16 research outputs found

    An Enhanced Random Linear Oracle Ensemble Method using Feature Selection Approach based on NaĆÆve Bayes Classifier

    Get PDF
    Random Linear Oracle (RLO) ensemble replaced each classifier with two mini-ensembles, allowing base classifiers to be trained using different data set, improving the variety of trained classifiers. NaĆÆve Bayes (NB) classifier was chosen as the base classifier for this research due to its simplicity and computational inexpensive. Different feature selection algorithms are applied to RLO ensemble to investigate the effect of different sized data towards its performance. Experiments were carried out using 30 data sets from UCI repository, as well as 6 learning algorithms, namely NB classifier, RLO ensemble, RLO ensemble trained with Genetic Algorithm (GA) feature selection using accuracy of NB classifier as fitness function, RLO ensemble trained with GA feature selection using accuracy of RLO ensemble as fitness function, RLO ensemble trained with t-test feature selection, and RLO ensemble trained with Kruskal-Wallis test feature selection. The results showed that RLO ensemble could significantly improve the diversity of NB classifier in dealing with distinctively selected feature sets through its fusionselection paradigm. Consequently, feature selection algorithms could greatly benefit RLO ensemble, with properly selected number of features from filter approach, or GA natural selection from wrapper approach, it received great classification accuracy improvement, as well as growth in diversity

    Novel Hypertrophic Cardiomyopathy Diagnosis Index Using Deep Features and Local Directional Pattern Techniques

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a genetic disorder that exhibits a wide spectrum of clinical presentations, including sudden death. Early diagnosis and intervention may avert the latter. Left ventricular hypertrophy on heart imaging is an important diagnostic criterion for HCM, and the most common imaging modality is heart ultrasound (US). The US is operator-dependent, and its interpretation is subject to human error and variability. We proposed an automated computer-aided diagnostic tool to discriminate HCM from healthy subjects on US images. We used a local directional pattern and the ResNet-50 pretrained network to classify heart US images acquired from 62 known HCM patients and 101 healthy subjects. Deep features were ranked using Student's t-test, and the most significant feature (SigFea) was identified. An integrated index derived from the simulation was defined as 100.log(10 )(SigFea /root 2) in each subject, and a diagnostic threshold value was empirically calculated as the mean of the minimum and maximum integrated indices among HCM and healthy subjects, respectively. An integrated index above a threshold of 0.5 separated HCM from healthy subjects with 100% accuracy in our test dataset

    Risk estimation and risk prediction using machine-learning methods

    Get PDF
    After an association between genetic variants and a phenotype has been established, further study goals comprise the classification of patients according to disease risk or the estimation of disease probability. To accomplish this, different statistical methods are required, and specifically machine-learning approaches may offer advantages over classical techniques. In this paper, we describe methods for the construction and evaluation of classification and probability estimation rules. We review the use of machine-learning approaches in this context and explain some of the machine-learning algorithms in detail. Finally, we illustrate the methodology through application to a genome-wide association analysis on rheumatoid arthritis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00439-012-1194-y) contains supplementary material, which is available to authorized users

    Role of Four-Chamber Heart Ultrasound Images in Automatic Assessment of Fetal Heart: A Systematic Understanding

    Get PDF
    The fetal echocardiogram is useful for monitoring and diagnosing cardiovascular diseases in the fetus in utero. Importantly, it can be used for assessing prenatal congenital heart disease, for which timely intervention can improve the unborn child's outcomes. In this regard, artificial intelligence (AI) can be used for the automatic analysis of fetal heart ultrasound images. This study reviews nondeep and deep learning approaches for assessing the fetal heart using standard four-chamber ultrasound images. The state-of-the-art techniques in the field are described and discussed. The compendium demonstrates the capability of automatic assessment of the fetal heart using AI technology. This work can serve as a resource for research in the field

    Functional Principal Component Analysis of Vibrational Signal Data: A Functional Data Analytics Approach for Fault Detection and Diagnosis of Internal Combustion Engines

    Get PDF
    Fault detection and diagnosis is a critical component of operations management systems. The goal of FDD is to identify the occurrence and causes of abnormal events. While many approaches are available, data-driven approaches for FDD have proven to be robust and reliable. Exploiting these advantages, the present study applied functional principal component analysis (FPCA) to carry out feature extraction for fault detection in internal combustion engines. Furthermore, a feature subset that explained 95% of the variance of the original vibrational sensor signal was used in a multilayer perceptron to carry out prediction for fault diagnosis. Of the engine states studied in the present work, the ending diagnostic performance shows the proposed approach achieved an overall prediction accuracy of 99.72 %. These results are encouraging because they show the feasibility for applying FPCA for feature extraction which has not been discussed previously within the literature relating to fault detection and diagnosis
    corecore