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Fault detection and diagnosis is a critical component of operations management 

systems. The goal of FDD is to identify the occurrence and causes of abnormal events. 

While many approaches are available, data-driven approaches for FDD have proven to be 

robust and reliable. Exploiting these advantages, the present study applied functional 

principal component analysis (FPCA) to carry out feature extraction for fault detection in 

internal combustion engines. Furthermore, a feature subset that explained 95% of the 

variance of the original vibrational sensor signal was used in a multilayer perceptron to 

carry out prediction for fault diagnosis. Of the engine states studied in the present work, 

the ending diagnostic performance shows the proposed approach achieved an overall 

prediction accuracy of 99.72 %. These results are encouraging because they show the 

feasibility for applying FPCA for feature extraction which has not been discussed 

previously within the literature relating to fault detection and diagnosis. 
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CHAPTER I 

INTRODUCTION: MOTIVATION FOR FAULT DETECTION AND DIAGNOSIS 

Since the advent of industrialization, humans have inherently been concerned about 

the functional states of their man-made machines. Initially, the process of acquiring 

information pertaining to the functional state of the machine was acquired through  

biological senses (e.g. visual inspection for any changes in shape or color, auditory 

inspection for any unique changes in the sound of the intensity or pitch of the machine, 

touching the machine to sense for excess vibration or heat, and smelling for fumes from 

leaks or overheating) (Gertler, 2013). These initial “sensor data” were able to provide rough 

insights into necessary decisions that needed to be made for fault detection and diagnosis 

(FDD).  

Building on the biological sensory capability of humans, technological advances 

resulted in the development of an array of sensor devices that can measure aspects of 

machines and equipment that are outside the realm of biological sensory capability. 

Likewise, the information provided by these sensors is more plentiful, exact, and can be 

used as support for greater decision making. 

 

1.1 Faults in Industrial Processes 

In hierarchical engineering systems composed of processes, sub-processes, 

individual machines, and equipment, fault detection is a main concern. Faults can exist 
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anywhere within the system and can be directly associated with the technical equipment 

for facilities’ direct operations or with the associated measurement and control equipment.  

Specifically, a fault is characterized as a deviation from the normal operating behavior in 

the machine, sub-process, process, or system of interest. As mentioned previously, faults 

can exist anywhere within the overall system. For convenience, the following 

classifications have been provided for faults (Gertler, 1998): 

1. Additive process faults: These faults are the result of unknown inputs. When 

present, these unknown inputs cause an output response that is independent of the 

inputs. A leak is a classic example of an additive process fault. 

2. Multiplicative process faults: These faults arise from gradual or abrupt changes in 

some of the operating parameters for the system of interest. The resulting change 

in output caused by these faults is dependent on the magnitude of the known inputs. 

3. Sensor faults: These faults represent discrepancies between the measured and actual 

values of individual system variables. The effect of these faults can be either 

additive or multiplicative. 

4. Actuator faults: These faults represent discrepancies between the input command 

of an actuator and its actual output. These faults are usually handled as additive but 

occasionally are better characterized as multiplicative. 

Through the development of FDD systems, condition-based maintenance of 

engineering systems can be achieved.  As the name implies, fault detection and fault 

diagnosis are the major components of FDD systems. With fault detection, the goal is to 

identify that something in the system is causing it to behave abnormally when compared 

to a healthy, baseline operating condition. Once a fault is detected, fault isolation, the first 
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stage of fault diagnosis, is performed to determine the specific location of the fault. Lastly, 

fault identification, the last stage of fault diagnosis, quantifies the magnitude and identity 

of the fault.  

1.2 Benefits of FDD in Industrial Processes 

A multitude of industries rely on FDD techniques to satisfy the demand for higher 

efficiency, performance, reliability, and safety. With the use of FDD techniques, industries 

can obtain detailed information on the operational system performance and carry out 

condition-based monitoring schemes. Specifically, FDD techniques represent a central 

component of abnormal event management which involves the timely detection of 

abnormal events. Once detected, the causes of the events are diagnosed. Appropriate 

diagnoses of specific faults support the decision making process to initiate countermeasures 

to bring the system of interest back to its normal, safe operating state (Al-Sheikh & 

Moubayed, 2012). 

 

1.3 Data Driven Approach for FDD 

While different approaches exist for carrying out FDD, data-driven methods for 

carrying out statistical process monitoring have been studied extensively and 

accommodate system complexity with unknown variables better than other approaches 

(e.g. model-based FDD approach). As well, data-driven approaches do not require 

perquisite mathematical models of the system and only rely on historical process data. 

Furthermore, the statistical nature of many processes’ behaviors is well suited to be the 

target of data analytics for process monitoring. Influenced by the data-driven approach 
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for FDD, various multivariate statistical process monitoring approaches that utilize 

hallmark methods such as principal component analysis (PCA) and support vector 

machines (SVM) have been developed to further investigate their detection and 

diagnostic applicability (Lei, Tajammal Munir, Bao, & Young, 2016). 
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CHAPTER II 

BACKGROUND 

2.1 Data Analytics Components of FDD: Feature Extraction, Feature Selection, 

and Classification 

Many FDD approaches utilize machine learning techniques to carry out prediction 

of a process’s state. Prediction is dependent on having input data that adequately 

differentiates the dependent possible output responses.  Likewise, having redundant input 

features that do not add to the discriminatory capability of the machine learning prediction 

model can increase the computational cost of the FDD approach thus making it less 

efficient (Kannan, 2016). In a standard FDD approach, the following steps are generally 

employed: feature extraction, feature selection, and fault classification/prediction. 

2.1.1 Feature Extraction 

 Feature extraction represents one of the most essential parts of intelligent 

classification systems. Feature extraction deals with the transformation of data from its 

original space into a new feature space. Generally, these transformations can be a linear 

combination of continuous features which have good discriminatory power between 

classes. Enhancing the between-class discriminatory power provides a simpler, yet 

powerful representation of the original data in terms of class discriminatory capability 

(Khalid, Khalil, & Nasreen, 2014). Classic examples of feature extraction techniques 

include PCA (or some variant) as well as Linear Discriminant Analysis (LDA).   
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2.1.2 Feature Selection 

 High dimensional data poses problems for classification algorithms due to the 

presence of potential features that may be irrelevant, misleading, or redundant. The 

presence of these features increases the search space size in effect increasing the 

computational cost (Khalid et al., 2014). To address these extraneous features, feature 

selection techniques can be used.  

Feature selection is the process of selecting the best features among all the classes 

that have strong between-class discriminatory power and omitting features that do not 

significantly contribute to discrimination. Techniques are generally classified as being a 

filter method, a wrapper method, or a hybrid method that combines components from filter 

and wrapper methods.  

With a filter method, some ranking is applied over the features. This ranking 

represents the “usefulness” of each feature for classification. Once the features are ranked, 

a feature subset containing the best 𝑁 features is extracted. The wrapper method, as the 

name suggests, “wraps” a classifier into a feature selection algorithm. Once a set of features 

is chosen, efficacy is determined for that set. A perturbation is then made, and the new set’s 

efficacy is evaluated. The drawback of this approach is that a vast dimensional space would 

require a large run time to look at every possible combination of features. Thus, search 

heuristics are employed to determine an optimum feature set (Shardlow, 2016). 

2.1.3 Classification 

Supervised classification, defined as the task of predicting a function/response 

based on the input of labeled predictor data, is the task most frequently carried out by 

intelligent systems in predictive data mining and analytics applications (Sotiris B. 
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Kotsiantis, 2007). As mentioned, the goal of classification techniques is to develop a model 

that produces a distribution of class labels based on corresponding sets of features. These 

features are obtained after feature extraction or selection techniques to allow the 

classification model to perform more efficiently. The resulting distribution is then used to 

assign class labels to testing instances where the input predictor variables are known and 

the output labels are unknown (S. B. Kotsiantis, Zaharakis, & Pintelas, 2006). To carry out 

supervised classification, several techniques have been developed over the years. These 

techniques are based on artificial intelligence (logic-based techniques and perceptron-

based techniques) and statistics (Bayesian networks and instance-based learning). 

 

2.2 Functional Data Analytics and FDD 

In a generalized definition, functional data analytics (FDA) describes the use of 

statistical methods for analyzing functional data. Functional data refers to data that is 

initially recorded as discrete observations that were collected across some continuum 

(temporal, spatial, etc.). Often, these types of data are initially viewed as multivariate since 

they are collected as a series of discrete observations. However, this approach completely 

ignores important information about the smooth functional behavior of the generating 

process underlying the entire series of data across its respective continuum (Ullah & Finch, 

2013). 

Thus, the goal of FDA is to express discrete observations that arise from a 

continuous series in the form of a single function that is representative of the entire series 

of data. From a collection of these functions, modeling and prediction information can be 

deduced and utilized in additional analysis. Advantages of an FDA approach include 
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reducing noise through curve smoothing, accommodating data with irregular sampling 

intervals, and providing more accurate estimates of curve parameters (Ullah & Finch, 

2013). Using the functional data, analogues of multivariate statistical methods are carried 

out in the functional space of the functional data in contrast to the space spanned by the 

vectors in individual observations for multivariate data (Viviani, Grön, & Spitzer, 2005). 

 

2.3 Internal Combustion Engines as a Subject for FDD 

Internal combustion engines (ICEs) represent a well-studied system with regards to 

FDD and will be the focus of the proposed work. ICEs have transformed the transportation 

industry and have become integral components in many industrial processes and systems. 

Since the beginning with the basic configuration of a reciprocating ICE being introduced 

in the late 1800s, ICEs have improved significantly in terms of thermal efficiency, 

emissions levels, and overall reliability. Likewise, research in these areas is still ongoing 

since the improvements made towards efficiency and reliability are continuous (Ferguson 

& Kirkpatrick, 2015). 

To satisfy the demand for higher performance, efficiency, reliability, and safety, 

FDD techniques have been researched as a tool for abnormal event management and 

condition-based monitoring in ICEs. A multitude of faults can occur in an ICE but when 

concerning emission levels and reliability, two of the most studied faults include cylinder 

misfire and abnormal valve clearance. 
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2.3.1 Cylinder Misfire 

Misfiring is an abnormal condition for healthy ICEs. Cylinder misfires result from 

a lack of combustion during the engine’s power stroke. The combustion within the cylinder 

is dependent on the air-fuel (A/F) ratio. Maintaining the proper A/F ratio enables the engine 

components such as the catalytic converter to operate with optimized efficiency helping to 

reduce exhaust emissions (Kim, Han, & Moon, 2000). The lack of combustion that 

accompanies cylinder misfires is usually a downstream response of a damaged ignition 

unit, poor fuel metering, poor compression, and so on (Lindemann et al., 2000).  

