18,533 research outputs found

    Bisimulation in Inquisitive Modal Logic

    Full text link
    Inquisitive modal logic, InqML, is a generalisation of standard Kripke-style modal logic. In its epistemic incarnation, it extends standard epistemic logic to capture not just the information that agents have, but also the questions that they are interested in. Technically, InqML fits within the family of logics based on team semantics. From a model-theoretic perspective, it takes us a step in the direction of monadic second-order logic, as inquisitive modal operators involve quantification over sets of worlds. We introduce and investigate the natural notion of bisimulation equivalence in the setting of InqML. We compare the expressiveness of InqML and first-order logic, and characterise inquisitive modal logic as the bisimulation invariant fragments of first-order logic over various classes of two-sorted relational structures. These results crucially require non-classical methods in studying bisimulations and first-order expressiveness over non-elementary classes.Comment: In Proceedings TARK 2017, arXiv:1707.0825

    Inquisitive bisimulation

    Full text link
    Inquisitive modal logic InqML is a generalisation of standard Kripke-style modal logic. In its epistemic incarnation, it extends standard epistemic logic to capture not just the information that agents have, but also the questions that they are interested in. Technically, InqML fits within the family of logics based on team semantics. From a model-theoretic perspective, it takes us a step in the direction of monadic second-order logic, as inquisitive modal operators involve quantification over sets of worlds. We introduce and investigate the natural notion of bisimulation equivalence in the setting of InqML. We compare the expressiveness of InqML and first-order logic in the context of relational structures with two sorts, one for worlds and one for information states. We characterise inquisitive modal logic, as well as its multi-agent epistemic S5-like variant, as the bisimulation invariant fragment of first-order logic over various natural classes of two-sorted structures. These results crucially require non-classical methods in studying bisimulation and first-order expressiveness over non-elementary classes of structures, irrespective of whether we aim for characterisations in the sense of classical or of finite model theory

    Pointwise intersection in neighbourhood modal logic

    Full text link
    We study the logic of neighbourhood models with pointwise intersection, as a means to characterize multi-modal logics. Pointwise intersection takes us from a set of neighbourhood sets Ni\mathcal{N}_i (one for each member ii of a set GG, used to interpret the modality □i\square_i) to a new neighbourhood set NG\mathcal{N}_G, which in turn allows us to interpret the operator □G\square_G. Here, XX is in the neighbourhood for GG if and only if XX equals the intersection of some Y={Yi∣i∈G}\mathcal{Y} = \{Y_i \mid i\in G\}. We show that the notion of pointwise intersection has various applications in epistemic and doxastic logic, deontic logic, coalition logic, and evidence logic. We then establish sound and strongly complete axiomatizations for the weakest logic characterized by pointwise intersection and for a number of variants, using a new and generally applicable technique for canonical model construction.Comment: Submitted to Advances in Modal Logic 201
    • …
    corecore