63 research outputs found

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime

    Trust management in cloud computing: A critical review

    Get PDF
    Cloud computing has been attracting the attention of several researchers both in the academia and the industry as it provides many opportunities for organizations by offering a range of computing services.For cloud computing to become widely adopted by both the enterprises and individuals, several issues have to be solved.A key issue that needs special attention is security of clouds, and trust management is an important component of cloud security.In this paper, the authors look at what trust is and how trust has been applied in distributed computing. Trust models proposed for various distributed system has then been summarized.The trust management systems proposed for cloud computing have been investigated with special emphasis on their capability, applicability in practical heterogonous cloud environment and implementabilty. Finally, the proposed models/systems have been compared with each other based on a selected set of cloud computing parameters in a table

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Metaheuristics Techniques for Cluster Head Selection in WSN: A Survey

    Get PDF
    In recent years, Wireless sensor communication is growing expeditiously on the capability to gather information, communicate and transmit data effectively. Clustering is the main objective of improving the network lifespan in Wireless sensor network. It includes selecting the cluster head for each cluster in addition to grouping the nodes into clusters. The cluster head gathers data from the normal nodes in the cluster, and the gathered information is then transmitted to the base station. However, there are many reasons in effect opposing unsteady cluster head selection and dead nodes. The technique for selecting a cluster head takes into factors to consider including residual energy, neighbors’ nodes, and the distance between the base station to the regular nodes. In this study, we thoroughly investigated by number of methods of selecting a cluster head and constructing a cluster. Additionally, a quick performance assessment of the techniques' performance is given together with the methods' criteria, advantages, and future directions

    Emergence in the security of protocols for mobile ad-hoc networks

    Get PDF
    This thesis is concerned with the study of secure wireless routing protocols, which have been deployed for the purpose of exchanging information in an adhoc networking enviromnent. A discrete event simulator is developed, utilising an adaptive systems modelling approach and emergence that aims to assess networking protocols in the presence of adversarial behaviour. The model is used in conjunction with the characteristics that routing protocols have and also a number of cryptographic primitives that can be deployed in order to safeguard the information being exchanged. It is shown that both adversarial behaviour, as well as protocol descriptions can be described in a way that allows for them to be treated as input on the machine level. Within the system, the output generated selects the fittest protocol design capable of withstanding one or more particular type of attacks. As a result, a number of new and improved protocol specifications are presented and benchmarked against conventional metrics, such as throughput, latency and delivery criteria. From this process, an architecture for designing wireless routing protocols based on a number of security criteria is presented, whereupon the decision of using particular characteristics in a specification has been passed onto the machine level

    Energy-efficient routing algorithms based on swarm intelligence for wireless sensor networks