When misfiring occurs, the A/F ratio is altered to an extent that results in the 

reduction of efficiency for the catalytic converter. Likewise, engine output can reduce by 

25 % (Sharma, Sugumaran, & Babu Devasenapati, 2014a). Operating at this lower 

efficiency damages the catalytic converter and increases exhaust emissions. Due to the 

widespread use of IC engines, the collective environmental consequences of cylinder 

misfires have garnered the attention of governmental regulatory agencies. The agencies 

(e.g. California Air Resources Board) focus on regulations that require on-board 

monitoring of component faults that could result in increased emissions. These regulations 

motivate the research into FDD for cylinder misfires.  

2.3.2 Abnormal Valve Clearance 

Valve clearance refers to the total clearance in the timing gears of the engine. Valve 

clearance is critical because it accommodates for the changes in the linear dimensions of 

the timing gear elements due to thermal expansion. Clearance values differ on the basis of 

factors such as engine type, cooling mode, and timing gear design, and a given clearance 

value is determined experimentally (Krzywonos, 2015). As a rule of thumb, clearance 
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values should be minimized while allowing enough space for the valves to close tightly 

during engine operations 

Abnormal clearance values tend to develop as a result of component wear such as 

the camshaft and/or fault adjustment during engine maintenance (Ftoutou, Chouchane, & 

Besbès, 2012). A decline in engine performance and reliability accompanies valve 

clearance faults initially and as the fault persists, severe malignant failures such as valve 

fractures and cylinder hit faults can occur (Jiang, Mao, Wang, & Zhang, 2017).  
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CHAPTER III 

LITERATURE REVIEW  

3.1 FDD in ICEs: Feature Extraction, Feature Selection, and Classification 

As previously mentioned, feature extraction and selection are critical elements in 

data-based FDD techniques. Once appropriate feature extraction and selection techniques 

are determined and carried out, the resulting subset of features are input into a 

classification model to diagnose the class corresponding with input features. 

3.1.1 Feature Extraction for ICE FDD 

The first step is to apply a feature extraction technique to data acquired from the 

engine. The data often exists in the form of a signal which can be of an acoustic or 

vibrational origin for example. Likewise, these signals can also correspond with current 

and voltage signals or performance and condition monitoring signals.  

Among the current approaches, vibrational signal processing of rotary machines 

and ICEs has emerged as the most popular and effective method for analyzing diagnostic 

fault features. Table 3.1 below provides information on feature extraction techniques used 

to process vibrational signals for fault diagnosis. 
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Table 3.1 Feature Extraction Techniques for Vibrational Signal Data 

Source Sample/Study Description Results 

(Farajzadeh-

Zanjani, Razavi-

Far, Saif, & Rueda, 

2016) 

A wavelet packet transform is used 

for frequency domain feature 

extraction. Linear discriminant 

analysis is then used to reduce the 

features to a smaller set. The 

feature subset is used in a fault 

classification module. 

Experimental results verified the 

effectiveness of the proposed 

technique for the diagnosis of 

multiple bearing defects present 

in induction motors. 

(P. Liu, Li, Han, & 

Wang, 2016) 

A novel feature extraction 

technique (two-dimensional 

nonnegative matrix factorization) 

is used in tandem with a hybrid 

wrapper-filter feature selection 

scheme for engine fault diagnosis. 

Experimental results 

demonstrated that the proposed 

feature extraction and selection 

scheme achieved satisfactory 

classification performance. 

(Zhan, Shi, Shwe, 

& Wang, 2007) 

Wavelet analysis is coupled with 

principal component analysis to 

extract distinctive features for fault 

diagnosis. Extracted features are 

input into a support vector machine 

for fault diagnosis. 

Proposed method detects and 

classifies faults accurately. 

(Saravanan, 

Cholairajan, & 

Ramachandran, 

2009) 

Statistical analysis of vibration 

signals was used for feature 

extraction and a decision tree was 

used for feature selection. A fuzzy 

classifier was used on the set of 

selected features to classify the 

various gearbox faults. 

Results showed a great potential 

and strong ability for the 

proposed method to classify and 

identify machinery faults. 

(Unal, Onat, 

Demetgul, & 

Kucuk, 2014) 

Feature extraction was 

accomplished by Hilbert and Fast 

Fourier Transform, and a proposed 

artificial neural network (ANN) 

was used for fault classification. 

The resulting feature extraction 

and fault classification network 

provided acceptable 

classification accuracy. 

(A. Moosavian, 

Najafi, Nadimi, & 

Arab, 2017) 

Fast Fourier Transform was used 

for feature extraction from 

vibration signals collected from a 

sensor on an ICE. Features were 

input into an ANN to estimate 

engine friction. 

The results showed that the 

prediction of engine friction 

based on the extracted features 

from vibratory signals had an 

accuracy of 91.77% with a 

RMSE of 0.0523 bar. 
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3.1.2 Feature Selection for ICE FDD 

After a specific feature extraction technique is used to process the raw vibrational 

signals, a feature selection technique may be used if there is a need to reduce the extracted 

feature set to ultimately enhance the performance of a classification algorithm for which 

the feature subset will be fed into. Table 3.2 below provides some current examples of 

feature selection techniques. 

Table 3.2 Common Feature Selection Techniques 

Source  Feature Selection Technique Used 

(Sugumaran, Muralidharan, & 

Ramachandran, 2007) 

Decision Tree 

(Malhi & Gao, 2004) Principal Components Analysis 

(Breheny & Huang, 2011) Penalized Regression by Coordinate 

Descent 

(Jafari-Marandi, Khanzadeh, Smith, & 

Bian, 2017) 

Self-Organizing Maps 

(Jack & Nandi, 2000) Optimization-Based Approach 

(Chaves et al., 2009; Zhou & Wang, 

2007) 

Statistical Analysis 

 

3.1.3 Classification for ICE FDD 

The diagnostic power of the extracted and selected features is realized when they 

are used as input into a classification algorithm. An array of classification techniques exists 

with differing foundational bases (logic, perceptron, and statistical). Table 3.3 below 

provides an at-a-glance overview of popular classification techniques. 
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Table 3.3 Popular Classification Techniques 

Algorithm Class Approach Used Source 

Logic-Based Decision Trees (Saravanan et al., 2009) 

 Learning Set of Rules (Muralidharan & Sugumaran, 

2013) 

   

Perceptron-Based Single-Layered Perceptron (Knerr, Personnaz, & 

Dreyfus, 1992) 

 Multi-Layered Perceptron or 

Artificial Neural Networks 

(J. Da Wu & Liu, 2008) 

 Radial Basis Function (RBF) 

Networks 

(Wuxing, Tse, Guicai, & 

Tielin, 2004) 

   

Statistical Learning Naïve Bayes Classifiers (Muralidharan & Sugumaran, 

2012) 

 Bayesian Networks (Aminian & Aminian, 2001) 

   

Instance-Based k-Nearest Neighbor (Seshadrinath, Singh, & 

Panigrahi, 2014) 

   

Support Vector 

Machines 

 (Saimurugan, Ramachandran, 

Sugumaran, & Sakthivel, 

2011) 

 

 

  

  



 

15 

 

CHAPTER IV 

PROPOSED THESIS 

4.1 Extension of Work  

The work of this thesis will extend the efforts made by Jafarian et al (Jafarian, 

Mobin, Jafari-marandi, & Rabiei, 2018). Specifically, the work by Jafarian et al studied a 

collection of fault states in combustion engines. They analyzed isolated cylinder misfire 

faults in two different locations as well as analyzing these faults in combination. Likewise, 

they also analyzed faults associated with abnormal valve clearances. This approach 

resulted in four unique fault states. Additionally, the group also analyzed the operational 

behavior of an engine with no faults ultimately bringing the number of studied states to 

five. 

Vibrational signal data was collected under the aforementioned operational 

conditions. The vibrational signal was collected on four different one-direction, piezo 

electric, CTC accelerometers that were placed on different locations of the engine. The 

original raw signal data underwent preprocessing to filter excess noise before undergoing 

fast Fourier Transform (FFT) to convert the signal to the frequency domain for feature 

extraction. The extracted features were the first two dominant frequency and amplitude 

pairs for each sensor that collected each raw signal. Additionally, Eigenvalue analysis was 

conducted on the signals to provide additional features. 
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Statistical analysis was performed to select a subset of features from the extracted 

features that possessed good discriminatory power for classification of engine fault types. 

These features were then used as an input set of data for three different classification 

techniques: ANN, SVM, and kNN. A comparison of the diagnostic accuracy to similar 

efforts in the literature proved the validity of the proposed method (Jafarian et al., 2018). 

4.2 Proposed Work 

The aim of this thesis is to expand the work of Jafarian et al.  Specifically, we aim 

to study the applicability of a functional data analytics approach (e.g. functional principal 

component analysis) for feature extraction using the raw vibrational signal data obtained 

by Jafarian et al. We will then assess the adequacy of using functional principal component 

analysis for feature extraction and selection by feeding the features into a multilayer 

perceptron for classification. Figure 4.1 below depicts a flow chart that describes the total 

approach for this thesis.  

 

Figure 4.1 FDD framework for proposed thesis  

 

To make the case for the importance of a functional data analytics approach, we 

first need to understand what is meant by functional data analytics. As previously 
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mentioned in 2.2, functional data analytics (FDA) describes the use of statistical methods 

to analyze sequences of data that can be represented by functional curves in contrast to a 

series of discrete observations. The analytics performed on functional data are extensions 

of the procedures used in the multivariate domain. One of the most popular multivariate 

data analytics procedure is principal component analysis. 

Principal component analysis (PCA) represents a well-studied feature extraction 

technique in the multivariate domain. Extending PCA to the functional domain results in 

functional PCA (FPCA). FPCA represents a useful tool for determining common factors 

or trends that are present in the behavior of functions that underlie observed functional 

data. The main goal of FPCA is identical to multivariate PCA in the sense that both 

techniques aim to transform the original data by estimating components that maximize the 

variance observed in the data. Instead of estimating the principal components as sets of 

vectors that span the multi-dimensional space as is the case for multivariate PCA, FPCA 

estimates the principal components as functions across the continuum for which they were 

collected. Thus, FPCA aims to find a set of orthogonal, principal component functions that 

maximize the variance along each component for the functional data set.  

 

4.3 Significance of Approach 

4.3.1 Relevance of FPCA for Feature Extraction in FDD for ICEs 

Indicated by Figure 4.2, a brief survey of FPCA used in literature shows that most 

of the research efforts have been focused towards the medical field (as indicated by the 

high proportion of published papers coming from biomedicine from 1995 to 2010) (Ullah 

& Finch, 2013).  
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Figure 4.2 Application of FPCA articles published from 1995 to 2010. Left: bar graph 

Right: percentage chart 

Likewise, Table 4.1 shows that the literature since 2010 has not reported extensive 

application of FPCA within the field of FDD.  

