591 research outputs found

    Multi-classifier systems for off-line signature verification

    Get PDF
    Handwritten signatures are behavioural biometric traits that are known to incorporate a considerable amount of intra-class variability. The Hidden Markov Model (HMM) has been successfully employed in many off-line signature verification (SV) systems due to the sequential nature and variable size of the signature data. In particular, the left-to-right topology of HMMs is well adapted to the dynamic characteristics of occidental handwriting, in which the hand movements are always from left to right. As with most generative classifiers, HMMs require a considerable amount of training data to achieve a high level of generalization performance. Unfortunately, the number of signature samples available to train an off-line SV system is very limited in practice. Moreover, only random forgeries are employed to train the system, which must in turn to discriminate between genuine samples and random, simple and skilled forgeries during operations. These last two forgery types are not available during the training phase. The approaches proposed in this Thesis employ the concept of multi-classifier systems (MCS) based on HMMs to learn signatures at several levels of perception. By extracting a high number of features, a pool of diversified classifiers can be generated using random subspaces, which overcomes the problem of having a limited amount of training data. Based on the multi-hypotheses principle, a new approach for combining classifiers in the ROC space is proposed. A technique to repair concavities in ROC curves allows for overcoming the problem of having a limited amount of genuine samples, and, especially, for evaluating performance of biometric systems more accurately. A second important contribution is the proposal of a hybrid generative-discriminative classification architecture. The use of HMMs as feature extractors in the generative stage followed by Support Vector Machines (SVMs) as classifiers in the discriminative stage allows for a better design not only of the genuine class, but also of the impostor class. Moreover, this approach provides a more robust learning than a traditional HMM-based approach when a limited amount of training data is available. The last contribution of this Thesis is the proposal of two new strategies for the dynamic selection (DS) of ensemble of classifiers. Experiments performed with the PUCPR and GPDS signature databases indicate that the proposed DS strategies achieve a higher level of performance in off-line SV than other reference DS and static selection (SS) strategies from literature

    A writer identification and verification system using HMM based recognizers

    Get PDF
    In this paper, an off-line, text independent system for writer identification and verification of handwritten text lines using Hidden Markov Model (HMM) based recognizers is presented. For each writer, an individual recognizer is built and trained on text lines of that writer. This results in a number of recognizers, each of which is an expert on the handwriting of exactly one writer. In the identification and verification phase, a text line of unknown origin is presented to each of these recognizers and each one returns a transcription that includes the log-likelihood score for the generated output. These scores are sorted and the resulting ranking is used for both identification and verification. Several confidence measures are defined on this ranking. The proposed writer identification and verification system is evaluated using different experimental setup

    Using Markov Models and Statistics to Learn, Extract, Fuse, and Detect Patterns in Raw Data

    Full text link
    Many systems are partially stochastic in nature. We have derived data driven approaches for extracting stochastic state machines (Markov models) directly from observed data. This chapter provides an overview of our approach with numerous practical applications. We have used this approach for inferring shipping patterns, exploiting computer system side-channel information, and detecting botnet activities. For contrast, we include a related data-driven statistical inferencing approach that detects and localizes radiation sources.Comment: Accepted by 2017 International Symposium on Sensor Networks, Systems and Securit

    Machine Learning for Biometrics

    Get PDF
    Biometrics aims at reliable and robust identification of humans from their personal traits, mainly for security and authentication purposes, but also for identifying and tracking the users of smarter applications. Frequently considered modalities are fingerprint, face, iris, palmprint and voice, but there are many other possible biometrics, including gait, ear image, retina, DNA, and even behaviours. This chapter presents a survey of machine learning methods used for biometrics applications, and identifies relevant research issues. We focus on three areas of interest: offline methods for biometric template construction and recognition, information fusion methods for integrating multiple biometrics to obtain robust results, and methods for dealing with temporal information. By introducing exemplary and influential machine learning approaches in the context of specific biometrics applications, we hope to provide the reader with the means to create novel machine learning solutions to challenging biometrics problems

    Acoustic Scene Classification

    Get PDF
    This work was supported by the Centre for Digital Music Platform (grant EP/K009559/1) and a Leadership Fellowship (EP/G007144/1) both from the United Kingdom Engineering and Physical Sciences Research Council

