
 
 
 
 
 
 
Calder, M. and Miller, A. (2003) Using SPIN to Analyse the Tree 
Identification Phase of the IEEE 1394 High-Performance Serial Bus 
(FireWire) Protocol. Formal Aspects of Computing 14(3):pp. 247-266.
 
 
 
http://eprints.gla.ac.uk/2876/ 
 
 
 
 

Glasgow ePrints Service 
http://eprints.gla.ac.uk 



Under consideration for publication in Formal Aspects of Computing

Using SPIN to Analyse the Tree
Identi�cation phase of the IEEE 1394
High Performance Serial Bus
(FireWire) Protocol
M. Calder and A. Miller

Department of Computing Science

University of Glasgow

Glasgow, Scotland.

Abstract. We describe how the Tree Identi�cation phase of the IEEE 1394 High Performance Serial Bus
(FireWire) protocol is modelled in Promela and veri�ed using SPIN. The veri�cation of arbitrary system
con�gurations is discussed.

Keywords: model checking, SPIN, formal veri�cation

1. Introduction

Model checking enables us to analyse communication protocols by exhaustive inspection of reachable com-
posite system states in a �nite state machine representation of the system. The SPIN model checker
[Hol93] has been widely used in numerous veri�cation case-studies and industrial software-controlled systems
[LS97, CGM+97, CM01b, Hol99, HS99, HP00, MS00]. In this paper we use SPIN to analyse the Tree Identi-
�cation phase of the FireWire protocol. Model checking is by no means the \push-button" technology that
it is rumoured to be. It is crucial that the abstraction made of the system is both true to the original system
and high-level enough to allow exhaustive exploration of the entire state-space. It is possible, for example,
through ineÆcient abstraction, to completely fail to prove any properties of a system due to state-space
explosion. In this paper the authors apply their previous experience with the SPIN model checker (see for
example [CM01b]) to model and analyse the FireWire protocol. By applying the optimisation and model-
generation techniques described in [CM01b], we are able to create a model with a tractable state-space and

Correspondence and o�print requests to: Alice Miller, Department of Computing Science, University of Glasgow. e-mail: al-
ice@dcs.gla.ac.uk



2 M. Calder and A. Miller

0

1

2

3

4

5

0

1

2

3

4

5

(a) acyclic configuration (b) cyclic configuration

Fig. 1. Network con�gurations

perform analysis upon it { so allowing for a fair comparison with the other veri�cation methods discussed
within this volume.

In general, model checking can only be applied to to a particular network (following results established in
[AK86]). In some speci�c instances, when the topology is very simple (e.g. a ring or a star), model checking
can be applied to parameterised systems [EN95, EN98, GS92, ID96]. The main goal of this paper is to
demonstrate how, for a �xed number of nodes, for any con�guration, SPIN can be used to verify certain
properties{ in which case a di�erent model is required for each network con�guration. As one of our primary
interests is that of the generalisation of model checking results to con�gurations of any size, we have also
considered a slightly di�erent model to that of the IEEE model [IEE95, IEE00]. In this model the protocol
is slightly modi�ed: each incoming request is acknowledged before processing to the next, whereas in the
IEEE model, all incoming requests are acknowledged collectively. The reason for our decision to also analyse
this modi�ed protocol is that in this model, a con�guration of N nodes will systematically degenerate to a
con�guration of N � 1 nodes (unlike the IEEE model). This degenerative behaviour is interesting in itself,
and naturally leads to an \inductive" approach to reasoning about con�gurations on any number of nodes.
We discuss how, for this model, for any system of N nodes with a star topology, certain properties hold.

In this paper we create models of all connected networks of six nodes where messages are passed in
accordance with (i) the Tree Identify protocol (TIP) and (ii) the modi�ed Tree Identify protocol (MTIP).
Six nodes are more than suÆcient to explore all possible behaviours of the protocol and a small enough
number to ensure tractability of model checking runs. Examples of the type of system that are considered
are the acyclic and cyclic con�gurations on 6 nodes given in �gure 1.
Analysis takes the form of proving, for a network on 6 nodes, a set of properties including:

� If the network is cyclic an error will be reported,

and if the network is acyclic:

� a unique leader is always elected

� any node can be elected as leader.

Note that we have not considered the \force root" scenario (in which a device { for which a force root

ag is set to true { may in
uence its own chances of becoming root by waiting for some time before sending
a parent request, even if it is already possible to proceed).

A further goal is to explore the possibility of extending model checking results that apply to all con�g-
urations on N nodes, to con�gurations on more than N nodes. In this paper we give an initial solution to
this problem for a certain subclass of con�gurations (star topologies) of the MTIP.

In section 2 we give a brief overview of Promela and SPIN. The general approach to model checking and
an abstract representation of the node process are discussed in section 3. In sections 4 and 5 we describe
our models relating to the TIP and the MTIP and the properties that we wish to prove. Techniques used
to optimise the Promela code and to generate Promela models automatically are described in section 6. In
section 7 we give the results of veri�cation for both of our models. In section 8 we give an abstraction which
enables us to extend results to �xed con�gurations of N processes, for large N , when there is a star topology
(for the MTIP). A method for converting an abstracted (MTIP) model for (star topologies of) �xed N to
a model that describes the behaviour of systems with a star topology of any size N is also described. In
section 9 we compare our approach to other approaches outlined in the workshop proceedings [MRS01] and
in section 10 we evaluate our solution by considering the \points to address" posed in said proceedings.
Finally, in section 11 we describe our conclusions and further work.



Using SPIN to Analyse the FireWire protocol 3

2. Promela and SPIN

Here we give an overview of Promela and SPIN. More details of the search algorithms and parameters used
by SPIN are contained in [CM01a].

Promela, Process meta language [Hol93, Hol97a], is a high-level, state-based, language for modelling
communicating, concurrent processes. It is an imperative, C-like language with additional constructs for
non-determinism, asynchronous and synchronous communication, dynamic process creation, and mobile
connections, i.e. communication channels can be passed along other communication channels. Thus, the
language is very powerful and expressive. In section 2.1 we give some of the features of Promela that are
necessary for the Promela description of our system, as described in section 4.

SPIN is a bespoke model checker for Promela and provides several reasoning mechanisms: assertion
checking, acceptance/progress states and cycle detection and satisfaction of linear temporal logic (LTL)
formulae. In sections 2.2 and 2.3 we brie
y describe SPIN's search algorithm and temporal reasoning in
SPIN. Some of the additional parameters used in SPIN veri�cation that we refer to later in this paper are
described in section 2.4.

2.1. Promela

As well as the usual integer data types (bit, bool, short, int, unsigned) and arrays, Promela allows the use
of an additional datatype, mtype. Such a data type can only be used following an mytpe declaration which
is used to de�ne symbolic names of numeric constants. For any veri�cation model there is only one such
declaration allowed. The de�nition

mtype = {be_my_parent,be_my_child,ack}

is functionally equivalent to the sequence of macro de�nitions:

#define be_my_parent 1
#define be_my_child 2
#define ack 3

If an mtype declaration is present, the keyword mtype can be used as a data type, to introduce variables
that obtain their values from the range that was declared. This data type can also be used inside channel
declarations (see below), for specifying the type of message �elds.

Communication between active processes takes place via channels. Channels are declared using the key-
word chan, either locally or globally and (usually) store messages in �rst-in �rst-out order. Asynchronous
communication takes place via channels of length > 0 (and synchronous communication on channels of length
0). All communication in our system is asynchronous and channels have length 1. The channel declaration

chan chanout = [1] of { mtype }

declares that the channel of name chanout can store 1 message of type mtype. We have chosen to have
channel size equal to 1 to keep our model as simple as possible.

A send statement on a bu�ered channel is by default executable in every global system state where the
target channel is non-full. The statement chanout!be my parent writes the message be my parent to chanout
provided the channel is not full.

If chanout is declared as above, a receive statement chanout?m message, where m message is an mtype
variable, is executable in every global system state where chanout is non-empty and the (oldest) message is
removed from the channel.

An assert statement is similar to the prede�ned condition statement skip in the sense that it is always
executable and has no other e�ect on the state of the system than to change the control-state of the process
that executes it. However, most importantly it can trap violations of simple safety properties (via \assertion
violations") during veri�cation and simulation runs with SPIN.