Table 4.1 Popular FPCA applications in research since 2011 

Source Area of Application 

(Coffey, Harrison, Donoghue, & Hayes, 

2011) 

Biomechanics 

(Warmenhoven et al., 2017) Biomechanics 

(Dean et al., 2016) Medicine 

(Gong, Miller, & Scott, 2015) Geospatial/Environmental Science 

(Di Salvo, Ruggieri, & Plaia, 2015) Environmental Science 

(Nicol, 2013) Aerospace/Aviation 

(Huynh, Jacho-Chávez, Petrunia, & Voia, 

2011) 

Economics 

(Sánchez-Sánchez et al., 2014) Neurology & Rehabilitation 

(C. Liu, Ray, & Hooker, 2017) Statistics 

(Burns, Houpt, Townsend, & Endres, 

2013) 

Psychology 

(Moreno-Oyervides et al., 2017) Spectroscopy 

(Khanzadeh, Chowdhury, 

Marufuzzaman, Tschopp, & Bian, 2018) 

Manufacturing 
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As well, advances in technology allowing for better acquisition and storage of 

functional data in industrial applications is creating great potential for the application of 

functional data analytics approaches in new areas. Thus, this thesis represents an 

exploratory study that aims to investigate the feasibility of using FPCA for the extraction 

of discriminatory features for engine state classification from vibrational signal data. The 

adequacy of this approach will be evaluated by coupling it with an artificial neural network 

(e.g. Multilayer perceptron) approach for classification and analyzing the prediction 

accuracy based from the features obtained from FPCA.  

 

4.3.2 On-line Predictive Analytics for FDD for ICEs 

However, the main contribution and significance with the proposed work is focused 

on how FPCA, when used in a FDD data-driven framework, will improve detection and 

prediction accuracy. As well, the computational demand required to carry out this approach 

will also be of interest. The goal with many FDD approaches is to provide close to real-

time analytics for the process behavior. Quickly and efficiently detecting faults at or close 

to real time can provide significant advantages in continuous production systems when 

scheduling preventative maintenance, reducing unplanned downtime, and improving the 

organization’s bottom line. Through the exploration of using FPCA for feature extraction 

and selection, we hope to provide support and future research directions into its application 

for providing real-time process analytics that can help operators, practitioners, and decision 

makers respond in a quicker and more correct way when faults occur in a process. 
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CHAPTER V 

METHODOLOGY BACKGROUND 

In this section, the underlying methods associated with the major analytics and 

machine learning techniques (FPCA and multilayer perceptrons, respectively) are 

introduced. 

5.1 Feature Extraction – FPCA 

In this research, FPCA is proposed as a novel technique for identifying the 

dominant modes of variation across the engines states investigated in the study. Since 

FPCA is an extension of multivariate PCA, an explanation of both multivariate and 

functional PCA is provided below. The explanation provided in all subsections of 5.1 is 

adapted from the explanation provided by Ramsay and Silverman (Ramsay & Silverman, 

2005). 

5.1.1 Multivariate PCA 

The main concept exploited in multivariate statistics is the formation of linear 

combinations of variable values for a given dataset represented in Eq. (5.1)  

𝑓𝑖 = ∑ 𝛽𝑗𝑥𝑖𝑗 ,   𝑖 = 1, … , 𝑁𝑝
𝑗=1      (5.1) 

where 𝛽𝑗 is weight coefficient applied to the observed value 𝑥𝑖 at variable 𝑗. In vector 

notation, Eq. (5.1) can be represented as Eq. (5.2) 

𝑓𝑖 =  𝛽′𝑥𝑖 ,    𝑖 = 1, … , 𝑁     (5.2) 
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where 𝛽 is a weight vector [𝛽1, … , 𝛽𝑝]′and 𝑥𝑖 is the data vector [𝑥𝑖1, … , 𝑥𝑖𝑝]′ consisting of 

𝑝 variables. Applying weight coefficients allows for the transformation of the original 

variables. For PCA, the goal is to identify the weight coefficients that display the dominant 

modes of variation in the dataset. 

 To accomplish this, PCA proceeds via the following steps below to obtain a set of 

orthogonal weights that maximize the variation in the observed scores, 𝑓𝑖′𝑠: 

1. Find the weight vector 𝜉1 = (𝜉11, … , 𝜉𝑝1)′, for which 𝑓𝑖1 = ∑ 𝜉𝑗1𝑥𝑖𝑗 =𝑗

 𝜉
1

′𝑥𝑖 has the largest possible mean square calculated by  𝑁−1 ∑ 𝑓𝑖1
2

𝑖  subject 

to the following constraint in Eq. (5.3). 

∑ 𝜉𝑗1
2

𝑗 =  ‖𝜉1‖2 = 1    (5.3) 

The weight vector 𝜉1 that maximizes the mean square is the first principal 

component vector. 

2. To calculate subsequent principal components (𝜉2, 𝜉3, … , 𝜉𝑚) where 𝑚 <

𝑝, repeat the first step for each. For example, computing a weight vector 𝜉𝑚 

requires finding the weight values for the vector 𝜉𝑚 that maximize the mean 

square of 𝑓𝑖𝑚 where 𝑓𝑖𝑚 = ∑ 𝜉𝑗𝑚𝑥𝑖𝑗 =  𝜉𝑗 𝑚
′𝑥𝑖 subject to the constraint 

‖𝜉𝑚‖2 = 1 and the additional 𝑚 − 1 constraints in Eq. (5.4) 

∑ 𝜉𝑗𝑘𝜉𝑗𝑚 =  𝜉′𝑘𝜉′𝑚 = 0 𝑤ℎ𝑒𝑟𝑒 𝑘 < 𝑚𝑗   (5.4) 
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The constraint in Eq. (5.4) establishes orthogonality among all the principal component 

vectors. This ensures that the components share no correlation with each other, and the 

variance explained by each component is unique to that component only. Because of the 

orthogonality constraint, the subsequent principal component vectors calculated beyond 𝜉1 

will explain less variation. Because the amount of explained variation declines with each 

principal component, the dominant modes of variation explained in the first few 

components usually account for a large percentage of the total observed variation in the 

original dataset. 

5.1.2 FPCA 

Extending the concepts of multivariate PCA to the functional domain, we see that 

the original vector notation of linearly combining a weight vector and data vector in Eq. 

(5.1) can be adapted for the functional context. Specifically, the data vector 𝑥𝑗 becomes 

𝑥𝑖(𝑠) such that the discrete index 𝑗 in the multivariate context is converted into the 

continuous index 𝑠 for the functional context. Likewise, the weight vector 𝛽 also becomes 

a continuous function of 𝑠 in the functional domain. Converting Eq. (5.1) into its functional 

analogue is displayed in Eq. (5.5) 

𝛽′𝑥 = ∑ 𝛽𝑗𝑥𝑗     →        ∫ 𝛽𝑥 =  ∫ 𝛽(𝑠)𝑥(𝑠)𝑑𝑠.𝑗     (5.5) 

Because 𝛽 and 𝑥 are functions of 𝑠, summations over 𝑗 in the multivariate context are 

replaced by integrations over 𝑠 in the functional context. Building on the notation described 

in Eq. (5.5), the corresponding score for a given function of 𝛽 is 

𝑓𝑖 = ∫ 𝛽𝑥𝑖 = ∫ 𝛽(𝑠)𝑥𝑖(𝑠)𝑑𝑠     (5.6) 
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Observation of Eq. (5.6) allows for FPCA to be carried out in an approach identical to that 

of multivariate PCA. The steps for carrying out FPCA are as follows: 

1. The weight function 𝜉1(𝑠) is chosen such that the mean square of 𝑓1 is 

maximized subject to ∫ 𝜉1 (𝑠)2𝑑𝑠 = 1, the continuous analogue of the unit 

sum of squares constraint. The calculated function of 𝜉1that maximizes 𝑓1′𝑠 

mean square represents the first principal component function. 

2. As is the case for multivariate PCA, the calculation of all subsequent weight 

functions (𝜉2(𝑠), 𝜉3(𝑠), … , 𝜉𝑚(𝑠)) requires maximizing the mean square of 

𝑓𝑚 subject to the continuous sum of squares constraint ∫ 𝜉𝑚 (𝑠)2𝑑𝑠 and the 

orthognality constraint(s) ∫ 𝜉𝑘𝜉𝑚 = 0, 𝑘 < 𝑚 on subsequent steps. 

Like multivariate PCA, each weight function defines the most important mode of 

variation of the original curves analyzed. Once again, the orthogonality constraint ensures 

that the variation explained in one principal component function is independent of the 

variation explained in all preceding and subsequent principal component functions. The 

orthogonality constraint also results in a decline of the explained variation by each 

component function as subsequent functions are calculated. Thus, the total variation of the 

original collection of functional curves can be well approximated by using a subset of 

principal component functions to transform the original functional curves. 

5.1.3 PCA & Eigenanalysis 

5.1.3.1 Multivariate PCA 

In the multivariate context, PCA’s primary task is to find the eigenvalues and 

eigenvectors of the covariance matrix. With this approach, matrix 𝑋 is defined as a 𝑁 𝑥 𝑝 
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matrix containing all values 𝑥𝑖𝑗, and 𝜉 is a vector of length 𝑝 that stores the linear 

combination of weight values that will be subjected to change for maximization of the 

mean square of the corresponding score, 𝑓𝑖. Thus, the function to maximize the mean 

square can be rewritten as seen Eq. (5.7). 

max  𝑁−1𝜉′𝑋′𝑋𝜉  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜉′𝜉 = 1    (5.7) 

Eq. (5.7) can be further modified in terms of the sample variance. Incorporating the sample 

variance-covariance, represented as 𝑉 =  𝑁−1𝑋′𝑋, Eq. (5.7) becomes Eq. (5.8) as seen 

below. 

max 𝜉′𝑉𝜉 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜉′𝜉 = 1    (5.8) 

Now, this maximization problem be solved as an eigenequation that finds the eigenvector, 

𝜉, that maximizes an eigenvalue, 𝜌. 

𝑉𝜉 = 𝜌𝜉     (5.9) 

 This process yields a sequence of different eigenvalue-eigenvector pairs that satisfy 

Eq. (5.9). Likewise, the eigenvectors are all orthogonal to one another which satisfies the 

orthogonality constraint imposed by PCA. 

5.1.3.2 FPCA 

Extending the concepts of Eigenanalysis to the functional domain, the covariance 

matrix, defined as 𝜐(𝑠, 𝑡), is shown in Eq. (5.10). 

𝜐(𝑠, 𝑡) = 𝑁−1 ∑ 𝑥𝑖(𝑠)𝑥𝑖(𝑡)𝑁
𝑖=1    (5.10) 

Proceeding with an approach like that in multivariate Eigenanalysis, similar rules are used 

to determine the principal component weight functions as seen in Eq. (5.11).  

∫ 𝑣(𝑠, 𝑡)𝜉(𝑡)𝑑𝑡 =  𝜌 𝜉(𝑠)    (5.11) 
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The left side of the above equation represents the integral transform of the covariance 

operator, 𝑉, of the weight function 𝜉 as shown in Eq. (5.12). Replacing the left side of Eq. 

(5.11) with Eq. (5.12) yields the eigenequation presented in Eq. (5.13).  

