
ABSTRACT

Title : APPROXIMATION ALGORITHMS FOR
POINT PATTERN MATCHING AND SEARCHING

Minkyoung Cho, Doctor of Philosophy, 2010

Directed by: Professor David M. Mount
Department of Computer Science

Point pattern matching is a fundamental problem in computational geometry.

For given a reference set and pattern set, the problem is to find a geometric trans-

formation applied to the pattern set that minimizes some given distance measure

with respect to the reference set. This problem has been heavily researched under

various distance measures and error models.

Point set similarity searching is variation of this problem in which a large

database of point sets is given, and the task is to preprocess this database into

a data structure so that, given a query point set, it is possible to rapidly find

the nearest point set among elements of the database. Here, the term nearest is

understood in above sense of pattern matching, where the elements of the database

may be transformed to match the given query set. The approach presented here

is to compute a low distortion embedding of the pattern matching problem into an

(ideally) low dimensional metric space and then apply any standard algorithm for

nearest neighbor searching over this metric space.

This main focus of this dissertation is on two problems in the area of point pat-

tern matching and searching algorithms: (1) improving the accuracy of alignment-

based point pattern matching and (2) computing low-distortion embeddings of point

sets into vector spaces.

For the first problem, new methods are presented for matching point sets

based on alignments of small subsets of points. It is shown that these methods lead

to better approximation bounds for alignment-based planar point pattern match-

ing algorithms under the Hausdorff distance. Furthermore, it is shown that these

approximation bounds are nearly the best achievable by alignment-based methods.

For the second problem, results are presented for two different distance mea-

sures. First, point pattern similarity search under translation for point sets in

multidimensional integer space is considered, where the distance function is the

symmetric difference. A randomized embedding into real space under the L1 metric

is given. The algorithm achieves an expected distortion of O(log2 n). Second, an

algorithm is given for embedding R
d under the Earth Mover’s Distance (EMD) into

multidimensional integer space under the symmetric difference distance. This em-

bedding achieves a distortion of O(log ∆), where ∆ is the diameter of the point set.

Combining this with the above result implies that point pattern similarity search

with translation under the EMD can be embedded into real space in the L1 metric

with an expected distortion of O(log2 n log ∆).

APPROXIMATION ALGORITHMS

FOR

POINT PATTERN MATCHING AND SEARCHING

by

Minkyoung Cho

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:
Professor David M. Mount, Chair/Advisor
Professor Samir Khuller
Professor David W. Jacobs
Professor Amitabh Varshney
Professor Mark A. Austin, Dean’s Representative

c© Copyright by

Minkyoung Cho
2010

Dedication

To my parents and hime

ii

Acknowledgments

I heartily thank my advisor, Professor David Mount, whose continual encour-

agement, guidance, and support enabled me to complete my Ph.D. He is among the

best teachers that I have ever met. He provided a role model for the personality a

teacher should have and how to guide students. He attended to me like a father.

Whenever I experienced personal or academic difficulties, he advised me with con-

sideration and sympathy. I remember the first time that we first met. He listened

to my words and happily discussed some possible research topics, even though I was

novice in research. He was professional in his approach to research. Whenever solv-

ing a problem, he would encourage me to obtain better results. He assisted me in

the writing of my dissertation. He would sometimes pick up a red pen and proceed

to revise my writing. After finishing it, the paper became red all around. I will not

forget the time that I spent with him. My time in the Ph.D program was happy

and joyful. He is amazingly nice, I would want to spend more time with him. I am

so sorry that I must leave to take the next step in my career. I am very thankful

for the time we have spent together.

I am deeply thankful to my committee members: Professor Samir Khuller, Pro-

fessor David M. Jacobs, Professor Amitabh Varsheny, and Professor Mark Austin.

Occasionally Professor Samir Khuller dropped by my office and, with kindness and

generosity, he would ask me how I was doing. Whenever I missed some procedures,

his brief and concise emails enlightened me. Also, his excellent teaching in the

three courses I took from him solidified my knowledge of algorithms. My research

iii

discussions with Professor David W. Jacobs were both very helpful and insightful.

He is a distinguished researcher with a well-established background. His class was

full of enthusiasm and greatly helped to improve my research. Professor Amitabh

Varshney and Professor Mark Austin happily served on my thesis committee, and I

thank them for their invaluable time in reviewing my dissertation.

I was so fortunate to have many great and wonderful people around me during

my time in the graduate program.