Process behaviour is declared via a proctype construct and then instantiated via a run operator during
the initialisation process (init) or from within another process. Alternatively a process may be initiated with
the pre�x active that can be used at the time of declaration (we do not use this method here). Declarations
for local variables and message channels appear within the proctype declaration. Proctype declarations may
be parameterised. For example, the following declares a proctype node with one formal parameter sel�d.

proctype node(byte selfid)
{ . . .}



4 M. Calder and A. Miller

Any instantiation of a node process (via a run operator) will involve assigning a value to the parameter, for
example: run node(0).

Sometimes (for the purposes of veri�cation) we need to keep track of the pid (process identi�er) of a
process. In this case we associate a variable with the corresponding run statement. For example, if it is
necessary to access the pid of a node process with parameter 0, but not of a node process with parameter
1, this may be achieved via the corresponding run operations:

p0=run node(0);
run node(1)

An inline de�nition plays the same role as that of a function or procedure in an imperative language, such
as C. Any such de�nition must be global and appear before its �rst use. The body of an inline is copied into
the body of a proctype at each point of invocation (or call). An inline call can appear wherever a statement
can appear. For example, the converter inline de�nition below takes a pair of process ids (corresponding to
the respective process sel�d parameters, and not to be confused with the pids of the processes, as described
above) and converts them to a pair of channels, chanin and chanout. Notice that the inline statement is
speci�c to the particular con�guration of the system, and is generated automatically per con�guration (see
section 6). This converter statement corresponds to the cyclic con�guration of �gure 1(b).

inline converter(id1,id2,chanin,chanout)
/*takes a pair of ids and finds the corresponding in and out channels */
/*need to change per configuration*/
{if
::(id1==0)->assert(id2==2);chanin=twozero;chanout=zerotwo
::(id1==1)->assert(id2==2);chanin=twoone;chanout=onetwo
::(id1==2)->assert((id2==0)||(id2==1)||(id2==3)||(id2==4));

if
::(id2==0)->chanin=zerotwo;chanout=twozero
::(id2==1)->chanin=onetwo;chanout=twoone
::(id2==3)->chanin=threetwo;chanout=twothree
::(id2==4)->chanin=fourtwo;chanout=twofour
fi

::(id1==3)->assert((id2==2)||(id2==5));
if
::(id2==2)->chanin=twothree;chanout=threetwo
::(id2==5)->chanin=fivethree;chanout=threefive
fi

::(id1==4)->assert((id2==2)||(id2==5));
if
::(id2==2)->chanin=twofour;chanout=fourtwo
::(id2==5)->chanin=fivefour;chanout=fourfive
fi

::(id1==5)->assert((id2==3)||(id2==4));
if
::(id2==3)->chanin=threefive;chanout=fivethree
::(id2==4)->chanin=fourfive;chanout=fivefour
fi

fi}

Finally, a process at an unexecutable statement or false guard (essentially the same in Promela) is blocked;
thus Promela implements a form of busy waiting.

2.2. On-the-
y Depth-�rst Search

In order to perform veri�cation on a model, SPIN constructs an automaton representing the global behaviour
of the concurrent system. The automaton has an associated initial state f0, a �nite set of states S and a �nite
set of transitions T such that T is a set of pairs (s1; s2), where s1; s2 2 S. Each transition of the automaton
corresponds to the execution of a speci�c atomic statement within one of the (concurrent) processes. The
automaton can be easily represented by a graph (a state-graph) in which the nodes correspond to the states
in S and directed edges correspond to the transitions in T .

A basic depth-�rst search (to check for deadlock, assertion violations etc.) explores the state-graph
starting from the initial state f0, successively progressing along the edges of the graph and back-tracking
when a previously visited state is reached, until an error is found { or until the entire search space has been
explored.



Using SPIN to Analyse the FireWire protocol 5

2.3. Temporal Reasoning in SPIN

As well as enabling a search of the state-space to check for deadlock, assertion violations etc., SPIN allows the
checking of the satisfaction of an LTL formula over all execution paths. The mechanism for doing this is via
never claims { processes which describe undesirable behaviour, and B�uchi automata { automata that accept
a system execution if and only if that execution forces it to pass through one or more of its accepting states
in�nitely often. Full details of never claims and B�uchi automata are given in [Hol97a, GPVW95, MP90].
Here, we give a brief overview of the mechanisms involved and a description of how they have been employed.

Standard LTL formulae are constructed from a set of atomic propositions, the standard Boolean operators
(:, ^ and _), and the temporal operators [] (always), hi (eventually), Æ (next) and U ((strong) until). (Note
that the use of partial order reduction (see below) precludes the use of the next operator during SPIN
veri�cation.) Propositions include process control such as p@label meaning process p is at label label.

When SPIN is used to verify an LTL property one must �rst use SPIN's LTL converter which translates
LTL formulae into Promela syntax. This translation is a never-claim and encodes the B�uchi acceptance
condition. During a SPIN veri�cation, this never-claim is converted to a B�uchi automaton. Another B�uchi
automaton, consisting of the the synchronous product of the LTS corresponding to the concurrent system
(model) and the B�uchi automaton corresponding to the never-claim, is constructed. Thus a di�erent B�uchi
automaton is constructed for each never-claim. A depth-�rst search explores the state-graph associated with
this (new) B�uchi automaton.

If the original LTL formula f does not hold, the depth-�rst search will \catch" at least one execution
sequence for which :f is true. If f has the form []p, (that is f is a safety property), this sequence will contain
an acceptance state at which :p is true. In this case the never-claim is said to complete. Alternatively, If f
has the form hip, (that is f is a liveness property), the sequence will contain a cycle which can be repeated
in�nitely often, throughout which :p is true. In this case the never-claim is said to contain an acceptance
cycle. In either case the never claim is said to be matched.

When using SPIN's LTL converter it is possible to check whether a given property holds for All Executions
or for No Executions. A universal quanti�er is implicit in the beginning of all LTL formulas and so, to check
an LTL property it is natural, therefore, to choose the All Executions option. It is not possible to check
that a given property (p say) holds for some state along some execution path using LTL alone. This type of
property is veri�ed using SPIN by showing that \hip holds for No Executions" is violated (or equivalently
\:hip holds for All Executions" is violated).

2.4. Parameters and Further Options used in SPIN veri�cation

When performing veri�cation with SPIN, there are three parameters that need to be set. These are Physical
Memory Available, Estimated State Space size and Maximum Search Depth. The meaning of the �rst of
these is clear, and the second controls the size of the state-storage hash table. The Maximum Search Depth
parameter (MSD) determines the size of the search-stack, where the states in the current search are stored.
If an exhaustive search is required, this parameter must be set to a value that is greater than any path
explored in the search. However if a search is performed to �nd a single counter-example (see for example
property 3 in section 5), this parameter can be set to the smallest value required to trap an error path. As
the search-stack is responsible for a large proportion of the total memory requirement of a veri�cation the
veri�er must ensure that the value of MSD is kept to as small a value as possible. In addition, if comparisons
are to be made with other model checkers, for example, the value of MSD should be taken into account.
Note that in section 7 we give the memory requirements for state storage only.

Partial order reduction (POR) [Pel96b, Pel96a] is a technique that is used to diminish the time and mem-
ory requirements when model checking concurrent processes. It is based on the observation that execution
sequences (or \traces") of a concurrent program can be divided into equivalence classes whose members
are indistinguishable with respect to a property that is to be checked. By ensuring that at least one trace
from each equivalence class is executed during a reduced search, the use of POR ensures that redundant
work is not performed and that the truth (or otherwise) of a property is preserved. When performing SPIN
veri�cation, POR is applied by default.

Compression [Hol97b] is a method by which each individual state is encoded in a more eÆcient way. The
total memory required for state storage is thus reduced. We apply compression for the veri�cation of all of
our properties.



6 M. Calder and A. Miller

...

...

State−space

implement by

communicating finite state automata:

develop
together

   node processes

start: ...        ...

        ...
  ...

parent_request: 

[](<>elected<N)
validate

denote

Properties Promela

optimise

Fig. 2. Overall Approach

Weak Fairness [God96, Pel96a, Bos99] ensures that any process that has a transition that remains enabled
will eventually execute it. The algorithm is based on a variant of Choeka's 
ag algorithm [Cho74] and involves
the construction of an extended state-space consisting of N copies of the original state-space (where N is
the number of processes). Clearly the additional memory and time requirements of such an algorithm are
great and therefore its use should be avoided where possible (see section 5).

Other state-space reduction options available with SPIN include Minimised Automaton Encoding [VW86,
Hol97b, VB96, HP99] and Supertrace (or Bitstate hashing) [Hol90, Hol98]. We do not discuss these methods
here.

