2,135 research outputs found

    Exploiting Prior Knowledge in Compressed Sensing Wireless ECG Systems

    Full text link
    Recent results in telecardiology show that compressed sensing (CS) is a promising tool to lower energy consumption in wireless body area networks for electrocardiogram (ECG) monitoring. However, the performance of current CS-based algorithms, in terms of compression rate and reconstruction quality of the ECG, still falls short of the performance attained by state-of-the-art wavelet based algorithms. In this paper, we propose to exploit the structure of the wavelet representation of the ECG signal to boost the performance of CS-based methods for compression and reconstruction of ECG signals. More precisely, we incorporate prior information about the wavelet dependencies across scales into the reconstruction algorithms and exploit the high fraction of common support of the wavelet coefficients of consecutive ECG segments. Experimental results utilizing the MIT-BIH Arrhythmia Database show that significant performance gains, in terms of compression rate and reconstruction quality, can be obtained by the proposed algorithms compared to current CS-based methods.Comment: Accepted for publication at IEEE Journal of Biomedical and Health Informatic

    Approximation algorithms for wavelet transform coding of data streams

    Get PDF
    This paper addresses the problem of finding a B-term wavelet representation of a given discrete function f∈ℜnf \in \real^n whose distance from f is minimized. The problem is well understood when we seek to minimize the Euclidean distance between f and its representation. The first known algorithms for finding provably approximate representations minimizing general ℓp\ell_p distances (including ℓ∞\ell_\infty) under a wide variety of compactly supported wavelet bases are presented in this paper. For the Haar basis, a polynomial time approximation scheme is demonstrated. These algorithms are applicable in the one-pass sublinear-space data stream model of computation. They generalize naturally to multiple dimensions and weighted norms. A universal representation that provides a provable approximation guarantee under all p-norms simultaneously; and the first approximation algorithms for bit-budget versions of the problem, known as adaptive quantization, are also presented. Further, it is shown that the algorithms presented here can be used to select a basis from a tree-structured dictionary of bases and find a B-term representation of the given function that provably approximates its best dictionary-basis representation.Comment: Added a universal representation that provides a provable approximation guarantee under all p-norms simultaneousl

    Computational Methods for Sparse Solution of Linear Inverse Problems

    Get PDF
    The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a plethora of applications

    Analysis and Synthesis Prior Greedy Algorithms for Non-linear Sparse Recovery

    Full text link
    In this work we address the problem of recovering sparse solutions to non linear inverse problems. We look at two variants of the basic problem, the synthesis prior problem when the solution is sparse and the analysis prior problem where the solution is cosparse in some linear basis. For the first problem, we propose non linear variants of the Orthogonal Matching Pursuit (OMP) and CoSamp algorithms; for the second problem we propose a non linear variant of the Greedy Analysis Pursuit (GAP) algorithm. We empirically test the success rates of our algorithms on exponential and logarithmic functions. We model speckle denoising as a non linear sparse recovery problem and apply our technique to solve it. Results show that our method outperforms state of the art methods in ultrasound speckle denoising

    Lorentzian Iterative Hard Thresholding: Robust Compressed Sensing with Prior Information

    Full text link
    Commonly employed reconstruction algorithms in compressed sensing (CS) use the L2L_2 norm as the metric for the residual error. However, it is well-known that least squares (LS) based estimators are highly sensitive to outliers present in the measurement vector leading to a poor performance when the noise no longer follows the Gaussian assumption but, instead, is better characterized by heavier-than-Gaussian tailed distributions. In this paper, we propose a robust iterative hard Thresholding (IHT) algorithm for reconstructing sparse signals in the presence of impulsive noise. To address this problem, we use a Lorentzian cost function instead of the L2L_2 cost function employed by the traditional IHT algorithm. We also modify the algorithm to incorporate prior signal information in the recovery process. Specifically, we study the case of CS with partially known support. The proposed algorithm is a fast method with computational load comparable to the LS based IHT, whilst having the advantage of robustness against heavy-tailed impulsive noise. Sufficient conditions for stability are studied and a reconstruction error bound is derived. We also derive sufficient conditions for stable sparse signal recovery with partially known support. Theoretical analysis shows that including prior support information relaxes the conditions for successful reconstruction. Simulation results demonstrate that the Lorentzian-based IHT algorithm significantly outperform commonly employed sparse reconstruction techniques in impulsive environments, while providing comparable performance in less demanding, light-tailed environments. Numerical results also demonstrate that the partially known support inclusion improves the performance of the proposed algorithm, thereby requiring fewer samples to yield an approximate reconstruction.Comment: 28 pages, 9 figures, accepted in IEEE Transactions on Signal Processin
    • …
    corecore