I specially thank my lab colleagues, Nargess Memarsadeghi, Guilherme Fon-

seca, Sorelle Friedler, and Eunhui Park. They attended my practice talks and pro-

vided many valuable comments. I had weekly research meetings and discussions

with the members of Korean Graduate Students Vision and AI Research Group

(KGVISA) and the Korean Graduate Students System Research Group (KGSYS).

Through these meetings, I expanded my knowledge of various areas. I want specially

to acknowledge their members: (KGVISA) Kyongil Yoon, Hyoungjune Yi, Bohyung

Han, Kyungnam Kim (KGSYS) Hyeonsang Eom, Joon-Hyuk yoo, Jihwang Yeo,

Minho Shin, Soobum Lee, Seungjoon Lee, Sunghyun Chun, Yoo Ah Kim, Jae Hwan

Lee, Ji Sun Shin, and Jinhyuk Jung.

I am very grateful to my close friends, mostly in the Computer Science De-

partment: Il-Chul Yoon, Heejong Sung, Jik-soo Kim, Boram Lee, Youngmin Kim,

Jiyoung Kim, Beomseok Nam, Suryoun Jung, Doon Hoon Park, Sangchul Song, In-

seok Choi, Sukhyun Song, Sungwoo Park, Hyungyoung Song, Adam Bender, Won-

taek Seo, Joonghoon Lee, Hyejung Lee, Hyungtae Cho, Youngho Cho, Hyungtae

Lee, Tak Yeon Lee, Alex Aris, Dov Gordon, and Ryan Farrell. Because of them, my

iv

school life was very rich with happiness and well-being. In particular, I would like

to express my special gratitude to Il-Chul Yoon and Sangchul Song, who enjoyed

and shared their thoughts and knowledge about job searching and my dissertation

as well as life in general. Finally, I thank God for the presence of Angela Song-Ie

Noh, Jee Hye Han, and Hyuk Oh. Their emotional support contributed to my great

joy of life.

I finish this acknowledgement by mentioning my family. I am forever indebted

to my parents and family. I feel deep gratitude to my parents, sister and brother

for their endless love throughout my life.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Summary of Results . 4

1.1.1 Improved Approximation Bounds for Planar Point Pattern
Matching . 4

1.1.2 Similarity Search for Point Sets with Translation under Sym-
metric Difference . 7

1.1.3 Similarity Search for Point Sets with Translation under EMD 11
1.2 Organization of the Dissertation . 15

2 Literature Review 16
2.1 Exact Point Pattern Matching . 17
2.2 Point Pattern Matching for Noisy Data 18
2.3 One-to-One Matching . 18
2.4 Many-to-One Matching and Hausdorff Distance 21
2.5 Approximation Algorithms for the Hausdorff Distance 23
2.6 Robustness and the Partial Hausdorff Distance 27
2.7 Point Pattern Similarity Search . 28

2.7.1 Point Pattern Similarity Search and Embeddings 31

3 Improved Approximation Bounds for Planar Point Pattern Matching 35
3.1 Introduction . 35
3.2 The Serial and Symmetric Alignment Algorithms 39
3.3 Symmetric Alignment: Upper Bound 45

3.3.1 Translational Displacement 47
3.3.2 Rotational Displacement . 50
3.3.3 Combining Translation and Rotation 51

3.4 Symmetric Alignment: Lower Bound 56
3.5 Serial Alignment: Upper Bound . 61

3.5.1 Translational Displacement 62
3.5.2 Rotational Displacement . 64
3.5.3 Combining Translation and Rotation 66

3.6 Serial Alignment: Lower Bound . 76
3.7 Summary and Concluding Remarks 81

4 Embedding and Similarity Search for Point Sets under Translation 83
4.1 Introduction . 83
4.2 Preliminaries . 91
4.3 Translation-Invariant Mapping . 98
4.4 Space Reduction Through Sampling 110

vi

4.5 Embedding . 115
4.5.1 Embedding with High Probability 116
4.5.2 Embedding into a Space of Logarithmic Dimension 118

4.6 Similarity Search . 119
4.7 Conclusions . 121

5 Earth Mover’s Distance under Translation 123
5.1 Introduction . 123
5.2 Translation Insensitive Embedding of the EMD into L1 130

