5 research outputs found

    A tutorial and an application of SM130 RFID Module and Mifare contactless smart memory card

    Get PDF
    In this study, we have developed a driving circuit based on a PIC 18F4520 microcontroller to control overall operation of an RFID tagging system. Our system utilizes a SonMicro SM130 RFID transmitter/receiver module in order to read manufacturing ID of a Mifare 1K contactless smart memory card. An RF antenna is used to perform data communication between the module and the tag. A graphical LCD is utilized to prompt messages to the user as well as display information received from the module. Our system successfully worked and manufacturing ID of the Mifare 1K memory card was displayed on the screen of the graphical LCDBu çalışmada bir RFID barkod sisteminin çalışmasını kontrol etmek üzere PIC 18F4520 kullanılarak bir sürücü devresi tasarlanmıştır. Sistemimiz SonMicro SM130 RFID alıcı/verici modülünü kullanarak bir Mifare 1K temassız akıllı RFID barkodunun fabrika seri numarasını okuyarak ekranda göstermektedir. Alıcı/verici modülü ile barkod arasında veri alışverişini sağlamak için bir RF anten kullanılmıştır. Kullanıcıya yönelik mesajlar ve barkoddan okunan bilgilerin gösterimi için bir adet grafik LCD kullanılmıştır. Geliştirmiş olduğumuz sistem başarılı bir şekilde çalışmış ve Mifare 1K RFID barkodunun fabrika seri numarası okunarak grafik LCD ekranında gösterilmiştir

    Position Tracking for Passive UHF RFID Tags with the Aid of a Scanned Array

    Get PDF
    Thanks to the proliferation of radio frequency identification systems (RFID), applications have emerged concerning positioning techniques for inexpensive passive RFID tags. The most accurate approaches for tracking the tag's position, deliver precision in the order of 20 cm over a range of a few meters and require moving parts in a predefined pattern (mechanical antenna steering), which limits their application. Herein, we introduce an RFID tag positioning system that utilizes an active electronically-steered array, based on the principles of modern radar systems. We thoroughly examine and present the main attributes of the system with the aid of an finite element method simulation model and investigate the system performance with far-field tests. The demonstrated positioning precision of 1.5, which translates to under 1 cm laterally for a range of a few meters can be helpful in applications like mobile robot localization and the automated handling of packaged goods.DF

    WiFiPoz -- an accurate indoor positioning system

    Get PDF
    Location based services are becoming an important part of life. Wide adoption of GPS in mobile devices combined with cellular networks has practically solved the problem of outdoor localization needs. The problem of locating an indoor user has being studied only recently. Much research contributed to the innovative concept of an indoor positioning system. By analyzing different technologies and algorithms, this thesis concluded that, considering a trade-off between accuracy and cost, a Wi-Fi based Fingerprint method is proved to be the most promising approach to determine the location of a mobile device. However, the Fingerprint method works in two phases-an offline training phase (collection of Received Signal Strength signatures) and an online phase in which data from the first phase is used to determine the current position of a mobile user. The number of training points in a certain area has a direct impact on the accuracy of the system. As a result, the offline phase is a tedious and cumbersome process and the positioning systems are only as accurate as the offline training phase has been detailed. Moreover, the offline phase must be repeated every time a change in the environment occurs. To avoid these limitations, we focus on improving the accuracy of the indoor positioning system, without increasing the number of training points. This thesis presents a Wi-Fi based system for locating a user inside a building. The system is named WiFiPoz, which means Wi-Fi positioning system based on the zoning method. WiFiPoz has a novel approach to Fingerprint method that incorporates Propagation and zoning methods. Experimental results show that WiFiPoz is highly efficient both in accuracy and costs. Compared to traditional Fingerprint methods, with the optimization of the accuracy of the location estimation, WiFiPoz reduces the number of training points. This feature makes it possible to quickly adapt to changes in the environment. In order to explore another possible solution, this thesis also developed, implemented and tested an indoor positioning system named GIS (Geometric Information based positioning System), which is based on a model proposed by another researcher. Several experiments were run in the offline phase and results were compared between the traditional Fingerprint method, GIS and proposed WiFiPoz. We concluded that WiFiPoz is a more efficient and simple way to increase the accuracy of the location determination with fewer training points --Document

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance

    Mapping, Path Following, and Perception with Long Range Passive UHF RFID for Mobile Robots