3. The Approach and Node process

In this section we give an overview of the approach taken to analyse the Tree identify protocol (TIP) and a
modi�ed version of the TIP (MTIP), using model checking, and provide a (simpli�ed) abstract automaton
describing node behaviour in each case.

3.1. Approach

The approach taken is illustrated in �gure 2. Each individual stage is described in detail in subsequent
sections. Our starting point is the automata and properties (the top and left hand side of �gure 2). Neither
need to be complete speci�cations; this is a virtue of the approach as it allows us to exclude irrelevant
implementation details from our model. The Promela description on the right hand side of �gure 2 is
regarded as the implementation; a crucial step is therefore validation of the implementation. This is done
by checking satisfaction of the properties, using SPIN. In order to avoid state-space explosion, the Promela
code must be optimised.

3.2. The Node Process

Figure 3 gives a diagrammatic representation of the automaton for each node process (note the full imple-
mentation is somewhat more complicated) in the TIP case. States to the left of the start state represent



Using SPIN to Analyse the FireWire protocol 7

loserwinner

request

response

contention

win toss lose toss

j_to_i?be_my_parent

become_ child

j_to_i?be_my_child

i_to_j!be_my_parent

finish

found_ partner1

i_to_j!be_my_parent

child_handshake

wait_ for
request

|adj(i)|>1;

be_my_parent

|adj(i)|==1

child[k]_to_i?be_my_parent

find partner j
child[0]=j; n=m=1

j_to_i?be_my_parent;
for 0<=k<=m−1

i_to_j!be_my_parent

i_to_child[k]!be_my_child
for 0<=k<=m−1

elected=selfid

n=|adj(i)|

for 0<=k<=n−1;

for 0<=k<=m−1;

i_to_child[k]!be_my_child

m=n

m==n;

m==n;

m=n−1

m==n−1;

wait_for_acks

become_ parent

start

j_to_i?be_my_parent
child[0]=j; n=m=1

i_to_j!ack

j=remaining_partner
m=n−1;
for 0<=k<=n−2;

child[k]_to_i?be_my_parent

child[k]_to_i?ack

Fig. 3. Finite state automaton representing node i behaviour (TIP)

leaf behaviour and those to the right represent non-leaf behaviour. Events label transitions. Events that
represent actions of the process are given in plain font, whereas conditions or guards are represented in
italics. Events/guards are separated by semicolons. Note that a read (write) event can be seen as both an
action and a condition (it is only executable if the associated channel is full (empty)). Events of the form
channel?message (or channel!message) can be translated as \if the channel is full (empty), read message
from (write message to) the channel { otherwise take another branch". An unitalicised event of the form
channel?message (or channel!message) on the other hand can be translated as \when the channel is full
(empty), read message from (write message to) the channel". In the automaton the variable i refers to the
current node, i.e. sel�d. The variable j is a (free) variable which ranges over possible adjacent nodes. The
guard

child[k] to i?be my parent for 0 � k � n� 1

can be transtated as: \if be my parent requests are received from n neighbouring nodes, then assign these
nodes child[0]; child[1]; : : : ; child[n� 1] and remove messages".

Similarly, �gure 4 gives a diagrammatic representation of the automaton for each node process in the
MTIP case. States to the left of the start state represent child behaviour and those to the right represent parent
behaviour. Note that, in this model each incoming request is acknowledged before the next is processed, unlike
the TIP model. Also in this case non-leaves have their children assigned in an incremental way, returning to
the start state after each assignation. Every time a child is assigned to process i, the value of jchildren(i)j
increases by 1. Eventually the left-hand branch from start may be taken. Also, in this version, once a child
has been assigned to a node, the node is no longer considered to be connected to the child. Thus it is easier
in this case to �nd remaining unassigned nodes: simply by checking connections. Otherwise, the two models
are very similar.



8 M. Calder and A. Miller

request

loserwinner j_to_i?be_my_parent

be_my_parent

2

start

response

contention

finish

i_to_j!be_my_parent

win toss lose toss

found_ partner

j_to_i?be_my_parent

found_ partner1
i_to_j!be_my_parent

become_ child

j_to_i?be_my_child

elected=selfid
|adj(i)|−|child(i)|==0;

wait_ for
request

|adj(i)|−|child(i)|>1

choose j in unass(adj(i))

choose 
j in unass(adj(i))

empty(j_to_i)

become_ parent

i_to_j!be_my_child

|adj(i)|−|child(i)|==1

j_to_i?be_my_parent

i_to_j!ack

wait_for_ack

child(i):=child(i)+1;
parent(j):=i

j_to_i?ack;

Fig. 4. Finite state automaton representing node i behaviour (MTIP)

To implement communication we associate a pair of channels for each pair of processes. The channels
associated with nodeA and nodeB say are nodeA to nodeB and nodeB to nodeA. Each channel has capacity
for at most one message of type mtype.

In both cases, the states found partner1 and found partner2 are states at which a partner has been
selected. The numeric part of these state labels is simply to di�erentiate between them.

Note that, if a node forms part of a loop in a cyclic con�guration (node 5 in �gure 1(b) say), then (in the
TIP model), upon reaching the wait for request state, no be my parent will ever be received. Therefore the
node will remain at the wait for request state inde�nitely. In the MTIP model, the node will cycle between
the wait for request state and the found partner2 states inde�nitely. This is an important observation, and
provides a means for loop detection (i.e. a cycle within the node con�guration), which is discussed in section
5.

In both models we have forced root contention to be resolved (one of the processes must lose and the
other win). On returning to the response state the winner will not be able to revisit the contention state
because no relevant be my parent message will be received. The reason for modelling contention in this way
is that in model checking all feasible paths are explored. Any in�nite path (cycle in the state-graph) will be
reported as an error. If contention was allowed to remain unresolved such an in�nite path would exist and
an error would be reported, preventing any useful results being obtained. A di�erent solution would have
been to restrict the number of times that a given contention could remain unresolved to 10 say. However,
this would only serve to dramatically increase the size of the state-space without being any more realistic.

4. The Node Process in Promela

Unless otherwise speci�ed, we discuss here the Promela code associated with the TIP model (see �gure 3).
The code associated with the MTIP model will, of course, be slightly di�erent. Each node process is an
instantiation of the (parameterised) proctype node declared thus:

proctype node (byte selfid)



Using SPIN to Analyse the FireWire protocol 9

As an example of the Promela code, we give here the code associated with the contention state (this is the
same in both the TIP and MTIP models). Originally we used a direct analogy of the \timeout" approach to
contention resolution via the non-deterministic allocation of timeout constants to each process. However, this
soon proved to be impractical. Although in a real-life situation one can see that contention would eventually
be resolved (the probability of contention remaining unresolved for an in�nite length of time is zero), there is
no explicit way of handling probability within Promela. Therefore, to avoid in�nitely long paths along which
contention is unresolved, we abstract away from this approach and force one of the contending processes to
(non-deterministically) have its \be my parent" request accepted.

Note thatN denotes the number of processes and self in and self out denote the channels partner to self
and self to partner respectively. Also note the use of assert statements within the code (see section 2). These
are used particularly at points when entering a new state, and when reading and writing to communication
channels. They are invaluable for debugging and form an essential part of the veri�cation process.

contention:
atomic{
assert((message==nullmessage)&&(counter==N)&&(partnerid!=N));
if
::selfid<partnerid->counter=selfid
::else->counter=partnerid
fi;
if
::(toss[counter]==0)->toss[counter]++; counter=N;goto winner/*win toss*/
::else->assert(toss[counter]==1);toss[counter]=0;counter=N;goto loser /*lose toss*/
fi};

Code associated with each individual state of �gure 3 (start, be my parent request, found partner1 etc.)
is contained within an atomic statement. This is to ensure that these states correspond, as far as possible,
to the actual visited states of the state-graph (see section 2.2).

When a new con�guration is to be modelled the set of relevant channels must be declared. In addition
the adj and connect:to arrays must be reinitialised. The former records how many neighbours each node has
and the latter records the particular connections that exist (or are still undecided in the MTIP case). Thus
if node 0 has 1 and 2 as its neighbours adj[0] is set to 2 and connect[0]:to[1] and connect[0]:to[2] are both
set to 1. These settings are made automatically (see section 6).

5. Analysis

SPIN enables us to verify a system via assertion checking, acceptance/progress states and cycle detection and
satisfaction of linear temporal logic (LTL) formulae. The properties that we aim to verify (with associated
LTL) are given below. We note that

1. In order to show that a particular con�guration is acyclic we show that no process can be waiting for a
\be my parent" request for an in�nitely long time. To do this for the TIP model we show that no process
remains at the wait for request state for an in�nitely long time. For the MTIP model we show that no
process cycles between the states wait for request and found partner2 for an in�nitely long time.

