8,796 research outputs found

    A least squares approach to Principal Component Analysis for interval valued data

    Get PDF
    Principal Component Analysis (PCA) is a well known technique the aim of which is to synthesize huge amounts of numerical data by means of a low number of unobserved variables, called components. In this paper, an extension of PCA to deal with interval valued data is proposed. The method, called Midpoint Radius Principal Component Analysis (MR-PCA) recovers the underlying structure of interval valued data by using both the midpoints (or centers) and the radii (a measure of the interval width) information. In order to analyze how MR-PCA works, the results of a simulation study and two applications on chemical data are proposed.Principal Component Analysis, Least squares approach, Interval valued data, Chemical data

    Extracting 3D parametric curves from 2D images of Helical objects

    Get PDF
    Helical objects occur in medicine, biology, cosmetics, nanotechnology, and engineering. Extracting a 3D parametric curve from a 2D image of a helical object has many practical applications, in particular being able to extract metrics such as tortuosity, frequency, and pitch. We present a method that is able to straighten the image object and derive a robust 3D helical curve from peaks in the object boundary. The algorithm has a small number of stable parameters that require little tuning, and the curve is validated against both synthetic and real-world data. The results show that the extracted 3D curve comes within close Hausdorff distance to the ground truth, and has near identical tortuosity for helical objects with a circular profile. Parameter insensitivity and robustness against high levels of image noise are demonstrated thoroughly and quantitatively

    Recurrent neural networks and proper orthogonal decomposition with interval data for real-time predictions of mechanised tunnelling processes

    Get PDF
    A surrogate modelling strategy for predictions of interval settlement fields in real time during machine driven construction of tunnels, accounting for uncertain geotechnical parameters in terms of intervals, is presented in the paper. Artificial Neural Network and Proper Orthogonal Decomposition approaches are combined to approximate and predict tunnelling induced time variant surface settlement fields computed by a process-oriented finite element simulation model. The surrogate models are generated, trained and tested in the design (offline) stage of a tunnel project based on finite element analyses to compute the surface settlements for selected scenarios of the tunnelling process steering parameters taking uncertain geotechnical parameters by means of possible ranges (intervals) into account. The resulting mappings of time constant geotechnical interval parameters and time variant deterministic steering parameters onto the time variant interval settlement field are solved offline by optimisation and online by interval analyses approaches using the midpoint-radius representation of interval data. During the tunnel construction, the surrogate model is designed to be used in real-time to predict interval fields of the surface settlements in each stage of the advancement of the tunnel boring machine for selected realisations of the steering parameters to support the steering decisions of the machine driver

    The Orbit of WASP-12b Is Decaying

    Get PDF
    WASP-12b is a transiting hot Jupiter on a 1.09 day orbit around a late-F star. Since the planet's discovery in 2008, the time interval between transits has been decreasing by 29 ± 2 ms yr⁻¹. This is a possible sign of orbital decay, although the previously available data left open the possibility that the planet's orbit is slightly eccentric and is undergoing apsidal precession. Here, we present new transit and occultation observations that provide more decisive evidence for orbital decay, which is favored over apsidal precession by a ΔBIC of 22.3 or Bayes factor of 70,000. We also present new radial-velocity data that rule out the Rømer effect as the cause of the period change. This makes WASP-12 the first planetary system for which we can be confident that the orbit is decaying. The decay timescale for the orbit is P/P˙=3.25±0.23. Interpreting the decay as the result of tidal dissipation, the modified stellar tidal quality factor is Q′⋆=1.8×10⁵

    Analysis of approximate nearest neighbor searching with clustered point sets

    Full text link
    We present an empirical analysis of data structures for approximate nearest neighbor searching. We compare the well-known optimized kd-tree splitting method against two alternative splitting methods. The first, called the sliding-midpoint method, which attempts to balance the goals of producing subdivision cells of bounded aspect ratio, while not producing any empty cells. The second, called the minimum-ambiguity method is a query-based approach. In addition to the data points, it is also given a training set of query points for preprocessing. It employs a simple greedy algorithm to select the splitting plane that minimizes the average amount of ambiguity in the choice of the nearest neighbor for the training points. We provide an empirical analysis comparing these two methods against the optimized kd-tree construction for a number of synthetically generated data and query sets. We demonstrate that for clustered data and query sets, these algorithms can provide significant improvements over the standard kd-tree construction for approximate nearest neighbor searching.Comment: 20 pages, 8 figures. Presented at ALENEX '99, Baltimore, MD, Jan 15-16, 199
    corecore