10,178 research outputs found

    A Design Science Research Approach to Smart and Collaborative Urban Supply Networks

    Get PDF
    Urban supply networks are facing increasing demands and challenges and thus constitute a relevant field for research and practical development. Supply chain management holds enormous potential and relevance for society and everyday life as the flow of goods and information are important economic functions. Being a heterogeneous field, the literature base of supply chain management research is difficult to manage and navigate. Disruptive digital technologies and the implementation of cross-network information analysis and sharing drive the need for new organisational and technological approaches. Practical issues are manifold and include mega trends such as digital transformation, urbanisation, and environmental awareness. A promising approach to solving these problems is the realisation of smart and collaborative supply networks. The growth of artificial intelligence applications in recent years has led to a wide range of applications in a variety of domains. However, the potential of artificial intelligence utilisation in supply chain management has not yet been fully exploited. Similarly, value creation increasingly takes place in networked value creation cycles that have become continuously more collaborative, complex, and dynamic as interactions in business processes involving information technologies have become more intense. Following a design science research approach this cumulative thesis comprises the development and discussion of four artefacts for the analysis and advancement of smart and collaborative urban supply networks. This thesis aims to highlight the potential of artificial intelligence-based supply networks, to advance data-driven inter-organisational collaboration, and to improve last mile supply network sustainability. Based on thorough machine learning and systematic literature reviews, reference and system dynamics modelling, simulation, and qualitative empirical research, the artefacts provide a valuable contribution to research and practice

    Corporate Social Responsibility: the institutionalization of ESG

    Get PDF
    Understanding the impact of Corporate Social Responsibility (CSR) on firm performance as it relates to industries reliant on technological innovation is a complex and perpetually evolving challenge. To thoroughly investigate this topic, this dissertation will adopt an economics-based structure to address three primary hypotheses. This structure allows for each hypothesis to essentially be a standalone empirical paper, unified by an overall analysis of the nature of impact that ESG has on firm performance. The first hypothesis explores the evolution of CSR to the modern quantified iteration of ESG has led to the institutionalization and standardization of the CSR concept. The second hypothesis fills gaps in existing literature testing the relationship between firm performance and ESG by finding that the relationship is significantly positive in long-term, strategic metrics (ROA and ROIC) and that there is no correlation in short-term metrics (ROE and ROS). Finally, the third hypothesis states that if a firm has a long-term strategic ESG plan, as proxied by the publication of CSR reports, then it is more resilience to damage from controversies. This is supported by the finding that pro-ESG firms consistently fared better than their counterparts in both financial and ESG performance, even in the event of a controversy. However, firms with consistent reporting are also held to a higher standard than their nonreporting peers, suggesting a higher risk and higher reward dynamic. These findings support the theory of good management, in that long-term strategic planning is both immediately economically beneficial and serves as a means of risk management and social impact mitigation. Overall, this contributes to the literature by fillings gaps in the nature of impact that ESG has on firm performance, particularly from a management perspective

    Minimum income support systems as elements of crisis resilience in Europe: Final Report

    Full text link
    Mindestsicherungssysteme dienen in den meisten entwickelten Wohlfahrtsstaaten als Sicherheitsnetz letzter Instanz. Dementsprechend spielen sie gerade in wirtschaftlichen Krisenzeiten eine besondere Rolle. Inwieweit Mindestsicherungssysteme in Zeiten der Krise beansprucht werden, hĂ€ngt auch von der AusprĂ€gung vorgelagerter Sozialschutzsysteme ab. Diese Studie untersucht die Bedeutung von Systemen der Mindestsicherung sowie vorgelagerter Systeme wie Arbeitslosenversicherung, Kurzarbeit und arbeitsrechtlichem Bestandsschutz fĂŒr die Krisenfestigkeit in Europa. Im Kontext der Finanzkrise von 2008/2009 und der Corona-Krise wird die FĂ€higkeit sozialpolitischer Maßnahmen untersucht, Armut und Einkommens­verluste einzudĂ€mmen und gesellschaftliche Ausgrenzung zu vermeiden. Die Studie setzt dabei auf quantitative und qualitative Methoden, etwa multivariate Analysen, Mikrosimulationsmethoden sowie eingehende Fallstudien der LĂ€nder DĂ€nemark, Frankreich, Irland, Polen und Spanien, die fĂŒr unterschiedliche Typen von Wohlfahrtsstaaten stehen.The aim of this study is to analyse the role of social policies in different European welfare states regarding minimum income protection and active inclusion. The core focus lies on crisis resilience, i.e. the capacity of social policy arrangements to contain poverty and inequality and avoid exclusion before, during and after periods of economic shocks. To achieve this goal, the study expands its analytical focus to include other tiers of social protection, in particular upstream systems such as unemployment insurance, job retention and employment protection, as they play an additional and potentially prominent role in providing income and job protection in situations of crisis. A mixed-method approach is used that combines quantitative and qualitative research, such as descriptive and multivariate quantitative analyses, microsimulation methods and in-depth case studies. The study finds consistent differences in terms of crisis resilience across countries and welfare state types. In general, Nordic and Continental European welfare states with strong upstream systems and minimum income support (MIS) show better outcomes in core socio-economic outcomes such as poverty and exclusion risks. However, labour market integration shows some dualisms in Continental Europe. The study shows that MIS holds particular importance if there are gaps in upstream systems or cases of severe and lasting crises