𝑉𝜉 =  ∫ 𝑣(. , 𝑡)𝜉(𝑡) 𝑑𝑡     (5.12) 

𝑉𝜉 = 𝜌 𝜉     (5.13) 

 In this functional representation of the eigenequation, 𝜉 is now an eigenfunction 

compared to its eigenvector counterpart that was observed in the multivariate context. The 

obtained eigenfunction-eigenvalue pairs satisfy the eigenequation. As well, the 

orthogonality constraint is satisfied among all calculated eigenfunctions. 

 

5.2 Classification for Fault Diagnosis – Multilayer Perceptron 

The present study will rely on a multilayer perceptron for ICE fault diagnosis. The 

multilayer perceptron (MLP) is the most popular type of artificial neural network (ANNs) 

(Díaz-Rodríguez, Cancilla, Matute, Chicharro, & Torrecilla, 2015). MLPs belong to a 

general class of ANNs known as feedforward neural networks. Feedforward neural 

networks represent a basic type of neural network that can approximate classes of 

functions. As illustrated in Figure 5.1, we see a general network structure that is comprised 

of neurons (circles) and connecting lines that are referred to as links. Every link has a 

weight parameter associated with it, and every neuron receives a collective stimulus from 

its neighboring neurons that are connected to it. The purpose of the network is to predict a 

dependent variable based on the input of features deemed significant for discrimination 

between different dependent variable states, and the performance can be validated through 

available cross validation schemes.  
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Figure 5.1 Structural representation of a multilayer perceptron with two hidden layers 

Structure of the MLP 

5.2.1 MLP Structure 

MLPs consist of three distinct layers: an input layer, a hidden layer, and an output 

layer. The input layer is where feature information is fed into the network. The number of 

neurons in this layer will correspond to the number of selected features or independent 

attributes that will be used to predict the corresponding dependent attributes.  

 On the other end of the MLP exists the output layer. The number of neurons housed 

in this layer will correspond to the number of dependent class attributes. For the 

applications of this study, there will be five neurons in the output layer, each corresponding 

to the five engine states detailed in Table 6.2.  

 The hidden layer is the bridge that connects the independent attributes to the 

dependent labels. Neurons that exist in the layer(s) between the input and output layers 

receive stimuli from nodes in the preceding layer and transmit stimuli to nodes in the 
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following layer. The stimuli transduced by the neurons in the network is modulated to 

optimize the prediction accuracy of a dependent response based on the corresponding 

independent attributes. 

5.2.2 MLP Mechanics 

 For an MLP to learn the patterns that correlate input features to a specific dependent 

class, training must occur. For training, many cases consisting of a set of independent 

features labeled with their respective dependent class labels is required.  

Training begins with the feeding of the first training case into the network. The 

input features enter the network, and the network predicts the corresponding output. At this 

stage, the network has randomly assigned weights to each neuronal connection; thus, its 

predictive performance is entirely random. However, this establishes a baseline which will 

be improved upon. This baseline predictive performance is quantified by calculating the 

network’s error (i.e. the difference between the predicted class label and the actual class 

label).  

After the forward pass has been made through the network and the prediction error 

has been quantified, backpropagation occurs. Backpropagation represents the learning 

power of ANNs because it helps to reduce the error by altering the weights in such a way 

that brings the prediction of the network as close as it can to the actual class label for the 

input features of each case/instance (Jafari-Marandi, Davarzani, Soltanpour Gharibdousti, 

& Smith, 2018). 

The weight updating that occurs in backpropagation relies on the partial derivative 

of the error based on each neuron’s weight. Negative partial derivative values indicate that 

small positive additions to the specific neuronal weight will reduce the network’s error. 
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Conversely, positive partial derivatives indicate that small negative additions to the specific 

neuronal weight will reduce the network’s error (Jafari-Marandi et al., 2018).  

The approach investigated in this thesis will rely on the Levenberg-Marquardt 

algorithm for backpropagation. The algorithm is one of the most widely used 

backpropagation algorithms and is an improvement to Newton’s method (Hagan & 

Menhaj, 1994). The Levenberg-Marquardt algorithm uses the following equation detailed 

in Eq. (5.14) to calculate each neuronal weight change from the partial derivative and the 

neuronal weight change from the previous epoch. 

∆𝜔𝑖𝑗(𝑛) =  𝜂
𝛿𝐸

𝛿𝜔𝑖𝑗
+ 𝛼𝜔𝑖𝑗(𝑛 − 1)    (5.14) 

In Eq. (5.14),  𝐸 is the average of all squared errors, 𝜔𝑖𝑗 is the weight of the 

connection between the 𝑖𝑡ℎ neuron and the 𝑗𝑡ℎ neuron, 𝜂 is the learning rate, 𝛼 is the 

momentum rate, and 𝑛 is the epoch number. 

An epoch represents one round of moving forward through the network, making a 

prediction, quantifying the prediction error, and propagating back through the network to 

alter neuronal weights to reduce the network error. The network will progress through a 

given number of epochs to steadily minimize the prediction error. As well, the learning rate 

refers to the rate at which the network changes, and the momentum rate refers to the degree 

of impact that past weight changes have on current weight changes (Jafari-Marandi et al., 

2018)  

However, the process of feeding forward and backpropagation will reach a point 

where the change in the error is no longer significant. At this point, the network will be 
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optimized for prediction based on the discriminatory power of the input features and the 

number of hidden nodes and hidden layer(s). 

 

  



 

30 

 

CHAPTER VI 

EXPERIMENTAL DESIGN 

6.1 Experimental Setup and Data Acquisition 

The dataset used in this thesis was obtained by way of the experimental setup and 

data acquisition protocol followed by Jafarian et al (Jafarian et al., 2018).  

To study and characterize different fault modes in ICEs, the authors used a 1600 

cc, linear-four-cylinder, four-stroke, eight valve engine as the subject of the study. The 

faults investigated related to cylinder misfire and abnormal valve clearance. Specifically, 

three faults related to cylinder misfire (two slight misfires and one severe misfire), and one 

fault state was associated with abnormal valve clearance. Likewise, an engine operating in 

a healthy state, devoid of any misfire or clearance faults, was studied as well (Jafarian et 

al., 2018). 

6.1.1 Fault Simulation 

Cylinder misfire faults are the result of a misfiring of the spark plug. To simulate 

this phenomenon, the wires connected to the first and second cylinders of the engine were 

cut. Cutting only one of the wires represented a slight misfire (two cases: slight misfire in 

cylinder 1 and slight misfire in cylinder 2). Simultaneous cutting of both wires simulated a 

severe misfire fault (Jafarian et al., 2018). 
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Valve clearance represents the space between the rocker arm and valve seat as 

indicated by Figure 6.1. Abnormal clearance can occur when this space is too tight or too 

excessive respective to the manufacture’s specifications. The authors focused on the 

occurrence of excessive valve clearance which was simulated by adjusting the exhaust 

valve clearance to 0.6 mm which is twice the amount of the normal clearance of 0.3 mm 

(Jafarian et al., 2018). 

 

Figure 6.1 Implementation of abnormal valve clearance (Jafarian et al., 2018) 

 

6.1.2 Vibrational Signal Monitoring and Collection 

To monitor the vibration signals from the engines in the five different states 

mentioned in 0, four one-direction, piezoelectric, CTC accelerometers were used. For 

brevity, these accelerometers will be referred to as “sensors” throughout the rest of the 
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paper. The sensors were placed under each cylinder plug by way of a magnet. The sensors 

had a resonant frequency of 35 kHz; thus, 20 kHz approximately represented the upper 

limit of operational frequency (Jafarian et al., 2018). 

Vibrational signal collection was accomplished with the ADASH4400. The 

ADASH4400 has four AC and DC channels. As well, the instrument had an action channel 

that presented vibrational wave and frequency domains and saved data in internal memory. 

These capabilities allowed for the collected vibrational signals to be exported as comma 

separated value files for additional analysis (Jafarian et al., 2018). 

6.1.3 Parameter Settings for Data Acquisition 

For data acquisition, literature reported a spectrum of sampling rates. A higher 

sampling rate of 48 kHz was reported by Flett and Bone (Flett & Bone, 2015). Using this 

sampling rate in Equations 6.1 and 6.2 show that the sampling rate corresponds to an 

encoder resolution of 1440 pulses/revolution.  

 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒

𝑁

60

 (6.1) 

 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑃𝑢𝑙𝑠𝑒 =  
360°

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝑅𝑒𝑠𝑜𝑢𝑙𝑡𝑖𝑜𝑛
 (6.2) 

 However, most of the reports in literature do not use a sampling rate as high as the 

one used by Flett and Bone. High sampling rates tend to produce higher encoder resolution 

values. Alternate approaches have used encoder pulse values that result from encoder 

resolution values much smaller than those reported by Flett and Bone. Thus, in this 

research, 2000 RPM was considered for the rotational speed of the engine’s crankshaft, 

and a sample rate of 2 kHz was used. This resulted in an encoder resolution of 60 

pulses/revolution which corresponded to an encoder pulse every 6°. The encoder resolution 
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of 60 pulses/revolution provided a moderate number according to the settings used in 

relevant literature detailed in Table 6.1. 

Table 6.1 Encoder Resolution and Pulse Values Used in the Literature 

Source Encoder Resolution Encoder Pulse 

Flett and Bone (Flett 

& Bone, 2015) 

1440 

pulses/revolution 
0.25° 

Kiencke (Kiencke, 

1999) 

60 pulses/revolution 6° 

Jafarian et al 

(Jafarian et al., 2018) 

60 pulses/revolution 6° 

Osburn (Osburn, 

Kostek, Franchek, & 

Franchek, 2005) 

12 pulses/revolution 30° 

Jung et al (Jung, 

Eriksson, Frisk, & 

Krysander, 2014) 

12 pulses/revolution 30° 

Naik (Naik, 2004) 4 pulses/revolution 90° 

 

6.1.4 Experimental Setup 

Employing the aforementioned data monitoring and acquisition scheme, vibrational 

signal data was collected for each engine state described in Table 6.2.  

Table 6.2 Engine states investigated in present study 

State Abbreviation Engines 

Healthy H 30 

Slight Misfire 1 M1 30 

Severe Misfire M12 30 

Slight Misfire 2 M2 30 

Abnormal Valve Clearance VC 30 

 

In this research, 30 engines were investigated for each of the five states. On each 

of the engines, a one minute, 60,000 observation signal was collected on each sensor 
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resulting in a total of four one minute, 60,000 observation signals for each engine in the 

study. These signals were only one minute in duration because longer duration study 

periods could have resulted in malignant engine damage. 

 

6.2 Signal Processing 

For this research, 600 one minute, 60,000 observation signals were collected (1 

signal per sensor, 4 sensors per engine, 150 engines). Below in Figure 6.2 is an example of 

a full, one-minute signal. Obviously, it is difficult to observe the waveform behavior due 

to the frequency of the signal.  

 

Figure 6.2 Full one-minute signal obtained from Sensor 1 on Engine 1 in a Healthy 

state  
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Figure 6.3 First 500 observations of signal data obtained from Sensor 1 on Engine 1 in 

a Healthy state  

 

6.2.1 Signal Extraction 

To better view the waveform signatures, we analyzed fractions of the signals. In 

Figure 6.3, we can observe a more signature behavior of the waveform by analyzing 500 

observations which is equivalent to half of a second of the original 60 second signal. 

