1,337 research outputs found

    HAQJSK: Hierarchical-Aligned Quantum Jensen-Shannon Kernels for Graph Classification

    Full text link
    In this work, we propose a family of novel quantum kernels, namely the Hierarchical Aligned Quantum Jensen-Shannon Kernels (HAQJSK), for un-attributed graphs. Different from most existing classical graph kernels, the proposed HAQJSK kernels can incorporate hierarchical aligned structure information between graphs and transform graphs of random sizes into fixed-sized aligned graph structures, i.e., the Hierarchical Transitive Aligned Adjacency Matrix of vertices and the Hierarchical Transitive Aligned Density Matrix of the Continuous-Time Quantum Walk (CTQW). For a pair of graphs to hand, the resulting HAQJSK kernels are defined by measuring the Quantum Jensen-Shannon Divergence (QJSD) between their transitive aligned graph structures. We show that the proposed HAQJSK kernels not only reflect richer intrinsic global graph characteristics in terms of the CTQW, but also address the drawback of neglecting structural correspondence information arising in most existing R-convolution kernels. Furthermore, unlike the previous Quantum Jensen-Shannon Kernels associated with the QJSD and the CTQW, the proposed HAQJSK kernels can simultaneously guarantee the properties of permutation invariant and positive definiteness, explaining the theoretical advantages of the HAQJSK kernels. Experiments indicate the effectiveness of the proposed kernels

    Local-global nested graph kernels using nested complexity traces

    Get PDF
    Abstract In this paper, we propose two novel local-global nested graph kernels, namely the nested aligned kernel and the nested reproducing kernel, drawing on depth-based complexity traces. Both of the nested kernels gauge the nested depth complexity trace through a family of K-layer expansion subgraphs rooted at the centroid vertex, i.e., the vertex with minimum shortest path length variance to the remaining vertices. Specifically, for a pair of graphs, we commence by computing the centroid depth-based complexity traces rooted at the centroid vertices. The first nested kernel is defined by measuring the global alignment kernel, which is based on the dynamic time warping framework, between the complexity traces. Since the required global alignment kernel incorporates the whole spectrum of alignment costs between the complexity traces, this nested kernel can provide rich statistic measures. The second nested kernel, on the other hand, is defined by measuring the basic reproducing kernel between the complexity traces. Since the associated reproducing kernel only requires time complexity O(1), this nested kernel has very low computational complexity. We theoretically show that both of the proposed nested kernels can simultaneously reflect the local and global graph characteristics in terms of the nested complexity traces. Experiments on standard graph datasets abstracted from bioinformatics and computer vision databases demonstrate the effectiveness and efficiency of the proposed graph kernels

    Distributed Optimization via Kernelized Multi-armed Bandits

    Full text link
    Multi-armed bandit algorithms provide solutions for sequential decision-making where learning takes place by interacting with the environment. In this work, we model a distributed optimization problem as a multi-agent kernelized multi-armed bandit problem with a heterogeneous reward setting. In this setup, the agents collaboratively aim to maximize a global objective function which is an average of local objective functions. The agents can access only bandit feedback (noisy reward) obtained from the associated unknown local function with a small norm in reproducing kernel Hilbert space (RKHS). We present a fully decentralized algorithm, Multi-agent IGP-UCB (MA-IGP-UCB), which achieves a sub-linear regret bound for popular classes for kernels while preserving privacy. It does not necessitate the agents to share their actions, rewards, or estimates of their local function. In the proposed approach, the agents sample their individual local functions in a way that benefits the whole network by utilizing a running consensus to estimate the upper confidence bound on the global function. Furthermore, we propose an extension, Multi-agent Delayed IGP-UCB (MAD-IGP-UCB) algorithm, which reduces the dependence of the regret bound on the number of agents in the network. It provides improved performance by utilizing a delay in the estimation update step at the cost of more communication

    A Quantum-inspired Similarity Measure for the Analysis of Complete Weighted Graphs

    Get PDF
    We develop a novel method for measuring the similarity between complete weighted graphs, which are probed by means of discrete-time quantum walks. Directly probing complete graphs using discrete-time quantum walks is intractable due to the cost of simulating the quantum walk. We overcome this problem by extracting a commute-time minimum spanning tree from the complete weighted graph. The spanning tree is probed by a discrete time quantum walk which is initialised using a weighted version of the Perron-Frobenius operator. This naturally encapsulates the edge weight information for the spanning tree extracted from the original graph. For each pair of complete weighted graphs to be compared, we simulate a discrete-time quantum walk on each of the corresponding commute time minimum spanning trees, and then compute the associated density matrices for the quantum walks. The probability of the walk visiting each edge of the spanning tree is given by the diagonal elements of the density matrices. The similarity between each pair of graphs is then computed using either a) the inner product or b) the negative exponential of the Jensen-Shannon divergence between the probability distributions. We show that in both cases the resulting similarity measure is positive definite and therefore corresponds to a kernel on the graphs. We perform a series of experiments on publicly available graph datasets from a variety of different domains, together with time-varying financial networks extracted from data for the New York Stock Exchange. Our experiments demonstrate the effectiveness of the proposed similarity measures