    Chiral active fluids: Odd viscosity, active turbulence, and directed flows of hydrodynamic microrotors

    Get PDF
    While the number of publications on rotating active matter has rapidly increased in recent years, studies on purely hydrodynamically interacting rotors on the microscale are still rare, especially from the perspective of particle based hydrodynamic simulations. The work presented here targets to fill this gap. By means of high-performance computer simulations, performed in a highly parallelised fashion on graphics processing units, the dynamics of ensembles of up to 70,000 rotating colloids immersed in an explicit mesoscopic solvent consisting out of up to 30 million fluid particles, are investigated. Some of the results presented in this thesis have been worked out in collaboration with experimentalists, such that the theoretical considerations developed in this thesis are supported by experiments, and vice versa. The studied system, modelled in order to resemble the essential physics of the experimentally realisable system, consists out of rotating magnetic colloidal particles, i.e., (micro-)rotors, rotating in sync to an externally applied magnetic field, where the rotors solely interact via hydrodynamic and steric interactions. Overall, the agreement between simulations and experiments is very good, proving that hydrodynamic interactions play a key role in this and related systems. While already an isolated rotating colloid is driven out of equilibrium, only collections of two or more rotors have experimentally shown to be able to convert the rotational energy input into translational dynamics in an orbital rotating fashion. The rotating colloids inject circular flows into the fluid, such that detailed balance is broken, and it is not a priori known whether equilibrium properties of colloids can be extended to isolated rotating colloids. A joint theoretical and experimental analysis of isolated, pairs, and small groups of hydrodynamically interacting rotors is given in chapter 2. While the translational dynamics of isolated rotors effectively resemble the dynamics of non-rotating colloids, the orbital rotation of pairs of rotors can be described with leading order hydrodynamics and a two-dimensional analogy of FaxĂ©n’s law is derived. In chapter 3, a homogeneously distributed ensemble of rotors (bulk) as a realisation of a chiral active fluid is studied and it is explicitly shown computationally and experimentally that it carries odd viscosity. The mutual orbital translation of rotors and an increase of the effective solvent viscosity with rotor density lead to a non-monotonous behaviour of the average translational velocity. Meanwhile, the rotor suspension bears a finite osmotic compressibility resulting from the long-ranged nature of hydrody- namic interactions such that rotational and odd stresses are transmitted through the solvent also at small and intermediate rotor densities. Consequently, density inhomogeneities predicted for chiral active fluids with odd viscosity can be found and allow for an explicit measurement of odd viscosity in simulations and experiments. At intermediate densities, the collective dynamics shows the emergence of multi-scale vortices and chaotic motion which is identified as active turbulence with a self-similar power-law decay in the energy spectrum, showing that the injected energy on the rotor scale is transported to larger scales, similar to the inverse energy cascade of clas- sical two-dimensional turbulence. While either odd viscosity or active turbulence have been reported in chiral active matter previously, the system studied here shows that the emergence of both simultaneously is possible resulting from the osmotic compressibility and hydrodynamic mediation of odd and active stresses. The collective dynamics of colloids rotating out of phase, i.e., where a constant torque instead of a constant angular velocity is applied, is shown to be qualitatively very similar. However, at smaller densities, local density inhomogeneities imply position dependent angular velocities of the rotors resulting from inter-rotor friction. While the friction of a quasi-2D layer of active colloids with the substrate is often not easily modifiable in experiments, the incorporation of substrate friction into the simulation models typically implies a considerable increase in computational effort. In chapter 4, a very efficient way of incorporating the friction with a substrate into a two-dimensional multiparticle collision dynamics solvent is introduced, allowing for an explicit investigation of the influences of substrate on active dynamics. For the rotor fluid, it is explicitly shown that the influence of the substrate friction results in a cutoff of the hydrodynamic interaction length, such that the maximum size of the formed vortices is controlled by the substrate friction, also resulting in a cutoff in the energy spectrum, because energy is taken out of the system at the respective length. These findings are in agreement with the experiments. Since active particles in confinement are known to organise in states of collective dynamics, ensembles of rotationally actuated colloids are studied in circular confinement and in the presence of periodic obstacle lattices in chapters 5 and 6, respectively. The results show that the chaotic active turbulent transport of rotors in suspension can be enhanced and guided resulting from edge flows generated at the boundaries, as has recently been reported for a related chiral active system. The consequent collective rotor dynamics can be regarded as a superposition of active turbulent and imposed flows, leading to on average stationary flows. In contrast to the bulk dynamics, the imposed flows inject additional energy into the system on the long length scales, and the same scaling behaviour of the energy spectrum as in bulk is only obtained if the energy injection scales, due to the mutual generation of rotor translational dynamics throughout the system and the edge flows, are well separated. The combination of edge flow and entropic layering at the boundaries leads to oscillating hydrodynamic stresses and consequently to an oscillating vorticity profile. In the presence of odd viscosity, this consequently leads to non-trivial steady-state density modulations at the boundary, resulting from a balance of osmotic pressure and odd stresses. Relevant for the efficient dispersion and mixing of inert particles on the mesoscale by means of active turbulent mixing powered by rotors, a study of the dynamics of a binary mixture consisting out of rotors and passive particles is presented in chapter 7. Because the rotors are not self-propelled, but the translational dynamics is induced by the surrounding rotors, the passive particles, which do not inject further energy into the system, are transported according to the same mechanism as the rotors. The collective dynamics thus resembles the pure rotor bulk dynamics at the respective density of only rotors. However, since no odd stresses act between the passive particles, only mutual rotor interactions lead to odd stresses leading to the accumulation of rotors in the regions of positive vorticity. This density increase is associated with a pressure increase, which balances the odd stresses acting on the rotors. However, the passive particles are only subject to the accumulation induced pressure increase such that these particles are transported into the areas of low rotor concentration, i.e., the regions of negative vorticity. Under conditions of sustained vortex flow, this results in segregation of both particle types. Since local symmetry breaking can convert injected rotational into translational energy, microswimmers can be constructed out of rotor materials when a suitable breaking of symmetry is kept in the vicinity of a rotor. One hypothetical realisation, i.e., a coupled rotor pair consisting out of two rotors of opposite angular velocity and of fixed distance, termed a birotor, are studied in chapter 8. The birotor pumps the fluid into one direction and consequently translates into the opposite direction, and creates a flow field reminiscent of a source doublet, or sliplet flow field. Fixed in space the birotor might be an interesting realisation of a microfluidic pump. The trans- lational dynamics of a birotor can be mapped onto the active Brownian particle model for single swimmers. However, due to the hydrodynamic interactions among the rotors, the birotor ensemble dynamics do not show the emergence of stable motility induced clustering. The reason for this is the flow created by birotor in small aggregates which effectively pushes further arriving birotors away from small aggregates, which eventually are all dispersed by thermal fluctuations