Expanding on this approach, we aimed to extract portions of the one minute, 60,000 

observation signals to perform feature extraction and feature selection for fault detection. 

Specifically, we were interested in investigating the prediction accuracy that corresponded 

with small fractions of the overall signal. For this thesis, we investigated the feature 

extraction, feature selection, and classification using the following durations for extracted 

signal portions: 100 observations, 500 observations, 1,000 observations, 5,000 
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observations, and 10,000 observations. Each of these durations were extracted from the 

beginning of the signal for the initial phases of investigation. 

In addition to using varying extracted portions of the signals, we also investigated 

the effect of having more cases for MLP training and testing. Table 6.3 combines the signal 

duration and case number combination to completely detail the scenarios investigated in 

this thesis.  

Table 6.3 Signal Duration – Case combination scheme used in present study 

Signal Duration (observations) Signal Duration (time) Cases % of Total Signal 

100  0.1 seconds 150 0.167 % 

100 0.1 seconds 750 0.833 % 

500 0.5 seconds 150 0.833 % 

500 0.5 seconds 750 4.167 % 

1,000 1 second 150 1.667 % 

1,000 1 second 750 8.333 % 

5,000 5 seconds 150 8.333 % 

5,000 5 seconds 750 41.667 % 

10,000 10 seconds 150 16.667 % 

10,000 10 seconds 750 83.333 % 

 

Figure 6.4 shows examples of the signal extraction used for this study. In situations 

where 750 cases were observed, we extracted multiple signals from the same engine in the 

same state. For example, as illustrated in Figure 6.4, generating 750 cases for a signal 

duration of 100 observations required the extraction of a sequence of the first 500 

observations from one signal. Subsequently, this 500-observation sequence would be 

divided into five separate, 100 observation signals.  
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Figure 6.4 Five 100 observation signals in sequence. This approach was used to 

generate five replicate cases for each signal to allow for 750 total cases 

across all 150 engines used in the study 

Using this approach was possible because all signals exhibited stationary behavior 

over the one-minute time span for which the signal was collected. We also implemented a 

random sampling scheme to identify and extract signals from random locations in the one-

minute signal to verify this claim which will be discussed in further detail in the Analysis 

and Results chapter. 

6.2.2 Curve Smoothing 

For data with observable noise as seen in Figure 6.3, it is wise to employ some type 

of smoothing approach. One of these such approaches is using smoothing splines. A 

smoothing spline 𝑠 is constructed based off a smoothing parameter 𝑝 and specified weights 

𝑤𝑖 as depicted in Eq. (6.3). 
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𝑝 ∑ 𝑤𝑖(𝑦𝑖𝑠(𝑥𝑖))
2

+ (1 − 𝑝) ∫((𝑑2𝑠)/(𝑑𝑥2))2  𝑑𝑥𝑖    (6.3) 

The smoothing parameter,𝑝, is defined along the range [0, 1]. When 𝑝 is 0, the resultant 

spline is equivalent to a least-squares straight-line fit of the data. Alternatively, when 𝑝 is 

1, the resultant spline is in the form of a cubic spline interpolant. According to Pollock, 

determining the appropriate smoothing parameter “represents the optimal predictor of the 

path of a certain stochastic differential equation of which the observations are affected by 

noise” (Pollock, 1999). 

 By using the smoothing splines function within MATLAB, the default smoothing 

parameter is selected in the “interesting range”. This range is near 1/(1 + ℎ3/6) where ℎ 

represents the average spacing of the collected data points. While the smoothing parameter 

can be manually adjusted by the user, the default smoothing parameter obtained within 

MATLAB produces a curve that is smoother than the interpolant but also adequately fits 

the data. In the case where the smoothing parameter is decreased relative to the default 

value, the resulting spline curve is smoother but does not fit the data well. Conversely, 

increasing the smoothing parameter relative to the default value results in a curve that 

approaches a cubic spline interpolant (“Smoothing Splines - MATLAB & Simulink,” n.d.).  

When the default smoothing parameter is lower than 1 (e.g. 𝑝 = 0.95), major 

differences can be observed with divergences at the end points. However, depending on 

the data, the default smoothing parameter can result in a cubic spline interpolant with 𝑝 = 

1 or ≈ 1. For this research, the default smoothing parameter was calculated to be 1 for all 

the signal duration/case number combinations detailed in Table 6.3. 
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6.3 FPCA Application 

6.3.1 Feature Extraction – Calculation of Principal Components 

For the scenarios presented in Table 6.3, the corresponding collection of given 

signal duration curves were collected. Each instance has signals from each of the four 

sensors. Table 6.4 shows the matrix representation of the data once it had been processed 

to undergo FPCA. With this approach, FPCA would be performed on each of the sensor 

columns indicating that four sets of PC functions will be calculated from the four sensor 

collections of either 150 or 750 functional signal curves. 

Table 6.4 Matrix representation of 150 case examples of 100 observation signals 

Index Engine State S1 Signal S2 Signal S3 Signal S4 Signal 

1 H 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

2 H 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

… H 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

30 H 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

31 M1 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

32 M1 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

… M1 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

60 M1 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

61 M12 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

62 M12 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

… M12 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

90 M12 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

91 M2 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

92 M2 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

… M2 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

120 M2 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

121 VC 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

122 VC 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

… VC 100 obs curve 100 obs curve 100 obs curve 100 obs curve 

150 VC 100 obs curve 100 obs curve 100 obs curve 100 obs curve 
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6.3.2 Feature Selection – 95% explained variance 

Because the present study is of an exploratory nature, we analyzed the sequence of 

PC functions that explained 95% of the variation present in each sensors’ curve collections. 

As detailed later, this approached reduced the number of total PC functions due to the 

diminishing return of variation explanation by downstream PC functions. 

6.4 Classification – Multilayer Perceptron 

The selected PC functions that explained 95% of the variance in the original data 

were passed into an MLP to determine predictive performance. A trial and error method 

was employed to determine the appropriate network structure (i.e. the number of hidden 

layers used as well as the number of neurons present in each layer) that provided an 

adequate balance between prediction accuracy and variability. 

6.4.1 Network Tuning – Trial & Error 

A trial & error approach was used to investigate the optimal number of neurons in 

a MLP with two hidden layers (L1 and L2) with a maximum of 10 neurons in each layer. 

With this approach, all possible neuron combinations for a MLP with two hidden layers 

were investigated. For a given [1, 1] network (e.g. neurons in L1 = 1, neurons in L2=1), a 

network’s performance is trained on 80% of the data for a specific signal duration/case 

number combination and tested on the remaining 20%. This process is repeated 50 times 

for a given network to generate performance statistics (e.g. prediction accuracy and 

variance/standard deviation). Finally, the performance statistics are then used to conduct 

statistical analysis via paired t-test to determine when significance exists for the observed 
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differences in the calculated network performance across all signal duration/case number 

combinations. 

6.4.2 K-Fold Cross Validation & Effect of Random Initialization 

Once the optimal neuron number for the hidden layers were identified, we then used 

the optimal parameter settings and performed k-fold cross validation with 𝑘 = 5. With this 

process, we also investigated the effect of MLP weight initialization by carrying out k-fold 

cross validation on ten additional networks with the optimal parameter settings that 

underwent different initializations. 

6.5 Stationary Signal Validation 

Lastly, we validated that the backend MLP performance statistics were consistent 

with results obtained from taking the same optimal signal/duration case number portion of 

the total signal from other random locations within the 60,000-observation signal. We 

repeated this process for ten random locations and compiled the MLP performance 

statistics. 
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CHAPTER VII 

ANALYSIS AND RESULTS 

7.1 Signal Processing – Signal Extraction and Curve Smoothing 

As described in the methodology and experimental setup, the signal processing 

protocol was employed for each scenario. For illustrative purposes, the scenario where 150 

cases of 100 observation signal fractions are displayed in Figure 7.1 and Figure 7.2. In 

Figure 7.1, we see that the raw signal extracts possess a noticeable degree of noise. Thus, 

curve smoothing was employed to reduce this noise which is illustrated in the functional 

curves in Figure 7.2. This process was repeated for every combination scenario listed in 

Table 6.3.  Once a collection of smoothed, functional curves was obtained from the 

extracted signals, FPCA was applied to determine the PC functions and corresponding 

eigenvalues. The eigenvalues were used to determine the appropriate number of PC 

functions to explain different percentages of the variation in the original functional curve 

collections. 
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 Selecting the first 𝑁 components of each collection of curves for each sensor 

resulted in four sets of PC functions to explain the specified proportion of variance. For 

MLP investigation, we opted to use the selected PC functions that explained 95% of the 

variance. This proportion was chosen because it approximates the original data set. As well, 

the PC functions that explain 95% of the variance are approximately half the number of 

the PC functions that are necessary to explain 99% of the variance when handling many of 

the signal duration/case number scenarios investigated in the study. 

7.3 MLP Tuning – Trial & Error Approach 

The first 𝑁 components for sensors 1 through 4 were used as input features for the 

MLP. Likewise, the corresponding class labels (i.e. engine states) were used as the output 

features. Table 7.2 below details the network parameters that correspond with the highest 

accuracy and the lowest standard deviation. Because the approach was repeated 50 times, 

statistical analysis was conducted to investigate if the differences observed in network 

performance was significant.  
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Table 7.2 Trial & Error MLP Optimization for Signal Duration/# of Cases 

Combinations  

 

As mentioned previously, the performance statistics compiled in Table 7.2 are the 

averages across 50 iterations. Statistical analysis was carried out on the data presented in 

Table 7.2. Analyzing the effect of the number of cases used, it was observed that at a 

significance level of 𝛼 = 0.05, the optimized network’s performance was significantly 

better when 750 cases were present (i.e. 600 cases were used for training and 150 cases 

were used for testing). The results of this analysis are presented in Table 7.3. 

