invariance in these networks and discussed how multi-scale

pyramids can be deployed efficiently to reduce this problem. In chapter 2, we proposed

“SNIPER”, an efficient algorithm for multi-scale training that sampled low-resolution

chips from an image pyramid to accelerate training by a factor of 3 times. While SNIPER

makes training efficient, it is not applicable during inference given its dependency on

ground-truth annotations for chip sampling. Chapter 3 introduced “AutoFocus”, a novel

approach for performing efficient multi-scale inference for object detection. With pre-

dicting where to zoom, we demonstrated that a considerable speedup over a baseline is

possible without any drop in performance.

We then considered the problem of face detection. Compared to generic objects,

faces are rigid and images with hundreds of faces are common. In chapter 4, we presented

a fast and lightweight face detector that can detect faces of various scales efficiently even

in crowded scenes. We then introduced a method in chapter 5 which takes into account

the spatial relationships between parts of an object. We also showed the possibility of

densifying detections at inference time without requiring retraining of the model to deal
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with crowded scenes.

In the last part of the dissertation, we turned our attention to the localization sub-

problem of the detection task. In chapter 6, we proposed a novel way to model object

detection as a search in the space of all possible bounding boxes. In this way, we could

replace the slow localization part of the detection framework with the same model used

for classifying objects. Finally, in chapter 7, we showed how the inference speed can be

further improved to hundreds of images per second when it comes to tasks like saliency

detection where a few objects are usually present in each scene.

Going forward, efficient detection in 3D environments, as a fundamental building

block of real-time applications such as autonomous driving, is an important topic to be

studied further. The trade-off between accuracy and speed becomes steeper when it comes

to scenes with thousands of 3D points and the requirement of processing tens of scenes

per second. Moreover, new modalities (e.g. point clouds) demand novel approaches to

efficiently process data without degrading the performance.

Aside from 3D, I believe there is still room to improve the efficiency of 2D object

detection systems. In the past couple of years, there has been an ongoing effort to develop

more efficient CNN architectures for visual recognition. However, besides the main com-

putation, there remain heuristic steps in instance recognition pipelines that slow down the

systems (e.g. applying non-maximum suppression to thousands of proposal boxes). Re-

placing these heuristics to simplify the design has the potential to improve efficiency even

further.

Lastly, the robustness of detection systems needs to be considered more thoroughly.

Currently, it is possible to come up with imperceivable adversarial noises to fool even
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the strongest detectors available. Although the applicability of the current adversarial

attacks to commercialized visualized systems is still open to debate, they can eventually

limit the deployment of such systems for high-stake applications. Besides, improving

the robustness of detection pipelines has the potential to act as a strong regularization to

increase the generalization of the models.
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