    Learning Spiking Neural Systems with the Event-Driven Forward-Forward Process

    Full text link
    We develop a novel credit assignment algorithm for information processing with spiking neurons without requiring feedback synapses. Specifically, we propose an event-driven generalization of the forward-forward and the predictive forward-forward learning processes for a spiking neural system that iteratively processes sensory input over a stimulus window. As a result, the recurrent circuit computes the membrane potential of each neuron in each layer as a function of local bottom-up, top-down, and lateral signals, facilitating a dynamic, layer-wise parallel form of neural computation. Unlike spiking neural coding, which relies on feedback synapses to adjust neural electrical activity, our model operates purely online and forward in time, offering a promising way to learn distributed representations of sensory data patterns with temporal spike signals. Notably, our experimental results on several pattern datasets demonstrate that the even-driven forward-forward (ED-FF) framework works well for training a dynamic recurrent spiking system capable of both classification and reconstruction

    Investigation of microparticle behavior in Newtonian, viscoelastic, and shear-thickening flows in straight microchannels

    Get PDF
    Sorting and separation of small substances such as cells, microorganisms, and micro- and nano-particles from a heterogeneous mixture is a common sample preparation step in many areas of biology, biotechnology, and medicine. Portability and inexpensive design of microfluidic-based sorting systems have benefited many of these biomedical applications. Accordingly, we have investigated microparticle hydrodynamics in fluids with various rheological behaviors (i.e., Newtonian, shear-thinning viscoelastic and shear-thickening non-Newtonian) flowing in straight microchannels. Numerical models were developed to simulate particles trajectories in Newtonian water and shear-thinning polyethylene oxide (PEO) solutions. The validated models were then used to perform numerical parametric studies and non-dimensional analysis on the Newtonian inertia-magnetic and shear-thinning elasto-inertal focusing regimes. Finally, the straight microfluidic device that was tested for Newtonian water and shear-thinning viscoelastic PEO solution, were adopted to experimentally study microparticle behavior in SiO2/Water shear-thickening nanofluid