2. Properties 2,3 and 4 assume that the network is acyclic. They are the same for both the TIP and MTIP
models.

3. Properties 1,3 and 4 relate to a particular process i, where 0 � i < N , whereN is the number of processes.
A veri�cation must be performed for each value of i.

Property 1 Process i will not wait for a \be my parent" request for an in�nitely long time.
That is [](hi:p) where p is (node[proci]@wait for request) (TIP model) or ((node[proci]@wait for request)_
(node[proci]@found partner2)) (MTIP model).

Property 2 A leader will always be elected.
That is (hiq) where q is :(elected == N).

Property 3 It is possible for process i to be elected leader.
That is :hir is violated, where r is (elected == i).

Property 4 Only one process will be elected leader.



10 M. Calder and A. Miller

That is [](p! ([]p)) where p is (elected == i).

6. Optimisation and the Use of Scripts

Our recent experience using SPIN [CM01b] enables us to optimise the code e�ectively to reduce the search-
space. This involves resetting all variables to their initial values (reinitialisation) after use, and removing all
references to variables that are not required for the current veri�cation (re�nement).

Reinitialisation is a similar process to that involved in SPIN's inbuilt dead-variable elimination optimiza-
tion. However, as discussed in [CM01b], this default optimization sometimes results in an increase in the
size of the state-space. Our manual reinitialisation avoids this problem.

As an example of re�nement, the finished array used in property 2(b) (see section 7 below) can be
removed from the model during the veri�cation of all other properties. The removal of the array results in a
reduction of the size of the state-vector (for example, from 208 bytes to 200 during the veri�cation of property
1) and a corresponding reduction in memory required for state-storage. The slicing algorithm available with
the new release of SPIN [DH99, MT00] appears to re�ne Promela code in a similar way. As we generate our
models automatically, we prefer to create code that is already re�ned, rather than use the slicing algorithm
on unre�ned code. However the slicing algorithm is invaluable for alerting the user to re�nements that may
have been missed previously. (For example, the slicing algorithm warned us that the leader variable is never
used during the veri�cation of property 1, and so all references to it may be removed for this veri�cation.)

It would be extremely time-consuming (and error-prone) to rewrite our model for each con�guration of
processes and each property to be veri�ed. Therefore we make extensive use of Perl scripts to generate our
models automatically from a template �le together with a data �le containing an array representing the
process con�guration. In addition, a Perl script was used to generate model checking runs for all 6 feasible
acyclic con�gurations.

When performing investigations on a system of N nodes, when N is large (see section 8), the use of such
scripts was essential. The generation of the properties and connection information alone required automation.

The results obtained in the following section all apply to optimised code. An example of a MTIP model
generated for 6 node processes, with the con�guration of �gure 1(a), to verify property 2 (see section 5) is
given in the appendix. (The equivalent TIP model can be found on our website at [CM].)

7. Analysis results

There are many feasible con�gurations on 6 nodes, our aim is to check the properties for both the TIP and
MTIP models in each case. The con�gurations correspond to connected graphs which can be constructed
by the addition of one additional vertex to a tree on 5 vertices (in the spirit of FireWire, in which nodes
are added to, or removed from, an acyclic network of nodes). There are 93 such con�gurations (there are
3 trees on 5 vertices, and 31 possible sets of neighbours for the additional vertex in each case), but we
do not know at this stage how many non-isomorphic con�gurations there are. We do know, however, that
there are only 6 non-isomorphic acyclic examples, and our properties can be veri�ed for each of these. To
check that property 1 is suÆcient to check for loops (in the network), we have limited ourselves to the cyclic
con�guration of �gure 1(b). In all cases the appropriate model is generated automatically (see section 6).
The physical memory available and estimated state space size are set to 256 and (the default value of) 500
respectively and POR and compression are used throughout. In tables 1 and 2 we give the veri�cation results
obtained for each property (denoted by \prop") for the TIP and MTIP models respectively. In each case we
include the con�guration under consideration (�gure 1 ((a) or (b))), and the value of a representative node
(i) if appropriate. The use of weak-fairness (or otherwise) is denoted by a

p
or � in column 2 (see section 2.4

for details). Time and memory requirements of veri�cation clearly vary for di�erent con�gurations. In each
case we include the value to which the maximum search depth (MSD) is set (see section 2.4) and the length
of the longest path reached during veri�cation (depth). (Notice that in the cases where an error is reported,
the depth reached depends on the value to which MSD has been set.) The value given in the `States' column
indicates the number of states stored during the search and `Memory' denotes the memory (in Mb) required
for state storage. A

p
in the `Result' column indicates that the associated property is satis�ed. This means

that no error is reported during the veri�cation of properties 1,2 or 4, or that an error (counter-example) is
reported during the veri�cation of property 3. Note that in the veri�cation of property 1, a node with more



Using SPIN to Analyse the FireWire protocol 11

than one neighbour (a non-leaf node) is chosen. This is because otherwise the property is trivially true (as
p is always false).

For all veri�cation runs we used a PC with a 1500 MHz Pentium 4 processor and 500Mb of main memory
running the Linux operating system (kernel 2.4.17).

Property 1: This property is violated if there exists an in�nite path along which p remains true. This is
equivalent to there being a path in which a cycle exists, throughout which p is true. An important point here
is that when a property of this type (a liveness property) is checked in SPIN, it is necessary to apply weak
fairness. The weak fairness condition ensures that any process that has a transition that remains enabled
will eventually execute it (see section 2.4). If, for example, property 1 with i = 2 is tested against the
con�guration of �gure 1(a) with no weak fairness, an error will be reported by SPIN (via an acceptance
cycle) and a trace in which process 2 reaches the wait for request (TIP) or found partner2 (MTIP) label
and simply fails to progress to child handshake (TIP) or become parent (MTIP) (despite process 2 having
an enabled transition due to a full channel) will be provided as a counter-example. This sort of scenario is
of course of no interest. However, with weak fairness selected, process 2 will be forced to take its enabled
transition and no error is reported. When property 1 is tested against the cyclic con�guration of �gure 1(b)
(with weak fairness selected and i = 2), an error is reported because process 2 is unable to make a transition
from wait for request (or found partner2 in the MTIP case) to a state other than wait for request.

Property 2: With the use of weak fairness this property is veri�ed for all values of i, for all acyclic
con�gurations. Weak fairness can be avoided by considering a slightly weaker property, in which we limit the
search to traces for which each process does eventually arrive at the �nish state. This avoids the situation
in which processes simply fail to progress. Originally we de�ned this property as:

Property 2(a) A leader will always be elected before all processes reach the �nish state. That is (qPt) where q
is :(elected == N) and t is ((node[proc0]@finish)^(node[proc1]@finish)^: : :^(node[procN�1]@finish)).
Here we use the precedes operator P where fPg = :(:fUg).

This property was veri�ed successfully for all acyclic con�gurations on 6 nodes. However, we have assumed
that once a process reaches the �nish state it remains there inde�nitely. But, this is not the case, after a
process has reached the �nish state it can terminate (and so no longer have a state associated with it).
Therefore, the possible scenario in which no leader is elected and all processes reach the �nish state { but
not at the same time { could be missed. Thus it is necessary to introduce a new array (finished) to record
a process passing through the �nish state. Once process i reaches the �nish state the corresponding element
in the finished array is set to 1. Hence property 2(a) can be re�ned thus:

Property 2(b)
(qPt) where q is :(elected == N) and t is ((finished[0] == 1) ^ (finished[1] == 1) ^ : : : ^ (finished[N �
1] == 1)).

This property was easy to verify and gave us additional con�dence that the system (model) behaved as
expected.

Property 3: To prove property 3 it was only necessary to show that neghir is not true. That is, it is only
necessary to �nd a single counter-example to show that Property 3 holds. In all cases a counter-example
is found very quickly. In table 2 MSD has been set to 10000 (in order to maintain consistency). However
a smaller value (greater than 755) could have been chosen which would have resulted in a smaller memory
requirement.

Property 4: Although a search of the entire search space was required, no weak fairness was necessary
(failure to progress did not prevent the property from being satis�ed), and property 4 was easily veri�ed.

