2 research outputs found

    A Model Design for Risk Assessment of Line Tripping Caused by Wildfires

    No full text
    A power line is particularly vulnerable to wildfires in its vicinity, and various damage including line tripping can be caused by wildfires. Using remote sensing techniques, a novel model developed to assess the risk of line tripping caused by the wildfire occurrence in high-voltage power line corridors is presented. This model mainly contains the wildfire risk assessment for power line corridors and the estimation of the probability of line tripping when a wildfire occurs in power line corridors. For the wildfire risk assessment, high-resolution satellite data, Moderate Resolution Imaging Spectroradiometer (MODIS) data, meteorological data, and digital elevation model (DEM) data were employed to infer the natural factors. Human factors were also included to achieve good reliability. In the estimation of the probability of line tripping, vegetation characteristics, meteorological status, topographic conditions, and transmission line parameters were chosen as influencing factors. According to the above input variables and observed historical datasets, the risk levels for wildfire occurrence and line tripping were obtained with a logic regression approach. The experimental results demonstrate that the developed model can provide good results in predicting wildfire occurrence and line tripping for high-voltage power line corridors

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens
    corecore