    Information Preserving Processing of Noisy Handwritten Document Images

    Get PDF
    Many pre-processing techniques that normalize artifacts and clean noise induce anomalies due to discretization of the document image. Important information that could be used at later stages may be lost. A proposed composite-model framework takes into account pre-printed information, user-added data, and digitization characteristics. Its benefits are demonstrated by experiments with statistically significant results. Separating pre-printed ruling lines from user-added handwriting shows how ruling lines impact people\u27s handwriting and how they can be exploited for identifying writers. Ruling line detection based on multi-line linear regression reduces the mean error of counting them from 0.10 to 0.03, 6.70 to 0.06, and 0.13 to 0.02, com- pared to an HMM-based approach on three standard test datasets, thereby reducing human correction time by 50%, 83%, and 72% on average. On 61 page images from 16 rule-form templates, the precision and recall of form cell recognition are increased by 2.7% and 3.7%, compared to a cross-matrix approach. Compensating for and exploiting ruling lines during feature extraction rather than pre-processing raises the writer identification accuracy from 61.2% to 67.7% on a 61-writer noisy Arabic dataset. Similarly, counteracting page-wise skew by subtracting it or transforming contours in a continuous coordinate system during feature extraction improves the writer identification accuracy. An implementation study of contour-hinge features reveals that utilizing the full probabilistic probability distribution function matrix improves the writer identification accuracy from 74.9% to 79.5%

    Reconnaissance de l'écriture manuscrite en-ligne par approche combinant systèmes à vastes marges et modèles de Markov cachés

    Get PDF
    Handwriting recognition is one of the leading applications of pattern recognition and machine learning. Despite having some limitations, handwriting recognition systems have been used as an input method of many electronic devices and helps in the automation of many manual tasks requiring processing of handwriting images. In general, a handwriting recognition system comprises three functional components; preprocessing, recognition and post-processing. There have been improvements made within each component in the system. However, to further open the avenues of expanding its applications, specific improvements need to be made in the recognition capability of the system. Hidden Markov Model (HMM) has been the dominant methods of recognition in handwriting recognition in offline and online systems. However, the use of Gaussian observation densities in HMM and representational model for word modeling often does not lead to good classification. Hybrid of Neural Network (NN) and HMM later improves word recognition by taking advantage of NN discriminative property and HMM representational capability. However, the use of NN does not optimize recognition capability as the use of Empirical Risk minimization (ERM) principle in its training leads to poor generalization. In this thesis, we focus on improving the recognition capability of a cursive online handwritten word recognition system by using an emerging method in machine learning, the support vector machine (SVM). We first evaluated SVM in isolated character recognition environment using IRONOFF and UNIPEN character databases. SVM, by its use of principle of structural risk minimization (SRM) have allowed simultaneous optimization of representational and discriminative capability of the character recognizer. We finally demonstrate the various practical issues in using SVM within a hybrid setting with HMM. In addition, we tested the hybrid system on the IRONOFF word database and obtained favourable results.Nos travaux concernent la reconnaissance de l'écriture manuscrite qui est l'un des domaines de prédilection pour la reconnaissance des formes et les algorithmes d'apprentissage. Dans le domaine de l'écriture en-ligne, les applications concernent tous les dispositifs de saisie permettant à un usager de communiquer de façon transparente avec les systèmes d'information. Dans ce cadre, nos travaux apportent une contribution pour proposer une nouvelle architecture de reconnaissance de mots manuscrits sans contrainte de style. Celle-ci se situe dans la famille des approches hybrides locale/globale où le paradigme de la segmentation/reconnaissance va se trouver résolu par la complémentarité d'un système de reconnaissance de type discriminant agissant au niveau caractère et d'un système par approche modèle pour superviser le niveau global. Nos choix se sont portés sur des Séparateurs à Vastes Marges (SVM) pour le classifieur de caractères et sur des algorithmes de programmation dynamique, issus d'une modélisation par Modèles de Markov Cachés (HMM). Cette combinaison SVM/HMM est unique dans le domaine de la reconnaissance de l'écriture manuscrite. Des expérimentations ont été menées, d'abord dans un cadre de reconnaissance de caractères isolés puis sur la base IRONOFF de mots cursifs. Elles ont montré la supériorité des approches SVM par rapport aux solutions à bases de réseaux de neurones à convolutions (Time Delay Neural Network) que nous avions développées précédemment, et leur bon comportement en situation de reconnaissance de mots
    • …
    corecore