7.1. Comparison of results for the TIP and MTIP models

Both models satisfy property 1 for all acyclic con�gurations and all of properties 2, 2(b), 3 and 4. In addition
they both incur an error (acceptance cycle) during the veri�cation of property 1 for acyclic con�gurations.
Comparing tables 1 and 2 we see that the values for the MTIP are larger than the corresponding values for
the TIP model, but { apart from the veri�cation of property 1 with con�guration (b){ of the same order of
magnitude. The reason that the values (for depth, Mem and Time) are larger for the MTIP model, is that



12 M. Calder and A. Miller

Table 1. Results of Veri�cation of the TIP model

Prop WF? Con�gi MSD States Depth Mem Time Result
(�104) (�105) (Mb) (s)

1
p

b,2 13 0:2 125646 1:0 2 �p
a, 2 2 6:5 17807 18:8 195

p

2
p

a, - 2 8:9 16807 25:9 424
p

2(b) � a, - 2 4:4 15768 12:6 26
p

3 � a, 0 1 0:001 755 2:3 0:1
p

4 � a, 0 2 4:5 15768 16:7 27
p

Table 2. Results of Veri�cation of the MTIP model

Prop WF? Con�gi MSD States Depth Mem Time Result
(�104) (�105) (Mb) (s)

1
p

b,2 44 3:2 436781 10:2 248 �p
a, 2 4 11:8 38255 33:7 381

p

2
p

a, - 4 13:5 39170 38:3 629
p

2(b) � a, - 4 6:8 38144 17:1 40
p

3 � a, 0 1 0:002 763 2:0 0:1
p

4 � a, 0 4 6:8 38144 16:7 40
p

in this case each non-leaf process has to return to the start state every time that a child has been assigned
to it, unlike the TIP model, in which n� 1 children are assigned simultaniously. However, the similarity of
the values for the di�erent models indicates that the behaviour is otherwise essentially the same.

During the veri�cation of property 1 for con�guration (b) the values obtained vary more markedly. An
acceptance cycle is found far more quickly in the TIP model. This is because, in the TIP model, leaf nodes
0 and 1 will send be my parent requests to node 2 and then become blocked in the response state, and
the remaining nodes will only progress as far as the wait for request state before all becoming blocked. In
the MTIP model however, the be my parent requests will be acknowledged (allowing the leaf processes to
terminate) and node 2 will complete 2 full cycles (returning to the start state in each case) before becoming
blocked at the wait for request state.

8. Analysis of systems with a large number of processes

Although model checking is useful, to provide a general picture of a system and for �nding errors, we are
limited to being able to verify properties for a speci�c system and for a speci�c con�guration, for a small
number of processes. The Tree Identi�cation stage of the FireWire protocol is a good example. We can
show, using Promela and Spin, that for all networks N � 6 nodes a model representing the behaviour of
this network, where each individual process behaviour is determined by the tree-identi�er protocol, satis�es
certain properties. When the number of nodes is increased the memory and time requirements for veri�cation
increase, until eventually veri�cation becomes intractable. Ideally, we would like to show that, from the
veri�cation of certain properties for all (acyclic) con�gurations of N = 6 processes, say, it is possible to infer
the properties for all (acyclic) con�gurations of N processes.

This is an example of the parameterised Model Checking problem which is, in general, undecidable
[AK86]. The veri�cation of parameterized networks is therefore often accomplished via theorem proving
[KMS00, OSR92, RR01], or by synthesising network invariants [CGJ95, KM89, WL89, BCG89]. Both of
these approaches require a large degree of ingenuity.

In some cases it is possible to identify subclasses of parameterised systems for which veri�cation is



Using SPIN to Analyse the FireWire protocol 13

nodeid_to_i?be_my_parent nodeid_to_i?be_my_child

win toss lose toss

i_to_nodeid!be_my_parent
response

wait_for_ack

i_to_nodeid!be_my_child

start

contention become_ child

i_to_nodeid!ack

finish

loserwinner

i_to_nodeid!be_my_parent

become_ parent
nodeid_to_i?be_my_parent

nodeid_to_i?be_my_parent

nodeid_to_i?ack;

child(i):=child(i)+1;
parent(nodeid):=i;
elected=selfid

|adj(i)|−|child(i)|==0;
elected=selfid

Fig. 5. Finite state automaton representing leaf i behaviour

decidable. Examples of the latter mainly consist of systems of N identical processes communicating within
a ring topology [EN95, GS92] or systems consisting of a family of N identical user processes together with
a control process, communicating within a star topology [KMOS94, GS92, ID99]. A more general approach
[EK00] considers a general parameterised system consisting of several di�erent classes of processes.

One of the limitations of both the network invariant approach and the subclass approach is that it can only
be applied to systems in which each component (contained in the set of size N) is completely independent of
the overall structure of the system: adding an extra process (to this set) does not change the semantics of the
existing components. A generalisation of data independence is used to verify arbitrary network topologies
[CR99, CR00] by lifting results obtained for limited-branching networks to ones with arbitrary branching.

All of these methods fail when applied to asynchronously communicating processes like ours, where
processes communicate asynchronously via shared variables. In addition, the type of property that these
approaches are used to verify tend to be safety properties. We would like to also prove liveness properties
(eg. property 2).

As the MTIP progresses, processes terminate in the sense that they no longer play any part in the
protocol. This degenerative behaviour of the protocol, means that the approaches described above can not be
directly applied, to prove properties of a system of N nodes for any N . However, this aspect of the behaviour
of the protocol suggests that an alternative approach to induction, exploiting the fact that once a process has
terminated, the system will degenerate to a system of N nodes. This would imply that (certain) properties
that hold for all systems of N nodes will apply to systems of N + 1 nodes. Note that this degenerative
behaviour does not exhibit so apparently in the TIP as groups of nodes are assigned (essentially) at the
same time. (Indeed, this is why we chose to consider the MTIP in the �rst place.)

In this section we �rst describe how abstraction can be used to allow us to prove the properties given in
section 5 for the MTIP for star topologies for very large (ie. over 100) N . We then show how, with minor
modi�cation and under a degeneration assumption, we can prove our properties for all star-topologies, i.e.
for any N .

8.1. The MTIP for a star topology for �xed N

The nodes in a star topology consist of N�1 leaf processes together with one non-leaf process. The behaviour
of the non-leaf process is given in �gure 4. The behaviour of the leaf processes is more restricted, and although
this behaviour is contained within �gure 4, it can be described more succinctly by the reduced automaton
of �gure 5. Note that nodeid is the id of the non-leaf process.

For a star topology (with N � 1 leaves) a simpler Promela model for the MTIP can be constructed,
consisting of one node process and N � 1 leaf processes running concurrently. Veri�cation of property 2 (\a
leader will always be elected") for a star topology for 9 processes using this simpli�ed Promela model of
the MTIP was possible, but slow due to the need to apply weak-fairness (Time= 1176s, memory for state-
storage = 146Mb). However, with even as few as N = 10 nodes, even using this simpli�ed Promela model
of the MTIP, a complete search was impossible. Despite using a machine with 1:5Gb of main memory (but



14 M. Calder and A. Miller

substantially slower than the PC used for our previous experiments, see section 7) the available memory was
eventually exhausted (after 21 hours).

In order to show that a leader is always elected, we are not interested in the internal behaviour of the
processes, only the fact that one process eventually reaches the start state with no remaining unassigned
neighbours and thus becomes the leader. Similarly, to show that process i can be elected leader, the internal
behaviour of all processes other than i can be ignored.

This observation leads us to an abstraction of the MTIP for the star topology for a given N and given
property. Each abstraction consists of up to 3 processes (assuming that at most one free variable occurs in
the property).

Suppose that we wish to verify a property p with n free variables (where n � 1), for a system of N
processes with a star-topology. Let j denote the id of the process that is not a leaf. The abstracted model
consists of a node process with id = j, a process Abs representing the leaf processes with id 6= j and id 6= k
for any free variable k occurring in p, together with at most n leaf processes with id = k, for free variables k.
For example, consider a star topology on 10 processes, where 0 is the id of the non-leaf node. If we wish to
prove property 2 (which has no free variables), the abstracted model consists of a node process (with id = 0)
together with a process Abs representing the remaining 9 processes. Similarly, to prove property 3 which has
one free variable i, if i 6= 0, then 3 processes are required, but if i = 0 then only 2 processes are required (as
process i is not a leaf in this case).

The process Abs has states similar to those of the simpli�ed leaf process given in �gure 5, except that the
start and �nish states are replaced by all at start and all at �nish respectively and the other states (response,
contention, etc.) are replaced by states with the pre�x \one at " (namely one at response, one at contention
etc.). The \all at start" state is reached when all of the remaining leaf processes represented by the Abs
process that remain unassigned are at the start state. The \all at �nish" state is reached when all of the
leaf processes represented by Abs have reached the �nish state. The states having the \one at " pre�x are
reached when at least one of the leaf processes represented by Abs have reached the corresponding state
given in the leaf process of �gure 5. Note that, as Abs has id = N , the new default value (for the leader
variable for example) is N + 1. Thus, in property 2, q is now de�ned as :(elected == (N + 1)).