5.2.1 Improvement of Space Complexity and Preprocess Time . . . 134
5.3 Similarity Search for EMD under Translations 135

6 Conclusions 140
6.1 Open Problems and Future Research 142

6.1.1 Improving Performance for Point Pattern Searching 142
6.1.2 Application for Database Search 143
6.1.3 Allowing for Noise and Other Transformations 143

Bibliography 145

vii

List of Tables

3.1 Summary of results for alignment-based approximation. Bounds on
the approximation ratios for symmetric and serial alignment algo-
rithms are given as a function of the distance ratio ρ, where c∞ ≈ 3.19. 38

viii

List of Figures

1 Comparison of the two algorithms. 43

2 The positions of the point sets prior to running the algorithm. 46

3 Analysis of the midpoint translation. 48

4 Translation space, Tρ(α), for symmetric alignment. 49

5 Analysis of the rotational displacements for symmetric alignment. . . 51

6 The approximation ratio for the symmetric alignment algorithm as a
function of ρ. 54

7 The lower bound on Asym. 56

8 The translation space for serial alignment. 63

9 The rotation space for serial alignment. 65

10 Translation and rotation space for serial alignment. 67

11 The approximation ratio for serial alignment as a function of ρ. . . . 71

12 The lower bound on Aser. 76

13 The approximation ratios for serial alignment and symmetric align-
ment. (Note that the y-axis does not start at 0.) 82

1 Avoiding wraparound for point sets in Z
d
u by embedding them into Z

d
3u. 87

2 An example of the invariant transformation, where n = 5, u = 24,
s = 11, h′(x) = x mod s, and π = [0, 3, 6, 7]. (For simplicity we have
chosen the second hash function h′′ to be the identity.) 100

3 Leapfrog computation with convolution operations 107

ix

Chapter 1

Introduction

Geometric point pattern matching problem is a fundamental computational problem

and has numerous applications in areas such as computer vision [47], image and video

compression [5], model-based object recognition [33], and computational chemistry

[25].

The most common formulation considered in computational geometry involves

determining the degree of similarity between two given point sets, subject to some

group of allowable geometric transformations. For example, for planar point sets

the transformation group might consist of translations, rigid motions (translation

and rotation), similarities (translation, rotation, and uniform scaling), and affine

transformations (translation, rotation, nonuniform scaling, and shearing). We as-

sume that similarity (or more accurately, dissimilarity) is measured by some distance

function that maps two point sets to a nonnegative real. There are many different

ways in which distance between two point sets can be measured, as we shall see

later. We can characterize the notion of distance between two point sets under an

arbitrary group of transformations as follows.

Definition 1 Let P and Q be two finite point sets in R
d, let T be a group of

1

geometric transformations, T : R
d → R

d, and let dist be some distance function

between point sets. Define Dist to be corresponding distance function under the

transformations of T , that is:

Dist(P, Q) = min
t∈T

dist(tP, Q).

♦

Depending on what distance measure is used and what type of errors are to

be tolerated, problem solving techniques are quite different. There are a number of

key criteria that characterize the exact nature of a point pattern matching problem.

Exact versus Noisy Data: Point data may arise from many different sources.

Exact data arise from a discrete source, which may be assumed to be free

of measurement error. Early research on the algorithmic complexity of point

pattern matching focused on these instances, largely because they are the

easiest to deal with. In most applications, however, point data arises from

measurements of continuous data and hence are subject to errors of various

sources, such as sensing errors and discretization.

Partial or full matching: In some applications, it is desirable to locate instances

of a small pattern set in a larger reference set. In other applications (arising

for example from image registration [10]) it is assumed that the two point sets

are of roughly equal size and the objective is to find the transformation that

most nearly aligns the two sets.

1-to-1 versus Many-to-1 Correspondences and Robustness: It is often de-

2

sirable to consider 1-to-1 matches between point sets. This is particularly

true if it is known that there are no missing or spurious point in the sets, and

hence each point in the reference set may be assumed to correspond to a single

point in the pattern set. In many applications, however, there may be missing

and spurious points. These arise as a consequence of obscuration or errors in

feature-point selection.

Objective Function: There are many ways of formally defining the degree of sim-

ilarity between two point sets. When data is exact, it is common to consider

measures such a symmetric difference, which count the number of points of

one set that are not in the other. When noisy data is presented, other mea-

sures based on the distances between nearby points, such as the Hausdorff dis-

tance [2,16,24,53,54], bottleneck distance [23], and earth mover’s distance [18]

are often used. (Definitions will be presented below.)