 

 

 

 

 

 

  Max. Accuracy  Min. Standard Deviation 

Signal 

Duration 

# of 

Cases 

 L1 L2 Acc StDev  L1 L2 Acc StDev 

100 150  8 6 87.67 % 5.81 %  8 6 87.67 % 5.81 % 

100 750  10 5 97.87 % 1.52 %  8 7 96.90 % 1.40 % 

500 150  10 10 89.71 % 6.35 %  9 5 88.80 % 6.35 % 

500 750  10 7 99.02 % 1.03 %  8 9 98.95 % 1.00 % 

1000 150  7 10 88.65 % 7.41 %  9 10 86.76 % 6.18 % 

1000 750  10 5 98.93 % 1.24 %  10 9 98.91 % 1.00 % 

5000 150  9 6 89.25 % 5.79 %  9 6 89.25 % 5.79 % 

5000 750  8 9 99.24 % 0.94 %  10 10 99.22 % 0.86 % 

10000 150  6 9 87.74 % 7.15 %  10 8 87.44 % 6.64 % 

10000 750  7 10 99.17 % 1.28 %  5 6 99.02 % 0.89 % 
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Table 7.3 Statistical analysis of the significance of # of cases with performance 

statistics associated from the networks that produced the highest prediction 

accuracy for each scenario 

Signal  Cases Mean 

(%)  

SD 

(%) 

p 

(%) 

Decision 

𝐻0: No significant 

difference between samples’ 

predictive performance 

100 150 87.67 5.81 < 0.001  Reject null 

 750 97.87 1.52   

      

500 150 89.71 6.35 < 0.001 Reject null 

 750 99.02 1.00   

      

1000 150 88.65 7.41 < 0.001 Reject null 

 750 98.92 1.24   

      

5000 150 89.25 5.79 < 0.001 Reject null 

 750 99.24 0.94   

      

10000 150 87.74 7.15 < 0.001 Reject null 

 750 99.17 1.28   

 

 Because of the performance advantage associated with using 750 cases, only 

scenarios involving 750 cases analyzed. Figure 7.3 shows a plot of the 95% confidence 

intervals of the t-distribution for each accuracy of each 750-case signal duration.  
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Figure 7.3 Interval plot of the 95% confidence intervals for the prediction accuracy for 

each signal duration studied with a case number of 750. 

From Figure 7.3, there is no overlap between the 95% CI for prediction accuracy 

of the 100-observation signal collection when compared to all the other signal durations 

investigated. This indicates that the prediction performance from originally using a 

collection of 750, 100 observation signals is significantly lower than the other scenarios 

that were studied. Conversely, we see that the mutual overlapping of the remaining 

intervals indicates that there is not a significant difference from the observed 95% 

confidence intervals for prediction accuracy. This lack of significance among the 

prediction performance from using 500, 1000, 5000, and 10000 signal duration collections 

allows us to use the most convenient of these options. From a computational standpoint, 

operations such as curve smoothing become increasingly more complex when longer 
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duration signals must be smoothed. Thus, we chose the scenario of using 750 cases of 500 

observation signals for the final MLP cross validation and performance evaluation phase 

of this research. 

7.4 K-Fold Cross Validation 

K-Fold Cross Validation (CV) was carried out to validate MLP prediction 

performance resulting from applying FPCA on scenario using 750 cases of 500 

observation, smoothed signals. The network settings used are identified in Table 7.2 ([10, 

7] network i.e. an MLP with 10 neurons in the first hidden layer and 7 neurons in second 

hidden layer). K-Fold CV proceeded by first randomly shuffling the 750 cases of data. The 

[10, 7] two-hidden layer MLP was then randomly initialized. Then, using a k=5, the entire 

dataset was split into five 150 case folds, and K-Fold CV was performed. This exact 

process was repeated 10 times where each time the random initializations of the MLP were 

different. Table 7.4 below displays the results of this process. 

Table 7.4 K-Fold CV results for MLP using extracted PC function features from 750 

cases of smoothed, 500 observation extracted signals 

Network Index Acc (%) Error Count Error ID 

1 99.73 2 7, 14 

2 99.07 7 14, 14, 14, 7, 7, 14, 14 

3 99.60 3 7, 7, 7 

4 99.87 1 14 

5 99.87 1 14 

6 99.73 2 7, 6 

7 99.47 4 7, 7, 7, 7 

8 99.73 2 14, 14 

9 100.00 0  - 

10 100.00 0  - 

 



 

51 

 

Table 7.4 shows little variation in terms of error across K-Fold CV performed on 15 

differently initialized [10, 7] MLP networks. Additionally, from Table 7.4 we see the 

column ‘Error ID’. This indicates the extent of the misclassification that produced the 

prediction error. Table 7.5 below represents a dictionary that defines the Error ID for each 

type of misclassification.  

Table 7.5  Misclassification Error ID dictionary 

 Misclassification 

Error ID Actual Predicted 

1 H M1 

2 H M12 

3 H M2 

4 H VC 

5 M1 H 

6 M1 M12 

7 M1 M2 

8 M1 VC 

9 M12 H 

10 M12 M1 

11 M12 M2 

12 M12 VC 

13 M2 H 

14 M2 M1 

15 M2 M12 

16 M2 VC 

17 VC H 

18 VC M1 

19 VC M12 

20 VC M2 
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To provide a clearer presentation of the data in Table 6.4, the K-Fold CV results 

across the 10 different initialized [10,7] MLP networks are presented in the confusion 

matrix below in Table 7.6. 

Table 7.6 Confusion matrix for summed K-Fold CV results across 10 different 

initialized [10,7] MLP networks on the initial observation investigation 

range of 1-2500 for each collected signal 

Total 

Predicted 

Cases for 

Each State = 

1500 

Predicted 

H M1 M12 M2 VC 

A
ct

u
al

 

H 1500 

(100%) 

0 0 0 0 

M1 0 1488 

(99.2%) 

1 

(0.07%) 

11 

(0.73%) 

0 

M12 0 0 1500  

(100%) 

0 0 

M2 0 10 

(0.67%) 

0 1490 

(99.33%) 

0 

VC 0 0 0 0 1500 

(100%) 

 

With the insights gained from Table 7.6, we see that the present error types are 

mainly either 7 or 14, corresponding to the error of classifying an M1 fault as M2 and vice 

versa. Likewise, there is only one occurrence of an error type of 6 which is the 

misclassification of an M1 fault as M12. The mode of misclassification is relevant because 

as indicated by Table 7.7 and Table 7.8, these faults are not considered as a Type I or Type 

II error. 
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Table 7.7 Potential Type I errors 

Actual Predicted 

H M1 

H M12 

H M2 

H  VC 

Table 7.8 Potential Type II errors 

Actual Predicted 

M1 H 

M12 H 

M2 H 

VC H 

 

7.5 Stationary Signal Validation 

The results obtained thus far were the result of using the first observations (e.g. 1-

2500) of the total 60,000 observation signal. This 2500 signal was then split accordingly 

(1-500, 501-1000, 1001-1500, 1501-2000, and 2001-2500) allowing for five 500 

observation signals to be collected from 1 engine. Because 150 engines were in the study, 

this allowed for 750 cases. 

An important signal feature that we visually observed initially was that the signal 

behavior did not evolve over the minute time span for which is collected. To validate this, 

we used the same overall approach of the study (signal extraction, curve smoothing, FPCA, 

and MLP) to observe the MLP prediction performance resulting from taking signals at 

random locations in the entire 60,000 observation signal and applying FPCA. Using the 

optimal signal duration (500 observations) at 750 cases, this process was carried out 10 

times at 10 different locations that are detailed in Table 7.9. 
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Table 7.9 Random Extracted Ranges for Investigation 

Random 

Sample 

Random Location in 60,000 obs 

Signal 

Extracted Observation Range  

1 23,979 23,979 – 26,479 

2 41,919 41,919 – 44,419 

3 29,552 29,552 – 32,052 

4 24,479 24,479 – 26,979 

5 12,840 12,840 – 15,340 

6 12,765 12,765 – 15,265 

7 50,033 50,033 – 52,533  

8 50,223 50,223 – 52,723  

9 37,397 37,397 – 39,897 

10 5,609 5,609 – 8,109 

 

FPCA was applied to all the scenarios, and the corresponding PC functions that 

explained 95% of the variance were extracted and used as input for the MLP. K-fold CV 

was performed in similar manner as previously discussed in Section 7.4. The tables 

corresponding to the accuracy for each randomly initialized [10, 7] MLP network are 

located in the appendix in Table A.1, Table A.2, and Table A.3.  

To provide clearer presentations of the data in Table A.1, Table A.2, and Table A.3 

in the appendix, the K-Fold CV results across the 10 different initialized [10,7] MLP 

networks for each random signal range are presented in the confusion matrices below in 

Table 7.10 - Table 7.19. 
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Table 7.10 Confusion matrix for summed K-Fold CV results across 10 different 

initialized [10,7] MLP networks on the observation range of (23,979 – 

26,479) of each collected signal 

Total 

Predicted 

Cases for 

Each State = 

1500 

Predicted 

H M1 M12 M2 VC 
A

ct
u
al

 

H 1500 

(100%) 

0 0 0 0 

M1 0 1490 

(99.33%) 

0 10 

(0.67%) 

0 

M12 0 0 1500 

(100%) 

0 0 

M2 0 10 

(0.67%) 

0 1490 

(99.33%) 

0 

VC 0 0 0 0 1500 

(100%) 

 

Table 7.11 Confusion matrix for summed K-Fold CV results across 10 different 

initialized [10,7] MLP networks on the observation range of (41,919 – 

44,419) of each collected signal 

Total 

Predicted 

Cases for 

Each State = 

1500 

Predicted 

H M1 M12 M2 VC 

A
ct

u
al

 

H 1500 

(100.00%) 

0 0 0 0 

M1 0 1488 

(99.20%) 

1 

(0.07%) 

11 

(0.73%) 

0 

M12 0 0 1500 

(100.00%) 

0 0 

M2 0 9 

(0.60%) 

0 1491 

(99.40%) 

0 

VC 0 0 0 0 1500 

(100.00%) 
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Table 7.12 Confusion matrix for summed K-Fold CV results across 10 different 

initialized [10,7] MLP networks on the observation range of (29,552 – 

32,052) of each collected signal 

Total 

Predicted 

Cases for 

Each State = 

1500 

Predicted 

H M1 M12 M2 VC 
A

ct
u
al

 

H 1500 

(100.00%) 

0 0 0 0 

M1 0 1488 

(99.20%) 

0 11 

(0.73%) 

1 

(0.07%) 

M12 0 0 1500 

(100.00 %) 

0 0 

M2 0 15 

(1.00%) 

0 1485 

(99.00%) 

0 

VC 0 0 0 0 1500 

(100.00 %) 

 

Table 7.13 Confusion matrix for summed K-Fold CV results across 10 different 

initialized [10,7] MLP networks on the observation range of (24,479 – 

26,979) of each collected signal 

Total 

Predicted 

Cases for 

Each State = 

1500 

Predicted 

H M1 M12 M2 VC 

A
ct

u
al

 

H 1500 

(100.00%) 

0 0 0 0 

M1 0 1487 

(99.13%) 

0 13 

(0.87%) 

0 

M12 0 0 1500 

(100.00%) 

0 0 

M2 0 19 

(1.33%) 

0 1481 

(98.67%) 

0 

VC 0 0 0 0 1500 

(100.00%) 

 



 

57 

 

Table 7.14 Confusion matrix for summed K-Fold CV results across 10 different 

initialized [10,7] MLP networks on the observation range of (12,840 – 

15,340) of each collected signal 

Total 

Predicted 

Cases for 

Each State = 

1500 

Predicted 

H M1 M12 M2 VC 
A

ct
u
al

 

H 1500 

(100.00%) 

0 0 0 0 

M1 0 1492 

(99.46%) 

0 8 

(0.54%) 

0 

M12 0 0 1500 

(100.00%) 

0 0 

M2 0 8 

(0.54%) 

0 1492 

(99.46%) 

0 

VC 0 0 0 0 1500 

(100.00%) 

 

