62 research outputs found

    A Forward Reachability Perspective on Robust Control Invariance and Discount Factors in Reachability Analysis

    Full text link
    Control invariant sets are crucial for various methods that aim to design safe control policies for systems whose state constraints must be satisfied over an indefinite time horizon. In this article, we explore the connections among reachability, control invariance, and Control Barrier Functions (CBFs) by examining the forward reachability problem associated with control invariant sets. We present the notion of an "inevitable Forward Reachable Tube" (FRT) as a tool for analyzing control invariant sets. Our findings show that the inevitable FRT of a robust control invariant set with a differentiable boundary is the set itself. We highlight the role of the differentiability of the boundary in shaping the FRTs of the sets through numerical examples. We also formulate a zero-sum differential game between the control and disturbance, where the inevitable FRT is characterized by the zero-superlevel set of the value function. By incorporating a discount factor in the cost function of the game, the barrier constraint of the CBF naturally arises as the constraint that is imposed on the optimal control policy. As a result, the value function of our FRT formulation serves as a CBF-like function, which has not been previously realized in reachability studies. Conversely, any valid CBF is also a forward reachability value function inside the control invariant set, thereby revealing the inverse optimality of the CBF. As such, our work establishes a strong link between reachability, control invariance, and CBFs, filling a gap that prior formulations based on backward reachability were unable to bridge.Comment: The first two authors contributed equally to this wor

    Iterative Reachability Estimation for Safe Reinforcement Learning

    Full text link
    Ensuring safety is important for the practical deployment of reinforcement learning (RL). Various challenges must be addressed, such as handling stochasticity in the environments, providing rigorous guarantees of persistent state-wise safety satisfaction, and avoiding overly conservative behaviors that sacrifice performance. We propose a new framework, Reachability Estimation for Safe Policy Optimization (RESPO), for safety-constrained RL in general stochastic settings. In the feasible set where there exist violation-free policies, we optimize for rewards while maintaining persistent safety. Outside this feasible set, our optimization produces the safest behavior by guaranteeing entrance into the feasible set whenever possible with the least cumulative discounted violations. We introduce a class of algorithms using our novel reachability estimation function to optimize in our proposed framework and in similar frameworks such as those concurrently handling multiple hard and soft constraints. We theoretically establish that our algorithms almost surely converge to locally optimal policies of our safe optimization framework. We evaluate the proposed methods on a diverse suite of safe RL environments from Safety Gym, PyBullet, and MuJoCo, and show the benefits in improving both reward performance and safety compared with state-of-the-art baselines.Comment: Accepted in NeurIPS 202

    Safe Reinforcement Learning with Dual Robustness

    Full text link
    Reinforcement learning (RL) agents are vulnerable to adversarial disturbances, which can deteriorate task performance or compromise safety specifications. Existing methods either address safety requirements under the assumption of no adversary (e.g., safe RL) or only focus on robustness against performance adversaries (e.g., robust RL). Learning one policy that is both safe and robust remains a challenging open problem. The difficulty is how to tackle two intertwined aspects in the worst cases: feasibility and optimality. Optimality is only valid inside a feasible region, while identification of maximal feasible region must rely on learning the optimal policy. To address this issue, we propose a systematic framework to unify safe RL and robust RL, including problem formulation, iteration scheme, convergence analysis and practical algorithm design. This unification is built upon constrained two-player zero-sum Markov games. A dual policy iteration scheme is proposed, which simultaneously optimizes a task policy and a safety policy. The convergence of this iteration scheme is proved. Furthermore, we design a deep RL algorithm for practical implementation, called dually robust actor-critic (DRAC). The evaluations with safety-critical benchmarks demonstrate that DRAC achieves high performance and persistent safety under all scenarios (no adversary, safety adversary, performance adversary), outperforming all baselines significantly

    Learning Predictive Safety Filter via Decomposition of Robust Invariant Set

    Full text link
    Ensuring safety of nonlinear systems under model uncertainty and external disturbances is crucial, especially for real-world control tasks. Predictive methods such as robust model predictive control (RMPC) require solving nonconvex optimization problems online, which leads to high computational burden and poor scalability. Reinforcement learning (RL) works well with complex systems, but pays the price of losing rigorous safety guarantee. This paper presents a theoretical framework that bridges the advantages of both RMPC and RL to synthesize safety filters for nonlinear systems with state- and action-dependent uncertainty. We decompose the robust invariant set (RIS) into two parts: a target set that aligns with terminal region design of RMPC, and a reach-avoid set that accounts for the rest of RIS. We propose a policy iteration approach for robust reach-avoid problems and establish its monotone convergence. This method sets the stage for an adversarial actor-critic deep RL algorithm, which simultaneously synthesizes a reach-avoid policy network, a disturbance policy network, and a reach-avoid value network. The learned reach-avoid policy network is utilized to generate nominal trajectories for online verification, which filters potentially unsafe actions that may drive the system into unsafe regions when worst-case disturbances are applied. We formulate a second-order cone programming (SOCP) approach for online verification using system level synthesis, which optimizes for the worst-case reach-avoid value of any possible trajectories. The proposed safety filter requires much lower computational complexity than RMPC and still enjoys persistent robust safety guarantee. The effectiveness of our method is illustrated through a numerical example
    • …
    corecore