Single pair versus database search: In applications like point-based image reg-

istration [35, 36, 58], a single pair of point sets is given, and the goal is to

find an optimal aligning transformation. In the database search problem, it

is assumed that a large collection of sets is given, and the problem involves

processing this collection into a data structure so that, given a query point

set, it is possible to identify similar point sets.

In Chapter 2 a more extensive review of the literature in this area is presented.

3

1.1 Summary of Results

The results of this dissertation are focused on three different topics. The first

involves improvements to an existing approximation algorithm for point pattern

matching under the Hausdorff distance (defined below). The second involves the

design of a new approach for point pattern similarity search based on computing

a low-distortion embedding of the point pattern matching problem into a vector

space. The third involves of an embedding algorithm for the earth mover’s distance

and point pattern similarity searching under the earth mover’s distance.

1.1.1 Improved Approximation Bounds for Planar Point Pat-

tern Matching

Given point sets P and Q the directional Hausdorff distance (also called the direc-

tional Hausdorff distance), denoted h(P, Q), is defined to be

h(P, Q) = max
p∈P

min
q∈Q

‖pq‖,

where ‖pq‖ denotes the Euclidean distance between points p and q.

The directional Hausdorff distance is natural in applications where the pattern

set P is expected to match some subset of the background set Q. In applications

where it is desired that every point of P matches some point of Q and vice versa, a

bidirectional similarity measure may be more appropriate such as the bidirectional

Hausdorff distance, which is defined to be max(h(P, Q), h(Q, P)). When match-

ing with bidirectional similarity measures, it may be possible to identify a global

4

reference point (such as the centroid of each set) about which to anchor the align-

ment. This is not possible, however, under the directional Hausdorff distance, since

such statistics may be distorted by unmatched outlying points. Throughout, unless

otherwise specified, we use the term Hausdorff distance to denote the directional

Hausdorff distance.

A simple and natural approach is to consider transformations induced by align-

ing a small subset of points from one set to the other. This is arguably the sim-

plest and most easily implemented algorithm for approximate pattern matching,

and it is the basis of some of the most popular methods in computer vision, such

as RANSAC [26]. Goodrich, Mitchell, and Orletsky [28] were the first to prove an

upper bound on the approximation ratio such a simple alignment-based algorithms.

They considered point pattern matching under a number of different transforma-

tion spaces and in different dimensions. For the case of rigid transformations in

the plane, their algorithm computes a diametrical pair for P and then computes for

every pair of distinct points of Q a rigid transformation that aligns these pairs. It

then returns the transformation achieving the minimum Hausdorff distance. Their

algorithm runs in O(n2m log n) time. They prove that it returns an aligning trans-

formation whose Hausdorff distance is at most a factor of 4 larger than the optimum

Hausdorff distance.

We considered this problem, with the objective of improving the approximation

ratio of the Goodrich, Mitchell, Orletsky algorithm, while retaining the same simple

algorithmic structure. Their algorithm is based on aligning points one by one, and

henceforth we refer to this as serial alignment. We show that it is possible to improve

5

on their approximation ratio of 4. Our approach has the same running time as theirs

and, like theirs, is very easy to implement. It is based on a minor modification that

selects the transformation that best aligns the entire subset of points, which we call

symmetric alignment. Let Aser and Asym denote the approximation ratios for these

respective algorithms.

Rather than just considering the worst-case approximation ratios, we analyzed

the approximation ratios of these algorithms in a manner that is sensitive to the

optimal Hausdorff distance. For each problem instance P and Q, we define an

geometric parameter ρ, called the distance ratio, to be half the ratio of the diameter

of P to the optimum Hausdorff distance between P and Q. We showed that, as the

distance ratio increases, the accuracy of the approximation increases as well. We

feel that this analysis is useful because large values of ρ often arise in applications.

For example, in document analysis and satellite image analysis, the ratio of the

diameter of a typical pattern ranges from tens to hundreds of pixels, while the

expected digitization error is on the order of a single pixel. Let Aser(ρ) and Asym(ρ)

denote the approximation ratios for serial and symmetric alignment, respectively,

as a function ρ.

Our results from [16] show that, for serial alignment, the approximation bound

Aser satisfies

c∞ +
1

27ρ2
≤ Aser(ρ) ≤ c∞ +

9

4ρ
,

where c∞ ≈ 3.19. For symmetric alignment, the approximation bound Asym satisfies

3 +
1

10ρ2
≤ Asym(ρ) ≤ 3 +

1√
3 ρ

.