    Get PDF
    Service robots have shown an impressive potential in providing assistance and guidance in various environments, such as supermarkets, shopping malls, homes, airports, and libraries. Due to the low-cost and contactless way of communication, radio-frequency identification (RFID) technology provides a solution to overcome the difficulties (e.g. occlusions) that the traditional line of sight sensors (e.g. cameras and laser range finders) face. In this thesis, we address the applications of using passive ultra high frequency (UHF) RFID as a sensing technology for mobile robots in three fundamental tasks, namely mapping, path following, and tracking. An important task in the field of RFID is mapping, which aims at inferring the positions of RFID tags based on the measurements (i.e. the detections as well as the received signal strength) received by the RFID reader. The robot, which serves as an intelligent mobile carrier, is able to localize itself in a known environment based on the existing positioning techniques, such as laser-based Monte Carlo localization. The mapping process requires a probabilistic sensor model, which characterizes the likelihood of receiving a measurement, given the relative pose of the antenna and the tag. In this thesis, we address the problem of recovering from mapping failures of static RFID tags and localizing non-static RFID tags which do not move frequently using a particle filter. The usefulness of negative information (e.g. non-detections) is also examined in the context of mapping RFID tags. Moreover, we present a novel three dimensional (3D) sensor model to improve the mapping accuracy of RFID tags. In particular, using this new sensor model, we are able to localize the 3D position of an RFID tag by mounting two antennas at different heights on the robot. We additionally utilize negative information to improve the mapping accuracy, especially for the height estimation in our stereo antenna configuration. The model-based localization approach, which works as a dual to the mapping process, estimates the pose of the robot based on the sensor model as well as the given positions of RFID tags. The fingerprinting-based approach was shown to be superior to the model-based approach, since it is able to better capture the unpredictable radio frequency characteristics in the existing infrastructure. Here, we present a novel approach that combines RFID fingerprints and odometry information as an input of the motion control of a mobile robot for the purpose of path following in unknown environments. More precisely, we apply the teaching and playback scheme to perform this task. During the teaching stage, the robot is manually steered to move along a desired path. RFID measurements and the associated motion information are recorded in an online-fashion as reference data. In the second stage (i.e. playback stage), the robot follows this path autonomously by adjusting its pose according to the difference between the current RFIDmeasurements and the previously recorded reference measurements. Particularly, our approach needs no prior information about the distribution and positions of the tags, nor does it require a map of the environment. The proposed approach features a cost-effective alternative for mobile robot navigation if the robot is equipped with an RFID reader for inventory in RFID-tagged environments. The capability of a mobile robot to track dynamic objects is vital for efficiently interacting with its environment. Although a large number of researchers focus on the mapping of RFID tags, most of them only assume a static configuration of RFID tags and too little attention has been paid to dynamic ones. Therefore, we address the problem of tracking dynamic objects for mobile robots using RFID tags. In contrast to mapping of RFID tags, which aims at achieving a minimum mapping error, tracking does not only need a robust tracking performance, but also requires a fast reaction to the movement of the objects. To achieve this, we combine a two stage dynamic motion model with the dual particle filter, to capture the dynamic motion of the object and to quickly recover from failures in tracking. The state estimation from the particle filter is used in a combination with the VFH+ (Vector Field Histogram), which serves as a local path planner for obstacle avoidance, to guide the robot towards the target. This is then integrated into a framework, which allows the robot to