181 research outputs found

    Coding of synthetic aperture radar data

    Get PDF

    Compressive Spectrum Sensing in Cognitive IoT

    Get PDF
    PhDWith the rising of new paradigms in wireless communications such as Internet of things (IoT), current static frequency allocation policy faces a primary challenge of spectrum scarcity, and thus encourages the IoT devices to have cognitive capabilities to access the underutilised spectrum in the temporal and spatial dimensions. Wideband spectrum sensing is one of the key functions to enable dynamic spectrum access, but entails a major implementation challenge in terms of sampling rate and computation cost since the sampling rate of analog-to-digital converters (ADCs) should be higher than twice of the spectrum bandwidth based on the Nyquist-Shannon sampling theorem. By exploiting the sparse nature of wideband spectrum, sub-Nyquist sampling and sparse signal recovery have shown potential capabilities in handling these problems, which are directly related to compressive sensing (CS) from the viewpoint of its origin. To invoke sub-Nyquist wideband spectrum sensing in IoT, blind signal acquisition with low-complexity sparse recovery is desirable on compact IoT devices. Moreover, with cooperation among distributed IoT devices, the complexity of sampling and reconstruc- tion can be further reduced with performance guarantee. Specifically, an adaptively- regularized iterative reweighted least squares (AR-IRLS) reconstruction algorithm is proposed to speed up the convergence of reconstruction with less number of iterations. Furthermore, a low-complexity compressive spectrum sensing algorithm is proposed to reduce computation complexity in each iteration of IRLS-based reconstruction algorithm, from cubic time to linear time. Besides, to transfer computation burden from the IoT devices to the core network, a joint iterative reweighted sparse recovery scheme with geo-location database is proposed to adopt the occupied channel information from geo- location database to reduce the complexity in the signal reconstruction. Since numerous IoT devices access or release the spectrum randomly, the sparsity levels of wideband spec-trum signals are varying and unknown. A blind CS-based sensing algorithm is proposed to enable the local secondary users (SUs) to adaptively adjust the sensing time or sam- pling rate without knowledge of spectral sparsity. Apart from the signal reconstruction at the back-end, a distributed sub-Nyquist sensing scheme is proposed by utilizing the surrounding IoT devices to jointly sample the spectrum based on the multi-coset sam- pling theory, in which only the minimum number of low-rate ADCs on the IoT devices are required to form coset samplers without the prior knowledge of the number of occu- pied channels and signal-to-noise ratios. The models of the proposed algorithms are derived and verified by numerical analyses and tested on both real-world and simulated TV white space signals

    APPLICATION OF SPARSE DICTIONARY LEARNING TO SEISMIC DATA RECONSTRUCTION

    Get PDF
    According to the principle of compressed sensing (CS), under-sampled seismic data can be interpolated when the data becomes sparse in a transform domain. To sparsify the data, dictionary learning presents a data-driven approach trained to be optimized for each target dataset. This study presents an interpolation method for seismic data in which dictionary learning is employed to improve the sparsity of data representation using improved Kth Singular Value Decomposition (K-SVD). In this way, the transformation will be highly compatible with the input data, and the data in the converted domain will be sparser. In addition, the sampling matrix is produced with the restricted isometry property (RIP). To reduce the sensitivity of the minimizer term to the outliers, we use the smooth L1 minimizer as a regularization term in the regularized orthogonal matching pursuit (ROMP). We apply the proposed method to both synthetic and real seismic data. The results show that it can successfully reconstruct the missing seismic traces

    Structure-Based Bayesian Sparse Reconstruction

    Full text link
    Sparse signal reconstruction algorithms have attracted research attention due to their wide applications in various fields. In this paper, we present a simple Bayesian approach that utilizes the sparsity constraint and a priori statistical information (Gaussian or otherwise) to obtain near optimal estimates. In addition, we make use of the rich structure of the sensing matrix encountered in many signal processing applications to develop a fast sparse recovery algorithm. The computational complexity of the proposed algorithm is relatively low compared with the widely used convex relaxation methods as well as greedy matching pursuit techniques, especially at a low sparsity rate.Comment: 29 pages, 15 figures, accepted in IEEE Transactions on Signal Processing (July 2012

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1
    • …
    corecore