6

Observe that the approximation ratio for symmetric alignment is better than that

of serial alignment for almost all but very small values of ρ. Further, for (typical)

applications where distance ratio is large, the approximation factor of symmetric

alignment is close to 3.

Our results can also be applied to provide a modest improvement in the run-

ning time of the ε-approximation algorithm of Indyk et al. [39]. Their algorithm

uses the simple alignment algorithm as a subroutine. The running time of their al-

gorithm has a cubic dependence on the (upper bound on the) approximation ratio of

the alignment algorithm. So, improving the approximation ratio bound by a factor

of f results in factor of f 3 reduction in the running time of their algorithm.

These results are published in [16]. Complete details of the algorithm results

can be found in Chapter 3.

1.1.2 Similarity Search for Point Sets with Translation un-

der Symmetric Difference

When dealing with a large database of point sets, an important problem is how to

perform similarity search, that is, to find the closest point set of the database to a

given query pattern. The objective is to preprocess the elements of the database so

that searches can be answered efficiently.

We considered this problem in a relatively simple context, but one that still

leads to quite an interesting computational problem. We assume that point sets have

integer coordinates, that they are to be matched subject to an unknown translation,

7

and that there is a significant fraction of outliers, that is, points from one set may

not match any point of the other set. We assume, however, corresponding points

(subject to the optimum translation) match identically. (This is to be contrasted

with measures such as the partial Hausdorff distance [35], where both outliers and

near misses are tolerated.) Outliers are challenging because global properties of

the point sets, based for example on the identification of reference points such as

centroids [2], are not applicable. The distance metric we use is the size of the

symmetric difference of the two point sets, which is to be minimized through some

translation of one set relative to the other. (Formal definitions are given below.)

The approach presented here is based on finding a function that maps a point

set from one metric space to another. A metric space (X, d) is a set X, and a

nonnegative distance function d such that for all x, y, z ∈ X, (1) d(x, x) = 0, (2)

d(x, y) = d(y, x), and (3) d(x, z) ≤ d(x, y) + d(y, z). The last condition is the

triangle inequality. The distortion of such an embedding function is defined to be

the maximum multiplicative variation that distances might suffer in the mapping

process. More precisely, given two metric spaces (X, dX) and (Y, dY), we say that

an embedding f : X → Y has distortion c, if there exist c1c2 = c such that for all

x, x′ ∈ X,

1

c1

dX(x, x′) ≤ dY (f(x), f(x′)) ≤ c2dX(x, x′).

Our approach is to embed the points of the database into a metric space for

which there exists an efficient similarity search algorithm. Given any query point

set, similarity search is performed by a reduction to nearest neighbor searching in

8

the metric space.

Consider a point set consisting of at most n points on the d-dimensional integer

grid, where d is a constant. We assume that the coordinates of each point are

bounded above by a polynomial function of n. As usual, let Z denote the set of

integers, and let Zu denote {0, 1, 2, . . . , u− 1}. (We do not assume that u is prime.)

Let Z
d denote the set of d-element vectors over Z and define Z

d
u analogously for

Zu. Let Z
d
u(≤ n) denote the collection of point sets over Z

d
u that contain at most n

points. Given two finite sets P and Q, let P ⊖Q denote their symmetric difference,

that is,

P ⊖ Q = (P \ Q) ∪ (Q \ P).

The cardinality of the symmetric difference is a well known metric on finite sets,

which we denote by |P ⊖ Q|.

Given a point set P and any t ∈ Z
d, the translate P + t is defined to be

{p + t | p ∈ P}. Extending the symmetric difference, we define the symmetric

difference distance under translation, denoted 〈P ⊖ Q〉, to be

〈P ⊖ Q〉 = min
t∈Zd

|(P + t) ⊖ Q| .

It is easy to verify that this is a metric. (See Lemma 4.2.1.) Throughout, we will

assume that P and Q are taken from Z
d
u(≤ n).

Let ℓd
1 denote the metric space consisting of real d-dimensional space R

d en-

dowed with the L1 metric. Given x, y ∈ ℓd
1, we denote their L1 distance by ‖x − y‖1.

