9 research outputs found

    Private Handshakes

    Full text link
    Private handshaking allows pairs of users to determine which (secret) groups they are both a member of. Group membership is kept secret to everybody else. Private handshaking is a more private form of secret handshaking, because it does not allow the group administrator to trace users. We extend the original definition of a handshaking protocol to allow and test for membership of multiple groups simultaneously. We present simple and efficient protocols for both the single group and multiple group membership case. Private handshaking is a useful tool for mutual authentication, demanded by many pervasive applications (including RFID) for privacy. Our implementations are efficient enough to support such usually resource constrained scenarios

    Improved Secure Efficient Delegated Private Set Intersection

    Full text link
    Private Set Intersection (PSI) is a vital cryptographic technique used for securely computing common data of different sets. In PSI protocols, often two parties hope to find their common set elements without needing to disclose their uncommon ones. In recent years, the cloud has been playing an influential role in PSI protocols which often need huge computational tasks. In 2017, Abadi et al. introduced a scheme named EO-PSI which uses a cloud to pass on the main computations to it and does not include any public-key operations. In EO-PSI, parties need to set up secure channels beforehand; otherwise, an attacker can easily eavesdrop on communications between honest parties and find private information. This paper presents an improved EO-PSI scheme which has the edge on the previous scheme in terms of privacy and complexity. By providing possible attacks on the prior scheme, we show the necessity of using secure channels between parties. Also, our proposed protocol is secure against passive attacks without having to have any secure channels. We measure the protocol's overhead and show that computational complexity is considerably reduced and also is fairer compared to the previous scheme.Comment: 6 pages, presented in proceedings of the 28th Iranian Conference on Electrical Engineering (ICEE 2020). Final version of the paper has been adde

    The Prom Problem: Fair and Privacy-Enhanced Matchmaking with Identity Linked Wishes

    Get PDF
    In the Prom Problem (TPP), Alice wishes to attend a school dance with Bob and needs a risk-free, privacy preserving way to find out whether Bob shares that same wish. If not, no one should know that she inquired about it, not even Bob. TPP represents a special class of matchmaking challenges, augmenting the properties of privacy-enhanced matchmaking, further requiring fairness and support for identity linked wishes (ILW) – wishes involving specific identities that are only valid if all involved parties have those same wishes. The Horne-Nair (HN) protocol was proposed as a solution to TPP along with a sample pseudo-code embodiment leveraging an untrusted matchmaker. Neither identities nor pseudo-identities are included in any messages or stored in the matchmaker’s database. Privacy relevant data stay within user control. A security analysis and proof-of-concept implementation validated the approach, fairness was quantified, and a feasibility analysis demonstrated practicality in real-world networks and systems, thereby bounding risk prior to incurring the full costs of development. The SecretMatch™ Prom app leverages one embodiment of the patented HN protocol to achieve privacy-enhanced and fair matchmaking with ILW. The endeavor led to practical lessons learned and recommendations for privacy engineering in an era of rapidly evolving privacy legislation. Next steps include design of SecretMatch™ apps for contexts like voting negotiations in legislative bodies and executive recruiting. The roadmap toward a quantum resistant SecretMatch™ began with design of a Hybrid Post-Quantum Horne-Nair (HPQHN) protocol. Future directions include enhancements to HPQHN, a fully Post Quantum HN protocol, and more
    corecore