Table 7.15 Confusion matrix for summed K-Fold CV results across 10 different 

initialized [10,7] MLP networks on the observation range of (12,765 – 

15,265) of each collected signal 

Total 

Predicted 

Cases for 

Each State = 

1500 

Predicted 

H M1 M12 M2 VC 

A
ct

u
al

 

H 1500 

(100.00%) 

0 0 0 0 

M1 0 1490 

(99.33%) 

0 10 

(0.67%) 

0 

M12 0 0 1500 

(100.00%) 

0 0 

M2 0 12 

(0.80%) 

0 1488 

(99.20%) 

0 

VC 0 0 0 0 1500 

(100.00%) 
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Table 7.16 Confusion matrix for summed K-Fold CV results across 10 different 

initialized [10,7] MLP networks on the observation range of (50,033 – 

52,533) of each collected signal 

Total 

Predicted 

Cases for 

Each State = 

1500 

Predicted 

H M1 M12 M2 VC 
A

ct
u
al

 

H 1500 

(100.00%) 

0 0 0 0 

M1 0 1494.36 

(99.60%) 

0 

 

6 

(0.40%) 

0 

M12 0 0 1500 

(100.00%) 

0 0 

M2 0 18 

(1.20%) 

0 1482 

(98.80%) 

0 

VC 0 0 0 0 1500 

(100.00%) 

 

Table 7.17 Confusion matrix for summed K-Fold CV results across 10 different 

initialized [10,7] MLP networks on the observation range of (50,223 – 

52,723) of each collected signal 

Total 

Predicted 

Cases for 

Each State = 

1500 

Predicted 

H M1 M12 M2 VC 

A
ct

u
al

 

H 1500   

(100.00%) 

0 0 0 0 

M1 0 1484 

(98.93%) 

0 16 

(1.07%) 

0 

M12 0 0 1500 

(100.00%) 

0 0 

M2 0 6 

(0.40%) 

0 1494 

(99.60%) 

0 

VC 0 0 0 0 1500 

(100.00%) 
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Table 7.18 Confusion matrix for summed K-Fold CV results across 10 different 

initialized [10,7] MLP networks on observation range of (37,397 – 39,897) 

of each collected signal 

Total 

Predicted 

Cases for 

Each State = 

1500 

Predicted 

H M1 M12 M2 VC 
A

ct
u
al

 

H 1500 

(100.00%) 

0 0 0 0 

M1 0 1492 

(99.47%) 

0 8 

(0.53%) 

0 

M12 0 0 1500 

(100.00%) 

0 0 

M2 0 13 

(0.87%) 

0 1487 

(99.13%) 

0 

VC 0 0 0 0 1500 

(100%) 

 

Table 7.19 Confusion matrix for summed K-Fold CV results across 10 different 

initialized [10,7] MLP networks on observation range of (5,609 – 8,109) of 

each collected signal 

Total 

Predicted 

Cases for 

Each State = 

1500 

Predicted 

H M1 M12 M2 VC 

A
ct

u
al

 

H 1500 

(100.00%) 

0 0 0 0 

M1 0 1490 

(99.33%) 

0 10 

(0.67%) 

0 

M12 0 0 1500 

(100.00%) 

0 0 

M2 0 10 

(0.67%) 

0 1490 

(99.33%) 

0 

VC 0 0 0 0 1500 

(100.00%) 
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By observing the ten predicted accuracies for each initialized network for each of 

the ten random ranges investigated detailed in Table A.1, Table A.2, and Table A.3of the 

appendix, we collected the average and standard deviations. From these values, a 95% CI 

plot was created to observe if there were any significant differences in the average 

prediction accuracies for the ten random samples. 

 

Figure 7.4 95% Confidence Interval Plot for Average Prediction Accuracy for the Ten 

Random Sample Ranges Investigated 

 

From Figure 6.4, it is observed that none of the sample ranges produce prediction 

accuracies that were significantly different from prediction accuracies collected for the 

other random sample ranges investigated. This supports the hypothesis that the entire 

60,000 observation signal is stationary, and the results obtained by using a given fraction 

of the signal at one location are consistent with the results obtained from using the same 

fraction of the signal at a different location. 
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CHAPTER VIII  

DISCUSSION  

8.1 Main Takeaways 

8.1.1 FPCA for Feature Extraction and Dimensionality Reduction 

The main aim of the presented work was to establish the efficacy of FPCA as a 

vibrational signal feature extraction technique because the application of FPCA within the 

realm of FDD is largely undocumented and the application of FPCA could provide a 

method that increases prediction accuracy while using less data. With our approach, we 

observed that analyzing 750 cases of labeled signals resulted in high performance cases 

across all signal duration levels as indicated by Table 7.3. Not only do the results of Table 

7.3 highlight the importance of FPCA as an efficient feature extraction technique that helps 

to produce high MLP prediction accuracies, the table also highlights FPCA’s capability of 

efficiently extracting significant discriminatory features for classification while using 

small fractions of the overall signal. The optimal signal duration fraction among the 

different signal duration levels investigated (500 observations long for 750 cases = 2500 

observations from each raw signal) only required 2.5 seconds of the original one minute, 

60,000 observation signals collected on each sensor. 

Likewise, applying FPCA also helps to reduce the dimensionality of the original 

data. Initial acquisition of the PC functions that represent the original dimension space via 
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orthogonal functions that represent maximum variance functions is the first stage of 

reduction. Furthermore, specifying the desired explained variance level which selects a 

subset of the extracted PC functions reduces the dimensionality even further. 

8.2 Comparison to Reports in Literature 

The results presented in Table 8.1 show the overall averages of the prediction 

accuracy results of the present study.  

Table 8.1 Confusion Matrix for Average ± SD for accuracy across all ranges 

investigated in study 

Total 

Predicted 

Cases for 

Each State = 

1500 

Predicted 

H M1 M12 M2 VC 

A
ct

u
al

 

H 1500 ± 0  

(100% ± 

0%) 

0 ± 0 

(0% ± 0%) 

0 ± 0 

(0% ± 0%) 

0 ± 0 

(0% ± 0%) 

0 ± 0 

(0% ± 0%) 

M1 0 ± 0 

(0% ± 

0%) 

1489.364 ± 

2.767 

(99.291% ± 

0.184%) 

0.182 ± 

0.404 

(0.0121% ± 

0.0270%) 

10.364 ± 

2.656 

(0.69% ± 

0.177%) 

0.091 ± 

0.302 

(0.006% ± 

0.02%) 

M12 0 ± 0 

(0% ± 

0%) 

0 ± 0 

(0% ± 0%) 

1500 ± 0 

(100% ± 

0%) 

0 ± 0 

(0% ± 0%) 

0 ± 0 

(0% ± 0%) 

M2 0 ± 0 

(0% ± 

0%) 

11.818 ± 

4.094 

(0.788% ± 

0.273%) 

0 ± 0 

(0% ± 0%) 

1488.18 ± 

4.094 

(99.33% ± 

0.273%) 

0 ± 0 

(0% ± 0%) 

VC 0 ± 0 

(0% ± 

0%) 

0 ± 0 

(0% ± 0%) 

0 ± 0 

(0% ± 0%) 

0 ± 0 

(0% ± 0%) 

1500 ± 0 

(100%) 

Overall Prediction Accuracy Across All States = 99.724 

Accuracy Predicting H = 100.00 % 

Accuracy Predicting M1 = 99.291 % 

Accuracy Predicting M12 = 100.00 % 

Accuracy Predicting M2 = 99.33 % 

Accuracy Predicting VC = 100.00 %  



 

63 

 

 

Using the summary of the prediction accuracies presented in the bottom of Table 

8.1, we expanded on the table originally presented by Jafarian et al to include additional 

references as well as the results we obtained with our study. Table 8.2 presents a 

comparison of the accuracies obtained in our study with similar reports in literature. From 

Table 8.2, it is shown that the approach proposed in this study outperformed most of the 

other reports presented in the table. The proposed approach can conclusively identify the 

states of a healthy engine, an engine with a dual misfire fault, and an engine with an 

abnormal valve clearance fault. Likewise, the approach can predict a specific single misfire 

fault with 99.291% accuracy for M1 faults and 99.33% accuracy for M2 faults. Because 

the accuracy performance is above 94 % in both cases, this approach is valid and reliable 

for detecting specific single misfire faults (Jafarian et al, 2018). 

Table 8.2 Comparison of results to similar works in literature (Jafarian et al., 2018) 

Source  Signal Type Faults Investigated Prediction Accuracy 

(%) 

(Tay & Shen, 

2003) 

Vibrational Signal Valve Clearance 

Faults 

76.32 

(Sharma, 

Sugumaran, & 

Babu 

Devasenapati, 

2014b) 

Vibrational Signal Single Cylinder 

Misfire 

89.40 

(Jafari, 

Mehdigholi, & 

Behzad, 2014) 

Acoustic Signal Multiple Valve 

Clearance Faults 

92.00 

(Basir & Yuan, 

2007) 

Vibrational Signal 

Acoustic Signal 

Pressure Data 

Temperature Data 

Valve Clearance 

Faults 

94.00 
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Table 8.2  (continued) 

(J.-D. Wu & 

Liu, 2009) 

Acoustic Signal Single Cylinder 

Misfire  

Dual Cylinder Misfire 

92.00 

97.00 

(Boudaghi, 

Shahbakhti, & 

Jazayeri, 2015) 

Engine Control 

Unit (ECU) Data 

Single Cylinder 

Misfire 

Dual Cylinder Misfire 

94.00 

97.00 

(Sharkey, 

Chandroth, & 

Sharkey, 2000) 

Acoustic and 

Vibrational 

Signals 

Cylinder Misfire and 

Valve Clearance 

Faults 

95.83 

 

(Ashkan 

Moosavian, 

Khazaee, Najafi, 

Kettner, & 

Mamat, 2015) 

Acoustic and 

Vibrational 

Signals 

Single Cylinder 

Misfire  

98.56 

(Li, Mi, Liu, & 

Wang, 2013) 

Vibrational 

Signal 

Valve Clearance Fault 98.20 

(Yu, Junhong, 

Fengrong, 

Jiewei, & 

Wenpeng, 2015) 

Vibrational 

Signal 

Multiple Valve 

Clearance Faults 

98.30 

(Devasenapati., 

Ramachandran., 

& Sugumaran., 

2010) 

Vibrational 

Signal 

Single Cylinder 

Misfire 

98.40 

(Shatnawi & Al-

khassaweneh, 

2014) 

Acoustic Signal Single Cylinder 

Misfire 

Dual Cylinder Misfire 

100.00 

 

90.00 

(Flett & Bone, 

2016) 

Vibrational 

Signal 

Valve Clearance 

Faults 

99.95 

(Jafarian et al.) Vibrational 

Signal 

Single Cylinder 

Misfire 

Dual Cylinder Misfire 

Valve Clearance Fault 

97.34 

This paper Vibrational 

Signal 

Single Cylinder 

Misfire 

Dual Cylinder Misfire 

Valve Clearance Fault 

99.72 
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8.3 Prominent Modes of Misclassification 

While the classification performance of the proposed network was highly reliable 

and valid, the occurrences of misclassification were largely localized to two types:  

misclassification of an M1 fault as an M2 and misclassification of an M2 fault as an M1. 