We use the terms randomized embedding and randomized function throughout to

denote a function computed by a randomized algorithm that satisfies the given

9

probability bounds. We also use log to denote logarithm base 2 and ln to denote

the natural logarithm. In Chapter 4 we show that such a translation-invariant em-

bedding is possible, by proving the following theorem.

Theorem 1 Given integers n and u, where u ≤ nO(1), a constant d, and failure

probability β, there exists a randomized embedding Ψ : Z
d
u(≤ n) → ℓm

1 , where m =

O(n log2 n log(1/β)) such that for any P, Q ∈ Z
d
u(≤ n):

(i) ‖ΨP − ΨQ‖1 ≤ (2 log n) 〈P ⊖ Q〉.

(ii) ‖ΨP − ΨQ‖1 ≥ 1
17 log n

〈P ⊖ Q〉, with probability at least 1 − β, and

This embedding can be computed in time O(n log4 n log(1/β)).

Note that part (i) of the above theorem holds irrespective of randomization.

It follows that the resulting embedding achieves a distortion of at most 34 log2 n,

with probability at least 1 − β.

This result shows how to embed point sets under translation into L1 space.

Since each point set is mapped into a point in this space, similarity search under

translation can be reduced to (approximate) nearest neighbor searching among the

embedded points. Any standard method for (approximate) nearest neighbor search-

ing may be applied [6, 7, 38, 43].

The principal shortcoming of the above result is that the dimension of the space

into which the points are embedded is superlinear in n. The following result shows

that the dimension can be reduced to a quantity that grows only logarithmically in

n. The price that we pay is that the distortion bounds hold in expectation only.

The expected distortion is O(log2 n).

10

Theorem 2 Given positive integers n and u, where u ≤ nO(1), and a constant d,

there exists a randomized embedding Ψ′ : Z
d
u(≤ n) → ℓm

1 , where m = O(log n), such

that for any two sets P, Q ∈ Z
d
u(≤ n) :

(i) E [‖Ψ′P − Ψ′Q‖1] ≤ (3 log n) 〈P ⊖ Q〉.

(ii) E [‖Ψ′P − Ψ′Q‖1] ≥ 1
17 log n

〈P ⊖ Q〉

This embedding can be computed in expected time O(n log4 n).

Complete details of our algorithm and results can be found in Chapter 4.

These results are published in [15].

1.1.3 Similarity Search for Point Sets with Translation un-

der EMD

The Earth-Mover’s Distance (EMD) [3, 18] is a well-known distance measure, with

many applications in computer vision and image processing. The concept was intro-

duced as a means of describing the distance between two probability distributions

as a function of the effort needed to convert one into the other. This definition can

be applied to a pair of finite point sets P and Q of equal cardinality. Given two

point sets P and Q of equal cardinality, let M denote the set of bijections from P

to Q. Then, the earth mover’s distance between P and Q is defined to be

EMD (P, Q) = min
M∈M

∑

(p,q)∈M

‖p − q‖2 .

Computing the EMD between two point sets reduces to computing a minimum

weight perfect matching in the complete bipartite graph (P, Q, P × Q), where the

11

weight of each edge (p, q) is the Euclidean distance between these points.

We consider the point pattern similarity search problem under the EMD met-

ric. The trivial solution would be to compute the EMD from the query point set

to each point set of the collection and return the closest. However, this brute-force

search is not acceptable in cases where the total number of point sets is very large.

To support efficient searching, a well-formed index or canonical form of a point set

is necessary. The approach given here is to embed a point set under EMD into a

low-dimensional vector space under some well-known metric space, so that we can

use some well-known data structures such as the (approximately) nearest neighbor

search algorithms.

The problem of computing low distortion embeddings of the EMD into has

been studied by Indyk and Thaper [40], Shirdhonkar and Jacobs [55], and Wang et

al. [60].

Indyk and Thaper designed an algorithm for embedding EMD in R
d into ℓ1

in Z
d′ , where d′ depends on the cardinality n and the spread (diameter) ∆. Under

the assumption that the minimum distance between any two points is at least 1,

they showed that the distortion is O(log ∆). By merging the embedding results

and Locality Sensitive Hashing (LSH), they designed an algorithm for point pattern

search under EMD metric [40].

Shirdhonkar and Jacobs presented an linear time algorithm to compute a

wavelet-based variant of the EMD. They show that their measure is a metric, and

that it is (approximately) equivalent to the EMD in the sense that the ratio of the

EMD to the wavelet EMD is bounded within some constant [55]. These algorithms

12

provide efficient solutions to similarity search for point sets under EMD.