Apart from the new state labels, the automaton for the Abs process is similar to that for the leaf process.
However, upon reaching the one at become child state, if the number of remaining unassigned leaves within
the Abs process (denoted by a global variable, no leafs left) is equal to zero, the process now moves to the
all at �nish state. Otherwise, the process returns to the all at start state.

8.2. Veri�cation Results for the Abstracted MTIP model

Scripts are again used to generate the appropriate model from a (new) template. For a given N and property,
a model is generated that consists of the appropriate node, Abs and (if necessary) leaf proctype declarations
and associated Promela speci�cation. It is now possible to verify all of the properties given in section 6 for
large N quickly and well within our memory allocation. (For example with N = 100, during the veri�cation
of property 2 the depth reached is only 3690 and the number of (stored) states 3414.) Details of the Promela
speci�cation are omitted here due to space restrictions, but an example is contained on our website at [CM].

8.3. Veri�cation of the MTIP for a star topology for any N

However eÆcient the abstraction of section 8.1 may be, it still has limited use, in that it can only be used to
verify properties for a �xed value of N . However, if we let MA(N) denote the abstracted model of size N ,
we can easily convert MA(N) to a new model M such that M �MA(N) (M contains all of the behaviour
of MA(N)) for all values of N . (That is M is an invariant for MA(N) [BCG89, WL89]. The proof that M
is an invariant is omitted here, and forms the basis of current work.)

This conversion would involve two minor modi�cations. Firstly, in the Abs process, the no leafs left vari-
able is originally set to 2. Upon reaching the one at wait for ackb state this variable is non-deterministically
assigned a value of 0, 1 or 2. Secondly, the node process, instead of checking the value of jadj(i)j�jchildren(i)j,
now checks the value of no leafs left plus the number of unassigned leaves external to Abs (0 or 1) and acts
accordingly.

This approach could only be used to prove safety properties. (Clearly \a leader is always elected" will



Using SPIN to Analyse the FireWire protocol 15

no longer be true, as the value of no leafs left may never equal zero.) However, under the assumption that
all processes eventually terminate (which we call the degeneration assumption) which would imply that
no leafs left eventually equals zero, all of the properties could be veri�ed.

The implementation of this approach is omitted, for space reasons.

9. Comparison with other approaches contained within the Workshop

Proceedings

In this section we compare our approach with some others contained within the workshop proceedings. Thanks
to the valuable feedback we received at the workshop and from anonymous referees thereafter, our paper
has developed considerably since our initial abstract submission. We fully appreciate that, likewise, the �nal
papers corresponding to the abstracts referred to below, may be very di�erent to the workshop version upon
which we have made our comparisons. Unlike ours, none of the approaches appear to attempt to generalise
results to con�gurations of N processes, for all N , even for speci�c subclasses of topologies.

The approach that compares most with our paper is \A Simple Veri�cation of the Tree Identify Protocol
with SMV" by Schuppan et al.

Their approach is similar to ours, in that �nite-state model checking is used to verify certain properties,
and su�ers the same limitations as ours, in that (�nite state) model checking can only be applied to a
\�xed con�guration" of processes, and so, even for a �xed number of nodes, each possible con�guration
must be checked separately. They use a C-preprocessor to create each of their models, whereas we use a Perl
script to automatically generate each model and the subsequent model checking run. In SMV each process
is described using guards that describe the possible states of the other processes. Therefore, a change to the
number (N) of processes, or to the con�guration of N processes requires many changes to be made to the
(SMV) process description. However, in SPIN, each process is described via a generic proctype description,
which does not depend on the particular value of N . Thus a change to N or to the topology merely requires
(global) connection information to be updated.

The approach of Schuppan et al (mainly) uses synchronous communication. All communication within our
model is asynchronous. Also, all of our runs are non-deterministic, and so all possible behaviour is checked,
whereas their approach is largely deterministic. It is unclear whether the use of the expression \deterministic
con�guration" (when the force-root 
ag is �xed) corresponds to the deterministic choice of bits described
earlier in the paper, or indeed to deterministic behaviour in general.

Their model is, we believe, closer to the operational view than our own{ more attention is paid, for exam-
ple, to particular time-constraints, and signals. In addition, their paper considers the force-root condition,
whereas ours does not.

Another approach which seems similar to ours is that of Verdejo et al who specify and verify the protocol
using rewriting logic. They also use state-space exploration to check all possible behaviours of their system.
However, in their abstract they do not specify their properties explicitly so it is diÆcult to make a true
comparison. They appear to perform a manual check on the endstates reached by exploration (to check that
a unique leader is elected), rather than use the model checker to check a property. This approach would
not be applicable to check more complicated properties. It would not, for example, be appropriate for the
veri�cation of precedence properties.

10. Evaluation

We have used Promela to model both the tree identify protocol (TIP) and a modi�ed version of the tree
identify protocol (MTIP). The reason for considering both versions is that the MTIP lends itself to general-
isation (whereas the TIP does not). We have analysed the entire tree identi�cation phase in each case. Our
analysis takes the form of verifying that a set of properties hold, using the model checker SPIN.

Our models are easy to modify { it was very straightforward to adapt the TIP model to create the MTIP
model for example (or vice versa as, historically, is the case). However, any change to the model requires
that all veri�cations must be repeated.

The original model (of the MTIP) which appears in the workshop proceedings took about 1 week to
construct and fully verify. The production of a Perl script enabling one to automatically generate a MTIP



16 M. Calder and A. Miller

model for any number of nodes and any con�guration took a further 2 weeks. The TIP model was constructed
in a couple of days.

The greatest amount of time was spent in the generalisation of the MTIP. The initial abstracted model
took a man-month to produce. This is mainly due to the e�ort required to understand how the degenerative
behaviour of the MTIP could be exploited.

As the framework involved (modelling with Promela) is very close to concurrent programming, an expe-
rienced concurrent programmer would quickly grasp the basics required to understand the used speci�cation
framework. However, one of the most diÆcult (and time-consuming) parts of LTL model checking is the
speci�cation of logical properties that accurately describe the aspects of the model to be checked. The time
that it would take to become pro�cient in this respect de�es quanti�cation.

In order to understand our solution no detailed knowledge of Promela and SPIN is required as all relevant
aspects are explained in the text. However, it would take the average programmer a matter of weeks to fully
appreciate the subtleties involved.

Not only does our TIP model provide a suitable alternative formalisation to the IEEE standard, but our
abstracted MTIP model enables us to investigate the behaviour of any number of processes for a certain
subclass of topologies.

11. Conclusions and Further work

We describe how the SPIN model checker can be used to verify a set of essential properties of the Tree Identify
protocol (TIP), together with a modi�ed version of the tree identify protocol (MTIP). We illustrate the use
of LTL model checking and demonstrate the importance of correctly specifying properties and optimising
the code using re�nement and reinitialisation. We present full results of our analysis of networks of six nodes
and compare the results obtained for the TIP and MTIP models.

We give an abstraction for verifying the MTIP for networks of N processes for a star topology, where N
is large and describe how this abstraction can be modi�ed to allow veri�cation of properties for all networks
of N nodes having a star topology, for all values of N . Future work involves the extension of this approach
to more general network topologies.

References

[AK86] Krzysztof R. Apt and Dexter C. Kozen. Limits for automatic veri�cation of �nite-state concurrent systems.
Information Processing Letters, 22:307{309, 1986.

[Ara99] H. R. Arabnia, editor. Proceedings of the International Conference on Parallel and Distributed Processing Tech-
niques and Applications (PDPTA'99), volume II, Las Vegas, Nevada, USA, June { July 1999. CSREA Press.

[BCF01] G�erard Berry, Hubert Comon, and Alain Finkel, editors. Proceedings of the thirteenth International Conference
on Computer-aided Veri�cation (CAV 2001), volume 2102 of Lecture Notes in Computer Science, Paris, France,
July 2001. Springer-Verlag.

[BCG89] M.C. Browne, E.M. Clarke, and O. Grumberg. Reasoning about networks with many identical �nite state processes.
Information and Computation, 81:13{31, 1989.

[Bos99] Dragon Bosnacki. Partial order reduction in presence of rendez-vous communication with unless and weak fairness.
In [DGLM99], pages 40{57, 1999.