    TOWARDS AN UNDERSTANDING OF EFFORTFUL FUNDRAISING EXPERIENCES: USING INTERPRETATIVE PHENOMENOLOGICAL ANALYSIS IN FUNDRAISING RESEARCH

    Get PDF
    Physical-activity oriented community fundraising has experienced an exponential growth in popularity over the past 15 years. The aim of this study was to explore the value of effortful fundraising experiences, from the point of view of participants, and explore the impact that these experiences have on people’s lives. This study used an IPA approach to interview 23 individuals, recognising the role of participants as proxy (nonprofessional) fundraisers for charitable organisations, and the unique organisation donor dynamic that this creates. It also bought together relevant psychological theory related to physical activity fundraising experiences (through a narrative literature review) and used primary interview data to substantiate these. Effortful fundraising experiences are examined in detail to understand their significance to participants, and how such experiences influence their connection with a charity or cause. This was done with an idiographic focus at first, before examining convergences and divergences across the sample. This study found that effortful fundraising experiences can have a profound positive impact upon community fundraisers in both the short and the long term. Additionally, it found that these experiences can be opportunities for charitable organisations to create lasting meaningful relationships with participants, and foster mutually beneficial lifetime relationships with them. Further research is needed to test specific psychological theory in this context, including self-esteem theory, self determination theory, and the martyrdom effect (among others)

    A narrative study of how shame features in the lives of women living with HIV

    Get PDF
    Once classed as a devastating virus that resulted in a guaranteed premature death, HIV can be treated successfully with lifelong medication and importantly its transmissibility is eliminated for individuals on effective medication. However, the psychosocial burden of HIV remains for many and despite this advancement in biomedical treatment, HIV remains a highly stigmatised virus and condition. This study explores how shame features in the experiences of women living with HIV in Ireland. There is an absence of women’s narratives in the overall discourse on HIV in Ireland, therefore little is known about their lives. Research on shame tells us that prolonged unacknowledged shame can impact on mental well-being if unaddressed. The study’s sample comprised twelve women living with HIV who were based in Ireland. Their narratives based on semi-structured interviews have been analysed using Clandinin and Connelly’s (2000) three-dimensional narrative inquiry tool, which explores from the interactional, chronological and situational elements of a story. A cross-case analysis was adopted to explore dominant themes across the twelve narratives. Findings from this study portray how shame stemmed from an absence of a woman centred HIV narrative and the ongoing presence of stigmatising HIV discourse. Shame featured as three dimensions of the exposed self: anticipated exposure, exposure avoidance and felt exposure. Finally, many of the participants managed to grow through their HIV-related shame and move past it by discovering a shared experience with other women, to reduce emotional isolation. This study concludes that HIV-related shame can have negative implications for women’s health and general well-being, thus compromising women’s ability to live well with HIV. HIV-related shame must be addressed with the appropriate intervention. The study contributes to the development of a women-centred HIV discourse. This can help increase visibility of WLHIV and enable potential mitigation of the onset of HIV-related shame, which is crucial in this era of HIV normalisation

    Innovative Hybrid Approaches for Vehicle Routing Problems

    Get PDF
    This thesis deals with the efficient resolution of Vehicle Routing Problems (VRPs). The first chapter faces the archetype of all VRPs: the Capacitated Vehicle Routing Problem (CVRP). Despite having being introduced more than 60 years ago, it still remains an extremely challenging problem. In this chapter I design a Fast Iterated-Local-Search Localized Optimization algorithm for the CVRP, shortened to FILO. The simplicity of the CVRP definition allowed me to experiment with advanced local search acceleration and pruning techniques that have eventually became the core optimization engine of FILO. FILO experimentally shown to be extremely scalable and able to solve very large scale instances of the CVRP in a fraction of the computing time compared to existing state-of-the-art methods, still obtaining competitive solutions in terms of their quality. The second chapter deals with an extension of the CVRP called the Extended Single Truck and Trailer Vehicle Routing Problem, or simply XSTTRP. The XSTTRP models a broad class of VRPs in which a single vehicle, composed of a truck and a detachable trailer, has to serve a set of customers with accessibility constraints making some of them not reachable by using the entire vehicle. This problem moves towards VRPs including more realistic constraints and it models scenarios such as parcel deliveries in crowded city centers or rural areas, where maneuvering a large vehicle is forbidden or dangerous. The XSTTRP generalizes several well known VRPs such as the Multiple Depot VRP and the Location Routing Problem. For its solution I developed an hybrid metaheuristic which combines a fast heuristic optimization with a polishing phase based on the resolution of a limited set partitioning problem. Finally, the thesis includes a final chapter aimed at guiding the computational evaluation of new approaches to VRPs proposed by the machine learning community
    • 

    corecore