We can naturally extend the problem to apply to the point sets with transla-

tions. Given two finite point sets P and Q of equal cardinality, let M denote the

set of bijections from P to Q, and let T denote the space of allowable translations.

Then, the earth mover’s distance between P and Q under translation is defined to

be

EMD 〈P, Q〉 = min
t∈T

EMD (P + t, Q) = min
t∈T

min
M∈M

∑

(p,q)∈M

‖(p + t) − q‖2 .

Our approach is to first modify Indyk and Thaper’s randomized embedding

algorithm to a deterministic version. (In contrast to their algorithm, ours is signifi-

cantly less sensitive to translation). Then, we reduce the problem to point pattern

searching with translation under the symmetric difference distance and apply our

embedding technique for the point pattern search with translation under symmetric

difference.

In Chapter 5 we present the following theorem, which provides an embedding

from EMD to symmetric difference, but which does not involve translation. Define

R
d
∆(= n) to be the collection of all sets of points of cardinality n over R

d whose

coordinates are over the interval [0, ∆). COMMENT: [Minkyoung, I have added

the unit-distance assumption and restated the theorems in this form. I also added that

∆ = n
O(1). Please check.] Following Indyk and Thaper, we imagine that the points

have been derived from some measurement process, and the actual coordinates of

the points are known to some minimal precision, determined by the sensor’s limita-

tions. Let us assume that distances have been uniformly scaled so that this minimal

13

precision is roughly one unit. We assume that the distance between any two points

(even after alignment) is defined to be the maximum of 1 and the actual distance.

We call this the unit-distance assumption.

Theorem 3 Given a positive real parameter ∆ = nO(1) and a constant dimension

d, there exists an embedding function Λ: R
d
∆(= n) → Z

m, for m = O(n∆d log2 ∆),

such that for any two sets P, Q ∈ R
d
∆(= n) under the unit-distance assumption

√
d · EMD (P, Q) ≤ |ΛP ⊖ ΛQ| ≤ 6

√
d(log ∆)EMD (P, Q) .

We then show that, by combining this result with Theorem 3, the following

translation-invariant embedding is obtained.

Theorem 4 Given a positive real parameter ∆ = nO(1), a constant dimension d,

and failure probability β, there exists a randomized embedding Γ: R
d
∆(= n) → ℓm

1 ,

for m = O(n∆d log2(n∆) log 1
β
), such that for any two sets P, Q ∈ R

d
∆(= n) under

the unit-distance assumption, with probability at least (1 − β)

√
d

17 log k
EMD 〈P, Q〉 ≤ ‖ΓP − ΓQ‖1 ≤ (12

√
d log k log ∆)EMD 〈P, Q〉 ,

where k = 2n∆d.

This embedding results show that point sets in R
d
∆(= n) with translation under

EMD can be embedded into a vector space in ℓ1. We can apply a general nearest

neighbor data structure for finding the closest one to given a query point set.

Complete details of our algorithm and results can be found in Chapter 5.

14

1.2 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2 a review of the

relevant literature in this area is presented. The alignment-based point pattern

matching algorithm and its analysis are presented next in Chapter 3. In Chapter 4,

the translation-invariant embedding of point sets under symmetric difference is pre-

sented. In Chapter 5, the algorithm for embedding point sets under the EMD metric

into the symmetric difference distance is presented. Finally, Chapter 6 summarizes

the main results of this dissertation, and discusses topics for possible future research.

15

Chapter 2

Literature Review

As mentioned in the introduction, the geometric point pattern matching problem

is a fundamental computational problem and has numerous applications in diverse

areas. There are many ways in which to formulate point pattern matching as a

computational problem. In this section we will describe some formulations that

have been considered in recent decades. Depending on the combination of problem

characteristics (for example, the choice of distance measure, the space in which the

points reside, the group of allowable transformations), the algorithmic approaches

vary significantly. Since many point pattern matching problems are formulated

as optimization problems (e.g., find the transformation minimizing some distance

measure) each formulation can be considered both in the context of computing

an optimal solution or an approximation to the optimum. Since the field is quite

extensive, we have focused primarily on results from the field of computational

geometry that are most relevant to this dissertation.

