6,627 research outputs found

    Intrusion Detection System using Bayesian Network Modeling

    Get PDF
    Computer Network Security has become a critical and important issue due to ever increasing cyber-crimes. Cybercrimes are spanning from simple piracy crimes to information theft in international terrorism. Defence security agencies and other militarily related organizations are highly concerned about the confidentiality and access control of the stored data. Therefore, it is really important to investigate on Intrusion Detection System (IDS) to detect and prevent cybercrimes to protect these systems. This research proposes a novel distributed IDS to detect and prevent attacks such as denial service, probes, user to root and remote to user attacks. In this work, we propose an IDS based on Bayesian network classification modelling technique. Bayesian networks are popular for adaptive learning, modelling diversity network traffic data for meaningful classification details. The proposed model has an anomaly based IDS with an adaptive learning process. Therefore, Bayesian networks have been applied to build a robust and accurate IDS. The proposed IDS has been evaluated against the KDD DAPRA dataset which was designed for network IDS evaluation. The research methodology consists of four different Bayesian networks as classification models, where each of these classifier models are interconnected and communicated to predict on incoming network traffic data. Each designed Bayesian network model is capable of detecting a major category of attack such as denial of service (DoS). However, all four Bayesian networks work together to pass the information of the classification model to calibrate the IDS system. The proposed IDS shows the ability of detecting novel attacks by continuing learning with different datasets. The testing dataset constructed by sampling the original KDD dataset to contain balance number of attacks and normal connections. The experiments show that the proposed system is effective in detecting attacks in the test dataset and is highly accurate in detecting all major attacks recorded in DARPA dataset. The proposed IDS consists with a promising approach for anomaly based intrusion detection in distributed systems. Furthermore, the practical implementation of the proposed IDS system can be utilized to train and detect attacks in live network traffi

    The insider on the outside: a novel system for the detection of information leakers in social networks

    Get PDF
    Confidential information is all too easily leaked by naive users posting comments. In this paper we introduce DUIL, a system for Detecting Unintentional Information Leakers. The value of DUIL is in its ability to detect those responsible for information leakage that occurs through comments posted on news articles in a public environment, when those articles have withheld material non-public information. DUIL is comprised of several artefacts, each designed to analyse a different aspect of this challenge: the information, the user(s) who posted the information, and the user(s) who may be involved in the dissemination of information. We present a design science analysis of DUIL as an information system artefact comprised of social, information, and technology artefacts. We demonstrate the performance of DUIL on real data crawled from several Facebook news pages spanning two years of news articles

    Insider’s Misuse Detection: From Hidden Markov Model to Deep Learning

    Get PDF
    Malicious insiders increasingly affect organizations by leaking classified data to unautho- rized entities. Detecting insiders’ misuses in computer systems is a challenging problem. In this dissertation, we propose two approaches to detect such threats: a probabilistic graph- ical model-based approach and a deep learning-based approach. We investigate the logs of computer-based activities to discover patterns of misuse. We model user’s behaviors as sequences of computer-based events. For our probabilistic graphical model-based approach, we propose an unsupervised model for insider’s misuse detection. That is, we develop Stochastic Gradient Descent method to learn Hidden Markov Models (SGD-HMM) with the goal of analyzing user log data. We propose the use of varying granularity levels to represent users’ log data: Session-based, Day-based, and Week-based. A user’s normal behavior is modeled using SGD-HMM. The model is used to detect any deviation from the normal behavior. We also propose a Sliding Window Technique (SWT) to identify malicious activity by considering the near history of the user’s activities. We evaluate the experimental results in terms of Receiver Operating Characteristic (ROC). The area under the curve (AUC) represents the model’s performance with respect to the separability of the normal and abnormal behaviors. The higher the AUC scores, the better the model’s performance. Combining SGD-HMM with SWT resulted in AUC values between 0.81 and 0.9 based on the window size. Our solution is superior to the solutions presented by other researchers. For our deep learning-based approach, we propose a supervised model for insider’s misuse detection. Our solution is based on using natural language processing with deep learning. We examine textual event logs to investigate the semantic meaning behind a user’s behavior. The proposed approaches consist of character embeddings and deep learning net- works that involve Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). We develop three deep-learning models: CNN, LSTM, and CNN-LSTM. We run a 10-fold subject-independent cross-validation procedure to evaluate the developed mod- els. Our deep learning-based approach shows promising behavior. The first model, CNN, presents a good performance of classifying normal samples with an AUC score of 0.85, false-negative rate of 29%, and false-positive rate of 26%. The second model, LSTM, shows the best performance of detecting malicious samples with an AUC score of 0.873, false-negative rate of 0%, and false-positive rate of 37%. The third model, CNN-LSTM, presents a moderate behavior of detecting both normal and insider samples with an AUC score of 0.862, false-negative rate 16%, and 17% false-positive rate. Moreover, we use our proposed approach to investigate networks with deeper and wider structures. For this, we study the impact of increasing the number of CNN or LSTM layers, nodes per layer, and both of them at the same time on the model performance. Our results indicate that machine learning approaches can be effectively deployed to detect insiders’ misuse. However, it is difficult to obtain labeled data. Furthermore, the high presence of normal behavior and limited misuse activities create a highly unbalanced data set. This impacts the performance of our models
    • …
    corecore