2,795 research outputs found

    Reify Your Collection Queries for Modularity and Speed!

    Full text link
    Modularity and efficiency are often contradicting requirements, such that programers have to trade one for the other. We analyze this dilemma in the context of programs operating on collections. Performance-critical code using collections need often to be hand-optimized, leading to non-modular, brittle, and redundant code. In principle, this dilemma could be avoided by automatic collection-specific optimizations, such as fusion of collection traversals, usage of indexing, or reordering of filters. Unfortunately, it is not obvious how to encode such optimizations in terms of ordinary collection APIs, because the program operating on the collections is not reified and hence cannot be analyzed. We propose SQuOpt, the Scala Query Optimizer--a deep embedding of the Scala collections API that allows such analyses and optimizations to be defined and executed within Scala, without relying on external tools or compiler extensions. SQuOpt provides the same "look and feel" (syntax and static typing guarantees) as the standard collections API. We evaluate SQuOpt by re-implementing several code analyses of the Findbugs tool using SQuOpt, show average speedups of 12x with a maximum of 12800x and hence demonstrate that SQuOpt can reconcile modularity and efficiency in real-world applications.Comment: 20 page

    Developing a Generic Debugger for Advanced-Dispatching Languages

    Get PDF
    Programming-language research has introduced a considerable number of advanced-dispatching mechanisms in order to improve modularity. Advanced-dispatching mechanisms allow changing the behavior of a function without modifying their call sites and thus make the local behavior of code less comprehensible. Debuggers are tools, thus needed, which can help a developer to comprehend program behavior but current debuggers do not provide inspection of advanced-\ud dispatching-related language constructs. In this paper, we present a debugger which extends a traditional Java debugger with the ability of debugging an advanced-dispatching language constructs and a user interface for inspecting this

    A Longitudinal Study of Identifying and Paying Down Architectural Debt

    Full text link
    Architectural debt is a form of technical debt that derives from the gap between the architectural design of the system as it "should be" compared to "as it is". We measured architecture debt in two ways: 1) in terms of system-wide coupling measures, and 2) in terms of the number and severity of architectural flaws. In recent work it was shown that the amount of architectural debt has a huge impact on software maintainability and evolution. Consequently, detecting and reducing the debt is expected to make software more amenable to change. This paper reports on a longitudinal study of a healthcare communications product created by Brightsquid Secure Communications Corp. This start-up company is facing the typical trade-off problem of desiring responsiveness to change requests, but wanting to avoid the ever-increasing effort that the accumulation of quick-and-dirty changes eventually incurs. In the first stage of the study, we analyzed the status of the "before" system, which indicated the impacts of change requests. This initial study motivated a more in-depth analysis of architectural debt. The results of this analysis were used to motivate a comprehensive refactoring of the software system. The third phase of the study was a follow-on architectural debt analysis which quantified the improvements made. Using this quantitative evidence, augmented by qualitative evidence gathered from in-depth interviews with Brightsquid's architects, we present lessons learned about the costs and benefits of paying down architecture debt in practice.Comment: Submitted to ICSE-SEIP 201

    Software Verification and Graph Similarity for Automated Evaluation of Students' Assignments

    Get PDF
    In this paper we promote introducing software verification and control flow graph similarity measurement in automated evaluation of students' programs. We present a new grading framework that merges results obtained by combination of these two approaches with results obtained by automated testing, leading to improved quality and precision of automated grading. These two approaches are also useful in providing a comprehensible feedback that can help students to improve the quality of their programs We also present our corresponding tools that are publicly available and open source. The tools are based on LLVM low-level intermediate code representation, so they could be applied to a number of programming languages. Experimental evaluation of the proposed grading framework is performed on a corpus of university students' programs written in programming language C. Results of the experiments show that automatically generated grades are highly correlated with manually determined grades suggesting that the presented tools can find real-world applications in studying and grading

    Comparing Four Approaches for Technical Debt Identification

    Get PDF
    Background: Software systems accumulate technical debt (TD) when short-term goals in software development are traded for long term goals (e.g., quick-and-dirty implementation to reach a release date vs. a well-refactored implementation that supports the long term health of the project). Some forms of TD accumulate over time in the form of source code that is difficult to work with and exhibits a variety of anomalies. A number of source code analysis techniques and tools have been proposed to potentially identify the code-level debt accumulated in a system. What has not yet been studied is if using multiple tools to detect TD can lead to benefits, i.e. if different tools will flag the same or different source code components. Further, these techniques also lack investigation into the symptoms of TD "interest" that they lead to. To address this latter question, we also investigated whether TD, as identified by the source code analysis techniques, correlates with interest payments in the form of increased defect- and change-proneness. Aims: Comparing the results of different TD identification approaches to understand their commonalities and differences and to evaluate their relationship to indicators of future TD "interest". Method: We selected four different TD identification techniques (code smells, automatic static analysis (ASA) issues, grime buildup, and modularity violations) and applied them to 13 versions of the Apache Hadoop open source software project. We collected and aggregated statistical measures to investigate whether the different techniques identified TD indicators in the same or different classes and whether those classes in turn exhibited high interest (in the form of a large number of defects and higher change proneness). Results: The outputs of the four approaches have very little overlap and are therefore pointing to different problems in the source code. Dispersed coupling and modularity violations were co-located in classes with higher defect proneness. We also observed a strong relationship between modularity violations and change proneness. Conclusions: Our main contribution is an initial overview of the TD landscape, showing that different TD techniques are loosely coupled and therefore indicate problems in different locations of the source code. Moreover, our proxy interest indicators (change- and defect-proneness) correlate with only a small subset of TD indicator

    Comparing Four Approaches for Technical Debt Identification

    Get PDF
    Background: Software systems accumulate technical debt (TD) when short-term goals in software development are traded for long term goals (e.g., quick-and-dirty implementation to reach a release date vs. a well-refactored implementation that supports the long term health of the project). Some forms of TD accumulate over time in the form of source code that is difficult to work with and exhibits a variety of anomalies. A number of source code analysis techniques and tools have been proposed to potentially identify the code-level debt accumulated in a system. What has not yet been studied is if using multiple tools to detect TD can lead to benefits, i.e. if different tools will flag the same or different source code components. Further, these techniques also lack investigation into the symptoms of TD “interest” that they lead to. To address this latter question, we also investigated whether TD, as identified by the source code analysis techniques, correlates with interest payments in the form of increased defect- and change-proneness. Aims: Comparing the results of different TD identification approaches to understand their commonalities and differences and to evaluate their relationship to indicators of future TD “interest”. Method: We selected four different TD identification techniques (code smells, automatic static analysis (ASA) issues, grime buildup, and modularity violations) and applied them to 13 versions of the Apache Hadoop open source software project. We collected and aggregated statistical measures to investigate whether the different techniques identified TD indicators in the same or different classes and whether those classes in turn exhibited high interest (in the form of a large number of defects and higher change proneness). Results: The outputs of the four approaches have very little overlap and are therefore pointing to different problems in the source code. Dispersed coupling and modularity violations were co-located in classes with higher defect proneness. We also observed a strong relationship between modularity violations and change proneness. Conclusions: Our main contribution is an initial overview of the TD landscape, showing that different TD techniques are loosely coupled and therefore indicate problems in different locations of the source code. Moreover, our proxy interest indicators (change- and defect-proneness) correlate with only a small subset of TD indicators
    • …
    corecore