48,245 research outputs found

    Automatic verification of any number of concurrent, communicating processes

    Get PDF
    The automatic verification of concurrent systems by model-checking is limited due to the inability to generalise results to systems consisting of any number of processes. We use abstraction to prove general results, by model-checking, about feature interaction analysis of a telecommunications service involving any number of processes. The key idea is to model-check a system of constant number (m) of concurrent processes, in parallel with an "abstract" process which represents the product of any number of other processes. The system, for any specified set of selected features, is generated automatically using Perl scripts

    A generic approach for the automatic verification of featured, parameterised systems

    Get PDF
    A general technique is presented that allows property based feature analysis of systems consisting of an arbitrary number of components. Each component may have an arbitrary set of safe features. The components are defined in a guarded command form and the technique combines model checking and abstraction. Features must fulfill certain criteria in order to be safe, the criteria express constraints on the variables which occur in feature guards. The main result is a generalisation theorem which we apply to a well known example: the ubiquitous, featured telephone system

    Reconciling a component and process view

    Full text link
    In many cases we need to represent on the same abstraction level not only system components but also processes within the system, and if for both representation different frameworks are used, the system model becomes hard to read and to understand. We suggest a solution how to cover this gap and to reconcile component and process views on system representation: a formal framework that gives the advantage of solving design problems for large-scale component systems.Comment: Preprint, 7th International Workshop on Modeling in Software Engineering (MiSE) at ICSE 201

    On Engineering Support for Business Process Modelling and Redesign

    Get PDF
    Currently, there is an enormous (research) interest in business process redesign (BPR). Several management-oriented approaches have been proposed showing how to make BPR work. However, detailed descriptions of empirical experience are few. Consistent engineering methodologies to aid and guide a BPR-practitioner are currently emerging. Often, these methodologies are claimed to be developed for business process modelling, but stem directly from information system design cultures. We consider an engineering methodology for BPR to consist of modelling concepts, their representation, computerized tools and methods, and pragmatic skills and guidelines for off-line modelling, communicating, analyzing, (re)designing\ud business processes. The modelling concepts form the architectural basis of such an engineering methodology. Therefore, the choice, understanding and precise definition of these concepts determine the productivity and effectiveness of modelling tasks within a BPR project. The\ud current paper contributes to engineering support for BPR. We work out general issues that play a role in the development of engineering support for BPR. Furthermore, we introduce an architectural framework for business process modelling and redesign. This framework consists of a coherent set of modelling concepts and techniques on how to use them. The framework enables the modelling of both the structural and dynamic characteristics of business processes. We illustrate its applicability by modelling a case from service industry. Moreover, the architectural framework supports abstraction and refinement techniques. The use of these techniques for a BPR trajectory are discussed

    Hybrid automata dicretising agents for formal modelling of robots

    No full text
    Some of the fundamental capabilities required by autonomous vehicles and systems for their intelligent decision making are: modelling of the environment and forming data abstractions for symbolic, logic based reasoning. The paper formulates a discrete agent framework that abstracts and controls a hybrid system that is a composition of hybrid automata modelled continuous individual processes. Theoretical foundations are laid down for a class of general model composition agents (MCAs) with an advanced subclass of rational physical agents (RPAs). We define MCAs as the most basic structures for the description of complex autonomous robotic systems. The RPAā€™s have logic based decision making that is obtained by an extension of the hybrid systems concepts using a set of abstractions. The theory presented helps the creation of robots with reliable performance and safe operation in their environment. The paper emphasizes the abstraction aspects of the overall hybrid system that emerges from parallel composition of sets of RPAs and MCAs

    A Rigorous Approach to Relate Enterprise and Computational Viewpoints

    Get PDF
    Multiviewpoint approaches allow stakeholders to design a system from stakeholder-specific viewpoints. By this, a separation of concerns is achieved, which makes designs more manageable. However, to construct a consistent multiviewpoint design, the relations between viewpoints must be defined precisely, so that the consistency of designs from these viewpoints can be verified. The goal of this paper is to make the consistency rules between (a slightly adapted version of) the RM-ODP enterprise and computational viewpoints more precise and to make checking the consistency between these viewpoints practically applicable. To achieve this goal, we apply a generic framework for relating viewpoints that includes reusable consistency rules. We implemented the consistency rules in a tool to show their applicability

    Using SPIN to Analyse the Tree Identification Phase of the IEEE 1394 High-Performance Serial Bus(FireWire)Protocol

    Get PDF
    We describe how the tree identification phase of the IEEE 1394 high-performance serial bus (FireWire) protocol is modelled in Promela and verified using SPIN. The verification of arbitrary system configurations is discussed
    • ā€¦
    corecore