[CGJ95] E.M. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks using abstraction and regular languages.
In [LS95], pages 395{407, 1995.

[CGM+97] Alessandro Cimatti, Fausto Giunchiglia, Giorgio Mingardi, Dario Romano, Fernando Torielli, and Paolo Traverso.
Model checking safety critical software with SPIN: an application to a railway interlocking system. In [Lan97],
pages 5{17, 1997.

[Cho74] Yaacov Choueka. Theories of automata on !-tapes: A simpli�ed approach. Journal of Computer and System
Sciences, 8:117{141, 1974.

[CM] M. Calder and A. Miller. Veriscope publications website:
http://www.dcs.gla.ac.uk/research/veriscope/publications.html.

[CM01a] M. Calder and A. Miller. Feature interaction analysis using the model-checker SPIN. Technical Report TR2001-91,
University of Glasgow, Department of Computing Science, 2001.

[CM01b] M. Calder and A. Miller. Using SPIN for feature interaction analysis - a case study. In [Dwy01], pages 143{162,
2001.

[CR99] S.J. Creese and A.W. Roscoe. Formal veri�cation of arbitrary network topologies. In [Ara99], 1999.
[CR00] S.J. Creese and A.W. Roscoe. Data independent induction over structured networks. In [PDP00], 2000.
[DGLM99] D. Dams, R. Gerth, S. Leue, and M. Massink, editors. Theoretical and Practical Aspects of SPIN Model Checking:



Using SPIN to Analyse the FireWire protocol 17

Proceedings of the 5th and 6th International Spin Workshops, volume 1680 of Lecture Notes in Computer Science.
Springer-Verlag, 1999.

[DH99] Matthew B. Dwyer and John Hatcli�. Slicing software for model construction. In Olivier Danvy, editor, Proceedings
of ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipulation (PEPM'99),
pages 105{118, San Antonio, Texas, January 1999. University of Aarhus. Technical report BRICS-NS-99-1.

[Dwy01] M.B. Dwyer, editor. Proceedings of the 8th International SPIN Workshop (SPIN 2001), volume 2057 of Lecture
Notes in Computer Science, Toronto, Canada, May 2001. Springer-Verlag.

[EK00] E. Allen Emerson and Vineet Kahlon. Reducing model checking of the many to the few. In [McA00], pages
236{254, 2000.

[EN95] E. Allen Emerson and Kedar S. Namjoshi. Reasoning about rings. In [POP95], pages 85{94, 1995.
[EN98] E. A. Emerson and Kedar S. Namjoshi. On model checking for nondeterministic in�nite state systems. In 13th

IEEE Symposium on Logic in Computer Science, pages 70{80, 1998.
[GHP96] J.-Ch. Gregoire, G.J. Holzmann, and D. Peled, editors. Proceedings of the Second Workshop on the SPIN veri�ca-

tion System, volume 32 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Rutgers
University, New Brunswick, August 1996. American Mathematical Society.

[God96] P. Godefroid. Partial Order Methods for the Veri�cation of Concurrent Systems, volume 1032 of Lecture Notes in
Computer Science. Springer-Verlag, 1996.

[GPVW95] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-
y automatic veri�cation of linear temporal logic. In
Proceedings of the 15th international Conference on Protocol Speci�cation Testing and Veri�cation (PSTV `95),
pages 3{18. Chapman & Hall, Warsaw, Poland, 1995.

[GS92] Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes. Journal of the ACM,
39(3):675{735, July 1992.

[Hol90] Gerard J. Holzmann. Algorithms for automated protocol veri�cation. Technical Report 69, AT & T, Jan-
uary/February 1990.

[Hol93] Gerard J. Holzmann. Design and validation of protocols: a tutorial. Computer Networks and ISDN Systems,
25:981{1017, 1993.

[Hol97a] Gerard J. Holzmann. The model checker Spin. IEEE Transactions on Software Engineering, 23(5):279{295, May
1997.

[Hol97b] Gerard J. Holzmann. State compression in Spin: Recursive indexing and compression training runs. In [Lan97],
1997.

[Hol98] Gerard J. Holzmann. An analysis of bitstate hashing. Formal Methods in System Design, 13(3):289{307, November
1998.

[Hol99] Gerard J. Holzmann. The engineering of a model checker: The gnu i-protocol case study revisited. In [DGLM99],
pages 232{244, 1999.

[HP99] G.J. Holzmann and Anuj Puri. A minimized automaton representation of reachable states. International Journal
on Software Tools for Technology Transfer, 2(3):270{278, November 1999.

[HP00] Klaus Havelund and Thomas Pressburger. Model checking JAVA programs using JAVA PathFinder. International
Journal on Software Tools for Technology Transfer, 2(4):366{381, 2000.

[HS99] G.J. Holzmann and Margaret H. Smith. Software model checking - extracting veri�cation models from source code.
In [WCG99], volume 156, pages 481{497, 1999.

[ID96] C.Norris Ip and D. Dill. Better veri�cation through symmetry. Formal Methods in System Design, 9:41{75, 1996.
[ID99] C. Norris Ip and David L. Dill. Verifying systems with replicated components in Mur�. Formal Methods in System

Design, 14:273{310, 1999.
[IEE95] IEEE 1394-1995. IEEE Standard for a High Performance Serial Bus Std 1394-1995. Institute of Electrical and

Electronic Engineers, August 1995.
[IEE00] IEEE 1394a-2000. IEEE Standard for a High Performance Serial Bus (Supplement) Std 1394a-2000. Institute of

Electrical and Electronic Engineers, 2000.
[Kap92] Deepak Kapur, editor. Automated Deduction - Proceedings of the 11th International Conference on Automated

Deduction (CADE 1992), volume 607 of Lecture Notes in Computer Science, Saratoga Springs, NY, USA, June
1992. Springer-Verlag.

[KM89] R. P. Kurshan and K.L. McMillan. A structural induction theorem for processes. In Proceedings of the eighth
Annual ACM Symposium on Principles of Distrubuted Computing, pages 239{247. ACM Press, 1989.

[KMOS94] Robert P. Kurshan, M. Merritt, A. Orda, and S.R. Sachs. A structural linearization principle for processes. Formal
Methods in System Design, 5(3):227{244, December 1994.

[KMS00] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided Reasoning: An Approach. Kluwer
Academic Publishers, June 2000.

[Lan97] R. Langerak, editor. Proceedings of the Third SPIN Workshop (SPIN`97), Twente University, The Netherlands,
April 1997.

[LS95] Insup Lee and Scott A. Smolka, editors. Proceedings of the 6th International Conference on Concurrency Theory
(CONCUR `95), volume 962 of Lecture Notes in Computer Science, Philadelphia, PA., August 1995. Springer-
Verlag.

[LS97] Siegfried L�o�er and Ahmed Serhrouchni. Creating a validated implementation of the steam boiler control. In
[Lan97], 1997.

[McA00] David A. McAllester, editor. Automated Deduction - Proceedings of the 17th International Conference on Auto-
mated Deduction (CADE 2000), volume 1831 of Lecture Notes in Computer Science, Pittsburgh, PA, USA, June
2000. Springer-Verlag.



18 M. Calder and A. Miller

[MP90] Z. Manna and A. Pnueli. Tools and rules for the practicing veri�er. Technical Report STAN-CS-90-1321, Stanford
University, June 1990.

[MRS01] S. Maharaj, J. Romijn, and C. Shankland, editors. Proceedings of the International Workshop on Application of
Formal Methods to IEEE 1394 Standard, Berlin, Germany, March 2001.

[MS00] Kamel M. and Leue S. Formalization and validation of the General Inter-ORB Protocol (GIOP) using PROMELA
and SPIN. International Journal on Software Tools for Technology Transfer, 2(4):394{409, 2000. Special section
on SPIN.

[MT00] Lynette I. Millett and Tim Teitelbaum. Issues in slicing PROMELA and its applications to model checking, protocol
understanding, and simulation. International Journal on Software Tools for Technology Transfer, 2(4):343{349,
2000.

[OSR92] S. Owre, N. Shankar, and J. Rushby. PVS: A prototype veri�cation system. In [Kap92], pages 748{752, 1992.
[PDP00] Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications

(PDPTA'00), volume II, Las Vegas, Nevada, USA, June 2000. CSREA Press.
[Pel96a] D. Peled. Combining partial order reductions with on-the-
y model checking. Formal Methods in System Design,

8:39{64, 1996.
[Pel96b] Doron Peled. Partial order reduction: Linear and branching temporal logics and process algebras. In [PPH96],

pages 233{257, 1996.
[POP95] Conference Record of the 22nd Annual ACM Symposium on Principles of Programming Languages (POPL `95),

San Francisco, California, January 1995. ACM Press.
[PPH96] Doron A. Peled, Vaughan R. Pratt, and Gerard J. Holzmann, editors. Proceedings of the DIMACS Workshop on

Partial-Order Methods in Veri�cation (POMIV '96), volume 29 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1996.

