477 research outputs found

    Efficient Classification for Metric Data

    Full text link
    Recent advances in large-margin classification of data residing in general metric spaces (rather than Hilbert spaces) enable classification under various natural metrics, such as string edit and earthmover distance. A general framework developed for this purpose by von Luxburg and Bousquet [JMLR, 2004] left open the questions of computational efficiency and of providing direct bounds on generalization error. We design a new algorithm for classification in general metric spaces, whose runtime and accuracy depend on the doubling dimension of the data points, and can thus achieve superior classification performance in many common scenarios. The algorithmic core of our approach is an approximate (rather than exact) solution to the classical problems of Lipschitz extension and of Nearest Neighbor Search. The algorithm's generalization performance is guaranteed via the fat-shattering dimension of Lipschitz classifiers, and we present experimental evidence of its superiority to some common kernel methods. As a by-product, we offer a new perspective on the nearest neighbor classifier, which yields significantly sharper risk asymptotics than the classic analysis of Cover and Hart [IEEE Trans. Info. Theory, 1967].Comment: This is the full version of an extended abstract that appeared in Proceedings of the 23rd COLT, 201

    Weighted dependency graphs

    Full text link
    The theory of dependency graphs is a powerful toolbox to prove asymptotic normality of sums of random variables. In this article, we introduce a more general notion of weighted dependency graphs and give normality criteria in this context. We also provide generic tools to prove that some weighted graph is a weighted dependency graph for a given family of random variables. To illustrate the power of the theory, we give applications to the following objects: uniform random pair partitions, the random graph model G(n,M)G(n,M), uniform random permutations, the symmetric simple exclusion process and multilinear statistics on Markov chains. The application to random permutations gives a bivariate extension of a functional central limit theorem of Janson and Barbour. On Markov chains, we answer positively an open question of Bourdon and Vall\'ee on the asymptotic normality of subword counts in random texts generated by a Markovian source.Comment: 57 pages. Third version: minor modifications, after review proces

    APPROXIMATION ALGORITHMS FOR POINT PATTERN MATCHING AND SEARCHI NG

    Get PDF
    Point pattern matching is a fundamental problem in computational geometry. For given a reference set and pattern set, the problem is to find a geometric transformation applied to the pattern set that minimizes some given distance measure with respect to the reference set. This problem has been heavily researched under various distance measures and error models. Point set similarity searching is variation of this problem in which a large database of point sets is given, and the task is to preprocess this database into a data structure so that, given a query point set, it is possible to rapidly find the nearest point set among elements of the database. Here, the term nearest is understood in above sense of pattern matching, where the elements of the database may be transformed to match the given query set. The approach presented here is to compute a low distortion embedding of the pattern matching problem into an (ideally) low dimensional metric space and then apply any standard algorithm for nearest neighbor searching over this metric space. This main focus of this dissertation is on two problems in the area of point pattern matching and searching algorithms: (i) improving the accuracy of alignment-based point pattern matching and (ii) computing low-distortion embeddings of point sets into vector spaces. For the first problem, new methods are presented for matching point sets based on alignments of small subsets of points. It is shown that these methods lead to better approximation bounds for alignment-based planar point pattern matching algorithms under the Hausdorff distance. Furthermore, it is shown that these approximation bounds are nearly the best achievable by alignment-based methods. For the second problem, results are presented for two different distance measures. First, point pattern similarity search under translation for point sets in multidimensional integer space is considered, where the distance function is the symmetric difference. A randomized embedding into real space under the L1 metric is given. The algorithm achieves an expected distortion of O(log2 n). Second, an algorithm is given for embedding Rd under the Earth Mover's Distance (EMD) into multidimensional integer space under the symmetric difference distance. This embedding achieves a distortion of O(log D), where D is the diameter of the point set. Combining this with the above result implies that point pattern similarity search with translation under the EMD can be embedded in to real space in the L1 metric with an expected distortion of O(log2 n log D)

    Acta Cybernetica : Volume 19. Number 4.

    Get PDF

    Euler Characteristic Tools For Topological Data Analysis

    Full text link
    In this article, we study Euler characteristic techniques in topological data analysis. Pointwise computing the Euler characteristic of a family of simplicial complexes built from data gives rise to the so-called Euler characteristic profile. We show that this simple descriptor achieve state-of-the-art performance in supervised tasks at a very low computational cost. Inspired by signal analysis, we compute hybrid transforms of Euler characteristic profiles. These integral transforms mix Euler characteristic techniques with Lebesgue integration to provide highly efficient compressors of topological signals. As a consequence, they show remarkable performances in unsupervised settings. On the qualitative side, we provide numerous heuristics on the topological and geometric information captured by Euler profiles and their hybrid transforms. Finally, we prove stability results for these descriptors as well as asymptotic guarantees in random settings.Comment: 39 page

    Stable Vectorization of Multiparameter Persistent Homology using Signed Barcodes as Measures

    Full text link
    Persistent homology (PH) provides topological descriptors for geometric data, such as weighted graphs, which are interpretable, stable to perturbations, and invariant under, e.g., relabeling. Most applications of PH focus on the one-parameter case -- where the descriptors summarize the changes in topology of data as it is filtered by a single quantity of interest -- and there is now a wide array of methods enabling the use of one-parameter PH descriptors in data science, which rely on the stable vectorization of these descriptors as elements of a Hilbert space. Although the multiparameter PH (MPH) of data that is filtered by several quantities of interest encodes much richer information than its one-parameter counterpart, the scarceness of stability results for MPH descriptors has so far limited the available options for the stable vectorization of MPH. In this paper, we aim to bring together the best of both worlds by showing how the interpretation of signed barcodes -- a recent family of MPH descriptors -- as signed measures leads to natural extensions of vectorization strategies from one parameter to multiple parameters. The resulting feature vectors are easy to define and to compute, and provably stable. While, as a proof of concept, we focus on simple choices of signed barcodes and vectorizations, we already see notable performance improvements when comparing our feature vectors to state-of-the-art topology-based methods on various types of data.Comment: 23 pages, 3 figures, 8 table
    corecore