18 research outputs found

    Enhancing the performance of HLA-based simulation systems via software diversity and active replication

    Full text link
    In this paper we explore active replication based on software diversity for improving the responsiveness of simulation systems. Our proposal is framed by the High-Level-Architecture (HLA), namely the emerging standard for interoperability of simulation packages, and results in the design and implementation of an Active Replication Management Layer (ARML), which supports the execution of multiple software diversity-based replicas of a same simulator in a totally transparent manner. Beyond presenting the replication framework and the design/implementation of ARML, we also report the results of an experimental evaluation on a case study, quantifying the benefits from our proposal in terms of execution speed. © 2006 IEEE

    Master/worker parallel discrete event simulation

    Get PDF
    The execution of parallel discrete event simulation across metacomputing infrastructures is examined. A master/worker architecture for parallel discrete event simulation is proposed providing robust executions under a dynamic set of services with system-level support for fault tolerance, semi-automated client-directed load balancing, portability across heterogeneous machines, and the ability to run codes on idle or time-sharing clients without significant interaction by users. Research questions and challenges associated with issues and limitations with the work distribution paradigm, targeted computational domain, performance metrics, and the intended class of applications to be used in this context are analyzed and discussed. A portable web services approach to master/worker parallel discrete event simulation is proposed and evaluated with subsequent optimizations to increase the efficiency of large-scale simulation execution through distributed master service design and intrinsic overhead reduction. New techniques for addressing challenges associated with optimistic parallel discrete event simulation across metacomputing such as rollbacks and message unsending with an inherently different computation paradigm utilizing master services and time windows are proposed and examined. Results indicate that a master/worker approach utilizing loosely coupled resources is a viable means for high throughput parallel discrete event simulation by enhancing existing computational capacity or providing alternate execution capability for less time-critical codes.Ph.D.Committee Chair: Fujimoto, Richard; Committee Member: Bader, David; Committee Member: Perumalla, Kalyan; Committee Member: Riley, George; Committee Member: Vuduc, Richar

    Transparent multi-core speculative parallelization of DES models with event and cross-state dependencies

    Get PDF
    In this article we tackle transparent parallelization of Discrete Event Simulation (DES) models to be run on top of multi-core machines according to speculative schemes. The innovation in our proposal lies in that we consider a more general programming and execution model, compared to the one targeted by state of the art PDES platforms, where the boundaries of the state portion accessible while processing an event at a specific simulation object do not limit access to the actual object state, or to shared global variables. Rather, the simulation object is allowed to access (and alter) the state of any other object, thus causing what we term cross-state dependency. We note that this model exactly complies with typical (easy to manage) sequential-style DES programming, where a (dynamically-allocated) state portion of object A can be accessed by object B in either read or write mode (or both) by, e.g., passing a pointer to B as the payload of a scheduled simulation event. However, while read/write memory accesses performed in the sequential run are always guaranteed to observe (and to give rise to) a consistent snapshot of the state of the simulation model, consistency is not automatically guaranteed in case of parallelization and concurrent execution of simulation objects with cross-state dependencies. We cope with such a consistency issue, and its application-transparent support, in the context of parallel and optimistic executions. This is achieved by introducing an advanced memory management architecture, able to efficiently detect read/write accesses by concurrent objects to whichever object state in an application transparent manner, together with advanced synchronization mechanisms providing the advantage of exploiting parallelism in the underlying multi-core architecture while transparently handling both cross-state and traditional event-based dependencies. Our proposal targets Linux and has been integrated with the ROOT-Sim open source optimistic simulation platform, although its design principles, and most parts of the developed software, are of general relevance. Copyright 2014 ACM

    Efficient Passive Clustering and Gateways selection MANETs

    Get PDF
    Passive clustering does not employ control packets to collect topological information in ad hoc networks. In our proposal, we avoid making frequent changes in cluster architecture due to repeated election and re-election of cluster heads and gateways. Our primary objective has been to make Passive Clustering more practical by employing optimal number of gateways and reduce the number of rebroadcast packets