[RR01] A. Roychoudhury and I. V. Ramakrishnan. Automated inductive veri�cation of parameterized protocols. In
[BCF01], pages 25{37, Paris, France, July 2001. Springer-Verlag.

[Sif89] J. Sifakis, editor. Proceedings of the International Workshop in Automatic Veri�cation Methods for Finite State
Systems, volume 407 of Lecture Notes in Computer Science, Grenoble, France, June 1989. Springer-Verlag.

[VB96] Willem Visser and Howard Barringer. Memory eÆcient state storage in Spin. In [GHP96], pages 185{203, 1996.
[VW86] Moshe Y. Vardi and PierreWolper. An automata-theoretic approach to automatic program veri�cation (preliminary

report). In Proceedings, Symposium on Logic in Computer Science, pages 332{344. IEEE Computer Society, June
1986.

[WCG99] Jianping Wu, Samuel Chanson, and Quiang Gao, editors. Formal Methods for Protocol Engineering and Distributed
Systems: Proceedings of the Joint International Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols and Protocol Speci�cation, Testing and Veri�cation (FORTE/PSTV '99),
volume 156 of International Federation For Information Processing, Beijing, China, October 1999. Kluwer.

[WL89] Pierre Wolper and Vinciane Lovinfosse. Properties of large sets of processes with network invariants (extended
abstract). In [Sif89], pages 68{80, 1989.

Appendix A

We include here the Promela model generated for the MTIP for 6 node processes, with the con�guration of
�gure 1(a), to verify property 2. Notice that the never-claim associated with property 2 occurs at the end of
the code.

/*Modified Leader Election model with 6 processes generated from template*/
/*With property 2: A leader will always be elected */

mtype = {nullmessage,be_my_parent,be_my_child,ack};

#define N 6 /* no. of nodes */
byte adj[N]; byte child[N]; byte toss[N]=0; byte elected=N;
typedef array { byte to[N] }; array connect[N];
chan null = [1] of {mtype};

/*define the channels, need to change per configuration*/

chan zerotwo=[1] of {mtype}; chan twozero=[1] of {mtype}; chan onetwo=[1] of {mtype}; chan twoone=[1] of {mtype};
chan twothree=[1] of {mtype}; chan threetwo=[1] of {mtype}; chan threefive=[1] of {mtype}; chan fivethree=[1] of {mtype};
chan fourfive=[1] of {mtype}; chan fivefour=[1] of {mtype};

inline converter(id1,id2,chanin,chanout)
/* takes a pair of ids and finds the corresponding in and out channels */
{if
:: (id1==0)-> assert((id2==2)); chanin=twozero;chanout=zerotwo
:: (id1==1)-> assert((id2==2)); chanin=twoone;chanout=onetwo
:: (id1==2)-> assert((id2==0)||(id2==1)||(id2==3));

if



Using SPIN to Analyse the FireWire protocol 19

:: (id2==0)->chanin=zerotwo;chanout=twozero
:: (id2==1)->chanin=onetwo;chanout=twoone
:: (id2==3)->chanin=threetwo;chanout=twothree
fi

:: (id1==3)-> assert((id2==2)||(id2==5));
if
:: (id2==2)->chanin=twothree;chanout=threetwo
:: (id2==5)->chanin=fivethree;chanout=threefive
fi

:: (id1==4)-> assert((id2==5)); chanin=fivefour;chanout=fourfive
:: (id1==5)-> assert((id2==3)||(id2==4));

if
:: (id2==3)->chanin=threefive;chanout=fivethree
:: (id2==4)->chanin=fourfive;chanout=fivefour
fi

fi}

proctype node(byte selfid)
{mtype message=nullmessage;

byte counter=N; byte partnerid=N;
chan self_in=null; chan self_out=null;

start:
atomic{
assert((counter==N)&&(message==nullmessage)&&(partnerid==N)&&(self_in==null)&&(self_out==null));
if
::(adj[selfid]-child[selfid]==0)->elected=selfid; goto finish
::(adj[selfid]-child[selfid]==1)->counter=0; goto parent_request
::else->counter=0;goto wait_for_request
fi};

parent_request:
atomic{
assert((partnerid==N)&&(message==nullmessage)&&(self_in==null)&&(self_out==null)&&(counter<N));
if
::((counter!=selfid)&&(connect[selfid].to[counter]==1))->
partnerid=counter; counter=N; goto found_partner1

::else->counter++;goto parent_request
fi};

found_partner1:
atomic{assert(partnerid!=selfid&&(self_in==null)&&(self_out==null)&&(message==nullmessage));
converter(selfid,partnerid,self_in,self_out);
if
::self_in?message->assert(message==be_my_parent); message=nullmessage; goto become_parent
::assert(empty(self_out));self_out!be_my_parent;goto response
fi};

response:
atomic{
full(self_in);assert((message==nullmessage)&&(counter==N));self_in?message;
if
::message==be_my_child->message=nullmessage; partnerid=N; goto become_child
::message==be_my_parent->message=nullmessage; goto contention
fi};

become_child:
atomic{
empty(self_out); self_out!ack; assert((message==nullmessage)&&(counter==N)&&(partnerid==N));
self_in=null;self_out=null;goto finish};

contention:
atomic{
assert((message==nullmessage)&&(counter==N)&&(partnerid!=N));
if
::selfid<partnerid->counter=selfid
::else->counter=partnerid
fi;
if
::(toss[counter]==0)->toss[counter]++; counter=N;goto winner /*win toss*/
::else->assert(toss[counter]==1);toss[counter]=0; counter=N;goto loser /*lose toss*/
fi};

winner:
atomic{



20 M. Calder and A. Miller

empty(self_out);self_out!be_my_parent;goto response};

loser:
atomic{
self_in?message;assert(message==be_my_parent); message=nullmessage; goto become_parent};

wait_for_request:
atomic{
assert((partnerid==N)&&(self_in==null)&&(self_out==null)&&(message==nu llmessage)&&(counter<N));
if
::(connect[selfid].to[counter]==0)->counter++;
if
:: counter==N->counter=0
:: else->skip
fi;
goto wait_for_request

:: (connect[selfid].to[counter]==1)->assert(counter!=selfid);goto found_partner2
fi};

found_partner2:
atomic{
converter(selfid,counter,self_in,self_out);
if
:: full(self_in)->partnerid=counter; counter=N; self_in?message; assert(message==be_my_parent);

message=nullmessage; goto become_parent
:: empty(self_in)->counter++;
if
:: counter==N->counter=0
:: else->skip
fi;
self_in=null;self_out=null; goto wait_for_request
fi};

become_parent:
atomic{
empty(self_out); assert((message==nullmessage)&&(counter==N)&&(partnerid!=N));
self_out!be_my_child; goto wait_for_ack};

wait_for_ack:
atomic{
full(self_in); self_in?message; assert(message==ack); message=nullmessage;
connect[selfid].to[partnerid]=0; connect[partnerid].to[selfid]=0;
self_in=null;self_out=null;partnerid=N; child[selfid]++; goto start};

}
/*end of node process*/

#define q (elected!=N)

init
{atomic{
/*set connect.to array */
connect[0].to[2]=1; connect[2].to[0]=1; connect[1].to[2]=1; connect[2].to[1]=1;
connect[2].to[3]=1; connect[3].to[2]=1; connect[3].to[5]=1; connect[5].to[3]=1;
connect[4].to[5]=1; connect[5].to[4]=1;

/*set neighbours array */
adj[0]=1; adj[1]=1; adj[2]=3; adj[3]=2; adj[4]=1; adj[5]=2;

/*run processes*/
run node(0); run node(1); run node(2); run node(3); run node(4); run node(5);}}

/* Formula As Typed: [] <> q
* The Never Claim Below Corresponds to The Negated Formula !([] <> q)
* (formalizing violations of the original)*/

never { /* !([] <> q) */
T0_init:
if
:: (! ((q))) -> goto accept_S2
:: (1) -> goto T0_init
fi;
accept_S2:
if
:: (! ((q))) -> goto accept_S2
fi;}


	Citation.template.pdf
	http://eprints.gla.ac.uk/2876/