    Bayesian optimisation for automated machine learning

    Get PDF
    In this thesis, we develop a rich family of efficient and performant Bayesian optimisation (BO) methods to tackle various AutoML tasks. We first introduce a fast information-theoretic BO method, FITBO, that overcomes the computation bottleneck of information-theoretic acquisition functions while maintaining their competitiveness on the noisy optimisation problems frequently encountered in AutoML. We then improve on the idea of local penalisation and develop an asynchronous batch BO solution, PLAyBOOK, to enable more efficient use of parallel computing resources when evaluation runtime varies across configurations. In view of the fact that many practical AutoML problems involve a mixture of multiple continuous and multiple categorical variables, we propose a new framework, named Continuous and Categorical BO (CoCaBO) to handle such mixed-type input spaces. CoCaBO merges the strengths of multi-armed bandits on categorical inputs and that of BO on continuous space, and uses a tailored kernel to permit information sharing across different categorical variables. We also extend CoCaBO by harnessing the concept of local trust region to achieve competitive performance on high-dimensional optimisation problems with mixed input types. Beyond hyper-parameter tuning, we also investigate the novel use of BO on two important AutoML applications: black-box adversarial attack and neural architecture search. For the former (adversarial attack), we introduce the first BO-based attacks on image and graph classifiers; by actively querying the unknown victim classifier, our BO attacks can successfully find adversarial perturbations with many fewer attempts than competing baselines. They can thus serve as efficient tools for assessing the robustness of models suggested by AutoML. For the latter (neural architecture search), we leverage the Weisfeiler-Lehamn graph kernel to empower our BO search strategy, NAS-BOWL, to naturally handle the directed acyclic graph representation of architectures. Besides achieving superior query efficiency, our NAS-BOWL also returns interpretable sub-features that help explain the architecture performance, thus marking the first step towards interpretable neural architecture search. Finally, we examine the most computation-intense step in AutoML pipeline: generalisation performance evaluation for a new configuration. We propose a cheap yet reliable test performance estimator based on a simple measure of training speed. It consistently outperforms various existing estimators on on a wide range of architecture search spaces and and can be easily incorporated into different search strategies, including BO, to improve the cost efficiency

    Meshless methods for shear-deformable beams and plates based on mixed weak forms

    Get PDF
    Thin structural theories such as the shear-deformable Timoshenko beam and Reissner-Mindlin plate theories have seen wide use throughout engineering practice to simulate the response of structures with planar dimensions far larger than their thickness dimension. Meshless methods have been applied to construct numerical methods to solve the shear deformable theories. Similarly to the finite element method, meshless methods must be carefully designed to overcome the well-known shear-locking problem. Many successful treatments of shear-locking in the finite element literature are constructed through the application of a mixed weak form. In the mixed weak form the shear stresses are treated as an independent variational quantity in addition to the usual displacement variables. We introduce a novel hybrid meshless-finite element formulation for the Timoshenko beam problem that converges to the stable first-order/zero-order finite element method in the local limit when using maximum entropy meshless basis functions. The resulting formulation is free from the effects shear-locking. We then consider the Reissner-Mindlin plate problem. The shear stresses can be identified as a vector field belonging to the Sobelov space with square integrable rotation, suggesting the use of rotated Raviart-Thomas-Nedelec elements of lowest-order for discretising the shear stress field. This novel formulation is again free from the effects of shear-locking. Finally we consider the construction of a generalised displacement method where the shear stresses are eliminated prior to the solution of the final linear system of equations. We implement an existing technique in the literature for the Stokes problem called the nodal volume averaging technique. To ensure stability we split the shear energy between a part calculated using the displacement variables and the mixed variables resulting in a stabilised weak form. The method then satisfies the stability conditions resulting in a formulation that is free from the effects of shear-locking.Open Acces

    Learning-Based Approaches for Graph Problems: A Survey

    Full text link
    Over the years, many graph problems specifically those in NP-complete are studied by a wide range of researchers. Some famous examples include graph colouring, travelling salesman problem and subgraph isomorphism. Most of these problems are typically addressed by exact algorithms, approximate algorithms and heuristics. There are however some drawback for each of these methods. Recent studies have employed learning-based frameworks such as machine learning techniques in solving these problems, given that they are useful in discovering new patterns in structured data that can be represented using graphs. This research direction has successfully attracted a considerable amount of attention. In this survey, we provide a systematic review mainly on classic graph problems in which learning-based approaches have been proposed in addressing the problems. We discuss the overview of each framework, and provide analyses based on the design and performance of the framework. Some potential research questions are also suggested. Ultimately, this survey gives a clearer insight and can be used as a stepping stone to the research community in studying problems in this field.Comment: v1: 41 pages; v2: 40 page
    • …
    corecore