    Automatic Algorithm Selection for Complex Simulation Problems

    Get PDF
    To select the most suitable simulation algorithm for a given task is often difficult. This is due to intricate interactions between model features, implementation details, and runtime environment, which may strongly affect the overall performance. The thesis consists of three parts. The first part surveys existing approaches to solve the algorithm selection problem and discusses techniques to analyze simulation algorithm performance.The second part introduces a software framework for automatic simulation algorithm selection, which is evaluated in the third part.Die Auswahl des passendsten Simulationsalgorithmus für eine bestimmte Aufgabe ist oftmals schwierig. Dies liegt an der komplexen Interaktion zwischen Modelleigenschaften, Implementierungsdetails und Laufzeitumgebung. Die Arbeit ist in drei Teile gegliedert. Der erste Teil befasst sich eingehend mit Vorarbeiten zur automatischen Algorithmenauswahl, sowie mit der Leistungsanalyse von Simulationsalgorithmen. Der zweite Teil der Arbeit stellt ein Rahmenwerk zur automatischen Auswahl von Simulationsalgorithmen vor, welches dann im dritten Teil evaluiert wird

    JTIT

    Get PDF
    kwartalni

    The Role of Distributed Computing in Big Data Science: Case Studies in Forensics and Bioinformatics

    Get PDF
    2014 - 2015The era of Big Data is leading the generation of large amounts of data, which require storage and analysis capabilities that can be only ad- dressed by distributed computing systems. To facilitate large-scale distributed computing, many programming paradigms and frame- works have been proposed, such as MapReduce and Apache Hadoop, which transparently address some issues of distributed systems and hide most of their technical details. Hadoop is currently the most popular and mature framework sup- porting the MapReduce paradigm, and it is widely used to store and process Big Data using a cluster of computers. The solutions such as Hadoop are attractive, since they simplify the transformation of an application from non-parallel to the distributed one by means of general utilities and without many skills. However, without any algorithm engineering activity, some target applications are not alto- gether fast and e cient, and they can su er from several problems and drawbacks when are executed on a distributed system. In fact, a distributed implementation is a necessary but not su cient condition to obtain remarkable performance with respect to a non-parallel coun- terpart. Therefore, it is required to assess how distributed solutions are run on a Hadoop cluster, and/or how their performance can be improved to reduce resources consumption and completion times. In this dissertation, we will show how Hadoop-based implementations can be enhanced by using carefully algorithm engineering activity, tuning, pro ling and code improvements. It is also analyzed how to achieve these goals by working on some critical points, such as: data local computation, input split size, number and granularity of tasks, cluster con guration, input/output representation, etc. i In particular, to address these issues, we choose some case studies coming from two research areas where the amount of data is rapidly increasing, namely, Digital Image Forensics and Bioinformatics. We mainly describe full- edged implementations to show how to design, engineer, improve and evaluate Hadoop-based solutions for Source Camera Identi cation problem, i.e., recognizing the camera used for taking a given digital image, adopting the algorithm by Fridrich et al., and for two of the main problems in Bioinformatics, i.e., alignment- free sequence comparison and extraction of k-mer cumulative or local statistics. The results achieved by our improved implementations show that they are substantially faster than the non-parallel counterparts, and re- markably faster than the corresponding Hadoop-based naive imple- mentations. In some cases, for example, our solution for k-mer statis- tics is approximately 30× faster than our Hadoop-based naive im- plementation, and about 40× faster than an analogous tool build on Hadoop. In addition, our applications are also scalable, i.e., execution times are (approximately) halved by doubling the computing units. Indeed, algorithm engineering activities based on the implementation of smart improvements and supported by careful pro ling and tun- ing may lead to a much better experimental performance avoiding potential problems. We also highlight how the proposed solutions, tips, tricks and insights can be used in other research areas and problems. Although Hadoop simpli es some tasks of the distributed environ- ments, we must thoroughly know it to achieve remarkable perfor- mance. It is not enough to be an expert of the application domain to build Hadop-based implementations, indeed, in order to achieve good performance, an expert of distributed systems, algorithm engi- neering, tuning, pro ling, etc. is also required. Therefore, the best performance depend heavily on the cooperation degree between the domain expert and the distributed algorithm engineer. [edited by Author]XIV n.s
    corecore