search for both static and dynamic tags, follow it, and maintain the distance between them. [untranslated]Service-Roboter bergen ein großes Potential bei der Unterstützung, Beratung und Führung von Kunden oder Personal in verschiedenen Umgebungen wie zum Beispiel Supermärkten, Einkaufszentren, Wohnungen, Flughäfen und Bibliotheken. Durch die geringen Kosten und die kontaktlose Kommunikation ist die RFID Technologie in der Lage vorhandene Herausforderungen traditioneller sichtlinienbasierter Sensoren (z.B. Verdeckung beim Einsatz von Kameras oder Laser-Entfernungsmessern) zu lösen. In dieser Arbeit beschäftigen wir uns mit dem Einsatz von passivem Ultrahochfrequenz (UHF) RFID als Sensortechnologie für mobile Roboter hinsichtlich drei grundlegender Aufgabenstellungen Kartierung, Pfadverfolgung und Tracking. Kartierung nimmt eine wesentliche Rolle im Bereich der Robotik als auch beim Einsatz von RFID Sensoren ein. Hierbei ist das Ziel die Positionen von RFID-Tags anhand von Messungen (die Erfassung der Tags als solche und die Signalstärke) zu schätzen. Der Roboter, der als intelligenter mobiler Träger dient, ist in der Lage, sich selbst in einer bekannten Umgebung auf Grundlage der bestehenden Positionierungsverfahren, wie Laser-basierter Monte-Carlo Lokalisierung zurechtzufinden. Der Kartierungsprozess erfordert ein probabilistisches Sensormodell, das die Wahrscheinlichkeit beschreibt, ein Tag an einer gegebenen Position relativ zur RFID-Antenne (ggf. mit einer bestimmten Signalstärke) zu erkennen. Zentrale Aspekte dieser Arbeit sind die Regeneration bei fehlerhafter Kartierung statischer RFID-Tags und die Lokalisierung von nicht-statischen RFID-Tags. Auch wird die Verwendbarkeit negativer Informationen, wie z.B. das Nichterkennen von Transpondern, im Rahmen der RFID Kartierung untersucht. Darüber hinaus schlagen wir ein neues 3D-Sensormodell vor, welches die Genauigkeit der Kartierung von RFID-Tags verbessert. Durch die Montage von zwei Antennen auf verschiedenen Höhen des eingesetzten Roboters, erlaubt es dieses Modell im Besonderen, die 3D Positionen von Tags zu bestimmen. Dabei nutzen wir zusätzlich negative Informationen um die Genauigkeit der Kartierung zu erhöhen. Dank der Eindeutigkeit von RFID-Tags, ist es möglich die Lokalisierung eines mobilen Roboters ohne Mehrdeutigkeit zu bestimmen. Der modellbasierte Ansatz zur Lokalisierung schätzt die Pose des Roboters auf Basis des Sensormodells und den angegebenen Positionen der RFID-Tags. Es wurde gezeigt, dass der Fingerprinting-Ansatz dem modellbasierten Ansatz überlegen ist, da ersterer in der Lage ist, die unvorhersehbaren Funkfrequenzeigenschaften in der vorhandenen Infrastruktur zu erfassen. Hierfür präsentieren wir einen neuen Ansatz, der RFID Fingerprints und Odometrieinformationen für die Zwecke der Pfadverfolgung in unbekannten Umgebungen kombiniert. Dieser basiert auf dem Teaching-and-Playback-Schema. Während der Teaching-Phase wird der Roboter manuell gelenkt, um ihn entlang eines gewünschten Pfades zu bewegen. RFID-Messungen und die damit verbundenen Bewegungsinformationen werden als Referenzdaten aufgezeichnet. In der zweiten Phase, der Playback-Phase, folgt der Roboter diesem Pfad autonom. Der vorgeschlagene Ansatz bietet eine kostengünstige Alternative für die mobile Roboternavigation bei der Bestandsaufnahme in RFID-gekennzeichneten Umgebungen, wenn der Roboter mit einem RFID-Lesegerät ausgestattet ist. Die Fähigkeit eines mobilen Roboters dynamische Objekte zu verfolgen ist entscheidend für eine effiziente Interaktion mit der Umgebung. Obwohl sich viele Forscher mit der Kartierung von RFID-Tags befassen, nehmen die meisten eine statische Konfiguration der RFID-Tags an, nur wenige berücksichtigen dabei dynamische RFID-Tags. Wir wenden uns daher dem Problem der RFID basierten Verfolgung dynamischer Objekte mit mobilen Robotern zu. Im Gegensatz zur Kartierung von RFID-Tags, ist für die Verfolgung nicht nur eine stabile Erkennung notwendig, es ist zudem erforderlich schnell auf die Bewegung der Objekte reagieren zu können. Um dies zu erreichen, kombinieren wir ein zweistufiges dynamisches Bewegungsmodell mit einem dual-Partikelfilter. Die Zustandsschätzung des Partikelfilters wird in Kombination mit dem VFH+ (Vektorfeld Histogramm) verwendet, um den Roboter in Richtung des Ziels zu leiten. Hierdurch ist es dem Roboter möglich nach statischen und dynamischen Tags zu suchen, ihnen zu folgen und dabei einen gewissen Abstand zu halten
    corecore