    Get PDF
    High efficient routing is an important factor to be considered in the design of limited energy resource Wireless Sensor Networks (WSNs). WSN environment has limited resources in terms of on-board energy, transmission power, processing, and storage, and this prompt for careful resource management and new routing protocol so as to counteract the challenges. This work first introduces the concept of wireless sensor networks, routing in WSNs, and its design factors as they affect routing protocols. Next, a comprehensive review of the most prominent routing protocols in WSN, from the classical routing protocols to swarm intelligence based protocols is presented. From the literature study, it was found that comparing routing protocols in WSNs is currently a very challenging task for protocol designers. Often, much time is required to re-create and re-simulate algorithms from descriptions in published papers to perform the comparison. Compounding the difficulty is that some simulation parameters and performance metrics may not be mentioned. We then see a need in the research community to have standard simulation and performance metrics for comparing different protocols. To this end, we re-simulate different protocols using a Matlab based simulator; Routing Modeling Application Simulation Environment (RMASE), and gives simulation results for standard simulation and performance metrics which we hope will serve as a benchmark for future comparisons for the research community. Also, from the literature study, Energy Efficient Ant-Based Routing (EEABR) protocol was found to be the most efficient protocol due to its low energy consumption and low memory usage in WSNs nodes. Following this efficient protocol, an Improved Energy Efficient Ant-Based Routing (IEEABR) Protocol was proposed. Simulation were performed using Network Simulator-2 (NS-2), and from the results, our proposed algorithm performs better in terms of energy utilization efficiency, average energy of network nodes, and minimum energy of nodes. We further improved on the proposed protocol and simulation performed in another well-known WSNs MATLAB-based simulator; Routing Modeling Application Simulation Environment (RMASE), using static, mobile and dynamic scenario. Simulation results show that the proposed algorithm increases energy efficiency by up to 9% and 64% in converge-cast and target-tracking scenarios, respectively, over the original EEABR and also found to out-perform other four Ant-based routing protocols. We further show how this algorithm could be used for energy management in sensor network in the presence of energy harvesters. However, high number of control packets is generated by the IEEABR due to the proactive nature of its path establishment. As such, a new routing protocol for WSNs that has less control packets due to its on-demand (reactive) nature is proposed. This new routing protocol termed Termite-hill is borrowed from the principles behind the termite’s mode of communication. We first study the foraging principles of a termite colony and utilize the inspirational concepts to develop a distributed, simple and energy-efficient routing protocol for WSNs. We perform simulation studies to compare the behavior and performance of the Termite-hill design with an existing classical and on-demand protocol (AODV) and other Swarm Intelligence (SI) based WSN protocols in both static, dynamic and mobility scenarios of WSN. The simulation results demonstrate that Termite-hill outperforms its competitors in most of the assumed scenarios and metrics with less latency. Further studies show that the current practice in modeling and simulation of wireless sensor network (WSN) environments has been towards the development of functional WSN systems for event gathering, and optimization of the necessary performance metrics using heuristics and intuition. The evaluation and validation are mostly done using simulation approaches and practical implementations. Simulation studies, despite their wide use and merits of network systems and algorithm validation, have some drawbacks like long simulation times, and practical implementation might be cost ineffective if the system is not properly studied before the design. We therefore argue that simulation based validation and practical implementation of WSN systems and environments should be further strengthened through mathematical analysis. To conclude this work and to gain more insight on the behavior of the termite-hill routing algorithm, we developed our modeling framework for WSN topology and information extraction in a grid based and line based randomly distributed sensor network. We strengthen the work with a model of the effect of node mobility on energy consumption of Termite-hill routing algorithm as a function of event success rate and occasional change in topology. The results of our mathematical analysis were also compared with the simulation results

    Emergence in the security of protocols for mobile ad-hoc networks

    Get PDF
    This thesis is concerned with the study of secure wireless routing protocols, which have been deployed for the purpose of exchanging information in an adhoc networking enviromnent. A discrete event simulator is developed, utilising an adaptive systems modelling approach and emergence that aims to assess networking protocols in the presence of adversarial behaviour. The model is used in conjunction with the characteristics that routing protocols have and also a number of cryptographic primitives that can be deployed in order to safeguard the information being exchanged. It is shown that both adversarial behaviour, as well as protocol descriptions can be described in a way that allows for them to be treated as input on the machine level. Within the system, the output generated selects the fittest protocol design capable of withstanding one or more particular type of attacks. As a result, a number of new and improved protocol specifications are presented and benchmarked against conventional metrics, such as throughput, latency and delivery criteria. From this process, an architecture for designing wireless routing protocols based on a number of security criteria is presented, whereupon the decision of using particular characteristics in a specification has been passed onto the machine level.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Establishing trust relationships and secure channels in opportunistic networks

    Full text link
    &nbsp;An effective system with techniques and algorithms that preserve the completeness and integrity of packets in a network and protects Opportunistic Networks from packet dropping and modification attacks has been proposed in this thesis. The techniques and attributes used to create the system involve using Merkle trees, trust, and reputation.<br /

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC
    corecore