The interpretation of this phenomenon is that the PC features used in the MLP for these 

two classes must be similar to some degree.  To provide visual support, the plots below in 

Figure 8.1 represent the PC scores across the PC functions that explain 95% of the original 

variance when collecting 750 cases of 500 observation signals from the beginning range of 

each signal (from observations 1-2500). 

 

Figure 8.1 PC Scores vs PC Function # across all four sensors for each case (case 

number = 750) 
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From Figure 8.1, it is observed that the states H, M12, and VC can be differentiated 

from all other states based on their PC function scores. Filtering out states H, M12, and VC 

allows for the visualization of only states M1 and M2 in Figure 8.2. 

 

Figure 8.2 PC Scores vs PC Function # across all four sensors for each case (case 

number = 750) 

In Figure 8.2, the PC function scores obtained for M1 and M2 signals appear to be very 

similar. However, according to Table 8.1, the classification performance results for 

predicting M1 and M2 were 99.29% and 99.33% respectively. Although the scores shown 

in Figure 8.2 look visually similar, the high prediction accuracies reported in Table 8.1 

were possible because there were multiple significant discriminatory features captured in 

the PC sequences collected across all four sensors. These significant features are 

highlighted in Table 8.3. 
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Table 8.3 Paired T-test results of M1 PCij Score vs M2 PCij Score where i = PC 

function # and j = sensor #  

PC 

Scores 

Sensor 1  

(First 13 PCs 

explain 95% of 

variance) 

Sensor 2 

(First 9 PCs 

explain 95% of 

variance) 

Sensor 3 

(First 10 PCs 

explain 95% of 

variance) 

Sensor 4 

(First 15 PCs 

explain 95% of 

variance) 

 P-

value 

Reject 

𝐻0 at 

∝=0.05? 

1: Yes 

0: No 

P-value Reject 

𝐻0 at 

∝=0.05? 

1: Yes 

0: No 

P-

value 

Reject 

𝐻0 at 

∝=0.05? 

1: Yes 

0: No 

P-

value 

Reject 

𝐻0 at 

∝=0.05? 

1: Yes 

0: No 

1 0.960 0 < 0.01 1 0.819 0 0.143 0 

2 0.526 0 0.152 0 0.435 0 0.019 1 

3 0.313 0 < 

0.0001 

1 0.664 0 < 

0.0001 

1 

4 0.026 1 < 

0.0001 

1 < 

0.0001 

1 0.002 1 

5 0.012 1 0.060 0 0.012 1 0.152 0 

6 0.483 0 0.019 1 0.431 0 0.044 1 

7 0.767 0 0.026 1 0.005 1 0.802 0 

8 0.056 0 0.444 0 0.034 1 0.001 1 

9 0.137 0 0.005 1 0.175 0 0.636 0 

10 0.405 0  -  - 0.293 0 0.001 1 

11 0.223 0  -  -  -  - < 

0.0001 

1 

12 0.125 0  -  -  -  - 0.004 1 

13 0.173 0  -  -  -  - 0.178 0 

14  - -  -  -  -  - 0.422 0 

15  - -  -  -  -  - 0.481 0 

 

8.4 Effect of Misclassification 

One of the main conclusions that can be drawn from the approach is that the 

occurrences of misclassifications in this study were localized to misclassification of an M1 

misfire fault as an M2 misfire fault and vice versa. Most importantly, neither of these are 

a Type I or Type II error. Specifically, Type II errors could have severe implications in 

industrial applications by leading to higher costs associated with permanent engine damage 
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due to the failure to detect a fault. Therefore, it is up to the decision maker or practitioner 

that is responsible for applying cost coefficients and risks associated with each type of 

misclassification to ultimately determine their importance or relevance.  
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CHAPTER IX  

FUTURE RESEARCH & CONCLUSION 

9.1 Future Research 

The approach presented in this thesis represents an exploratory study that 

investigated the feasibility of FPCA as a method for feature extraction for vibrational 

signals acquired from a collection of ICEs. The main aim of the thesis was to provide 

evidence to support that FPCA could be applied for the extraction of significant 

discriminatory features for each specific engine state investigated in the work.  As indicated 

by the high prediction accuracy reported in Table 8.1, the approach investigated in this 

work was proven to be valid and reliable for the application. The results obtained from this 

study are extremely encouraging and support future research to expand on the current 

findings. Because of the exploratory nature of the proposed approach, all aspects associated 

with the approach can be investigated in more depth.  

9.1.1 Optimization of Signal Extraction 

The first aspect of the proposed approach that can be further investigated is the 

signal extraction aspect of the approach. Specifically, efforts can be devoted to establishing 

an approach to analyze signal parameters of interest such as the frequency, amplitude, and 

periodicity and determine the effect that these parameters have on the optimal size of the 

extracted portions to be used in FPCA.  
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9.1.2 Reducing Computational Bottlenecks of Curve Smoothing/Functional Data 

Conversion Operations 

As mentioned previously, the goal of the approach proposed with this thesis is to 

achieve a method that allows for close to real-time analytics. Producing close to real-time 

analytics could allow for better on-line monitoring of process behavior which would allow 

operators overseeing the process to quickly respond when a fault has been detected. 

Acknowledging the importance that computational speed has on the end goal of achieving 

real-time analytics, it is critical to improve the computational bottlenecks in the proposed 

FDD approach. 

In its current state, the process of curve smoothing where the raw data is converted 

into a functional state represents the largest computational bottleneck in the approach. If 

we observe Figure 9.1 and Figure 9.2, it is clear that increasing the signal duration results 

in an exponential increase in computation time. 
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Figure 9.1 Computation Time vs. Signal Extract Duration (at 150 Cases) 

 

 

Figure 9.2 Computation Time vs. Signal Extract Duration (at 750 Cases) 
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 The computational inefficiency was realized when signal extracts of size 5,000 

observations and above were investigated. This phenomenon is reported in literature and 

has already been the subject for improvement (Ma, Huang, & Zhang, 2015; Xu & Wang, 

2017; Yue, Simpson, Lindgren, & Rue, 2012) which shows potential for further 

investigation to optimize the curve fitting protocol followed in the present work.  

9.1.3 Further Investigation of FPCA for Feature Extraction 

As for the main subject of the study, the application of FPCA for feature extraction 

can be investigated further as well. One extension that can be made is to observe the effect 

of different explained variance ranges by performing a sensitivity analysis on the prediction 

accuracy based on the explained variance that is captured by the corresponding sequential 

range of PC functions across each sensor for each engine. 

9.1.4 Functional Discriminant Analysis for Feature Extraction 

One interesting avenue that can be developed more extensively is to investigate the 

feasibility of using a functional analogue of discriminant analysis for feature extraction for 

the vibrational signal data used in this work. An aspect of PCA in both the multivariate and 

functional context is that both forms represent unsupervised methods. This means that the 

methods ignore class labels when determining the directions or functions that maximize 

the variance in a data set. Because of this element, a calculated eigenvector or eigenfunction 
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that maximizes the variance in a dataset will not necessarily be an adequate measure for 

differentiating between classes as indicated in Figure 9.3. 

 

Figure 9.3 Example of the First Principal Component for an arbitrary dataset 

 

On the other hand, discriminant analysis represents a supervised method that uses 

class labels when finding directions or functions that maximize the variance in the original 

dimensional space of the dataset. But because discriminant analysis accounts for class 

labels, the directions or functions that are determined are calculated in a way that 
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maximizes the variance between classes of data while minimizing the variation among data 

points that belong to the same class as indicated in Figure 9.4.  

 

 

Figure 9.4 Example of the First Linear Discriminant for an arbitrary dataset 

 

 While FPCA performed exceptionally well for the application used in this research, 

the supervised nature of discriminant analysis may present discriminant directions or 

functions in sequence according to their between class discriminatory power in a more 
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convenient and concise manner for feature extraction. As well, additional efforts can be 

devoted to combining the power of FPCA and a functional form of discriminant analysis. 

9.1.5 Alternate Classification Algorithms and Self-Organizing Maps 

As the last aspect for the proposed data-driven approach for FDD, further 

investigation of alternate classification algorithms is possible. While the results obtained 

with the optimized MLP proved highly valid and reliable, it would be interesting to 

compare performance metrics with other algorithms similar to the approaches used by other 

authors (Jafarian et al., 2018). As well, utilization of Kohonen Self-Organizing Maps could 

provide visualization for the artificial neural network’s learning and predictive capabilities 

(Kohonen, 1982). Analysis of the prominent plotting characteristics within self-organizing 

maps could provide deeper insights into the prominence and likelihood for all potential 

modes of misclassification. 

 However, proving the breadth of applicability for this approach towards other 

application for FDD is of main importance. Additional effort should be devoted to studying 

and validating the performance of this approach with data acquired from other applications 

(e.g. acoustic, electrical, and thermal).  

9.2 Conclusion 

The results collected from this study were highly encouraging. Applying FPCA to 

functional vibrational signals resulted in the extraction of significant features that predicted 

an engine’ state out of five potential states with 99.72% accuracy. Likewise, this accuracy 

was obtained by using 4.167% of the original one-minute signal highlighting the 

approach’s capability for quick detection. Similarly, FPCA provided an element of 
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dimensionality reduction by representing each functional curve as a vector of significant 

PC scores for classification. 

 The exploratory nature of the work allows for optimization of all the aspects 

discussed in the thesis which include but are not limited to the following: signal extraction, 

curve smoothing, feature extraction, feature selection, and classification. As well, 

confirming broad applicability of this approach for different applications with different 

forms of functional data would show support for industrial applications, specifically in a 

production environment where detecting deviations from normal process behavior in a 

correct and timely manner are of paramount importance.  
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APPENDIX A 

K-FOLD CROSS VALIDATION RESULTS FOR RANDOM RANGES 

INVESTIGATED IN STATIONARY SIGNAL VALIDATION  

PHASE OF ANALYSIS 
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Table A.3 K-Fold CV results of Random Ranges 9 and 10 

 Range 9 (37,397 – 39,897) Range 10 (5,609 – 8,109) 

Network 

Index 

Acc. (%) Error 

Count 

Error ID 

 

Acc. (%) Error 

Count 

Error ID 

1 100.00 0  - 99.87 1 14 

2 99.60 3 7, 7, 7 99.47 4 7, 7, 14, 7 

3 99.73 2 14, 14 99.73 2 14, 7 

4 100 0 - 100 0  - 

5 99.33 5 14, 14, 14, 7, 

14 

99.33 5 14, 14, 7, 7, 

7 

6 99.60 3 7, 7, 7 99.47 4 7, 7, 14, 14 

7 99.73 2 14, 14 99.87 1 14 

8 100.00 0  - 99.87 1 14 

9 99.73 2 14, 7 99.87 1 14 

10 99.47 4 14, 14, 14, 14 99.87 1 7 

 

  

 