16

2.1 Exact Point Pattern Matching

Perhaps the simplest version of the point pattern matching problem is the formula-

tion in which the no errors or outliers are tolerated. Given two point sets P and Q,

the question is whether the two sets are congruent, that is, they are identical after

some transformation.

Observe first that the case of translation is trivial since it suffices to align some

common reference point, like the centers of mass or centroids, of the two sets. For

the case of rigid motion (translation and rotation), Atkinson [8] observed that the

optimal transformations must map the centroid P to the centroid of Q, after which

the problem reduces to computing the optimal rotation. Computing the optimal

rotation can be reduced to a string pattern matching problem. He presented an

O(n log n) time algorithm in the plane. First, the centroid c of P is computed and

the points are represented in polar coordinates with respect to c. These coordinates

are sorted in angular order and encoded as a string. The process is repeated for Q.

To deal with the circular nature of polar coordinates, one of the strings is doubled

through concatenation, and the algorithm searches for an occurrence of the other

through any standard string-matching algorithm.

Alt, Mehlhorn, Wagener, and Welzl [4] presented a solution to the exact prob-

lem in 3d. Again the point sets are translated so their centroids coincide with the

origin. Each of the point sets is then projected onto the unit sphere and the convex

hull is computed. It is then shown how to determine whether the convex hulls are

congruent in O(n log n) time. In general they show that, for any d ≥ 3, it is possible

17

to reduce the d-dimensional matching problem to n matching problems in dimension

d − 1. This implies an O(nd−2 log n) time algorithm, for any dimension ≥ 3.

Sprinzak and Werman [57] consider exact pattern matching under affine trans-

formations. First, P and Q are transformed to their second moment matrices in the

group of unit matrices. Then it is shown that P and Q can be matched under an

affine transformation if and only if their unit matrices can be matched under rota-

tion. The running time of this algorithm is the same as in the rigid case, since the

normalizing transform can be computed in linear time.

2.2 Point Pattern Matching for Noisy Data

The case of exact point pattern matching is not very useful in practice because point

coordinates are often typically subject to measurement and discretization errors.

Therefore, it is important to consider pattern matching in a noisy setting. When

noise is present, it is necessary to define a measure of similarity. We consider a

number of such measures in the subsequent sections.

2.3 One-to-One Matching

We first consider matching functions that are required to be one-to-one. In such cases

an injective function is given from one set to the other, and then some function of the

resulting distances is computed. The bottleneck distance is a well known example.

It is defined to be

dist(P, Q) = min
f

min
p∈P

‖f(p) − p‖,

18

where the minimum is taken over all injective functions f : P → Q.

Alt, Mehlhorn, Wagener, and Welzl [4] presented an O(n6) time algorithm for

the translation that minimizes the bottleneck distance in the plane. Their algorithm

operates by parametric search. In particular, they assume that a distance parameter

δ is given, and they apply binary search to obtain the optimal value of δ. (See

[46] for a more detailed explanation of parametric search.) They observed that,

in any optimal placement, there exist two pairs of points in P and Q such that

‖p1 − q1‖ = ‖p2 − q2‖ = δ. Let C1 and C2 denote the circles centered at two

points p1, p2 ∈ P , respectively, both with radius δ. Clearly, the corresponding

points q1, q2 ∈ Q lie on C1 and C2, respectively. Next, the algorithm computes the

trace of another point qi ∈ Q as an algebraic curve of constant degree subject to

the constraint that q1 and q2 on these circles. They show that the resulting curve

can intersect a circle of radius δ centered at any other point p ∈ P at most 12

times. Thus, a point qi ∈ Q generates at most six intervals on the circle of radius

δ centered at each p ∈ P , and so the maximum number of intervals for each qi is

at most 6n. O(n2) intervals are obtained for all Q. For each interval at least one

of the correspondences is changed. The algorithm checks whether there exists a

one-to-one correspondence in the interval by computing a perfect matching on the

graph in which each edge represents the fact that two points p ∈ P and q ∈ Q are

joined by an edge and dist(p, q) ≤ δ. Since there are the pairs (p1, p2) and (q1, q2), all

possible pairs are tried. Since there are O(n4) such pairs, and the perfect matching

can be computed in O(n2) time, the total running time is O(n6). Efrat and Itai [23]

presented a modest improvement to this algorithm by showing how to compute the

19

perfect matching in O(n1.5 log n) time.

Observe that even for this relatively simple case of planar point pattern match-

ing under translation, the running times are quite high. This has prompted research

into more efficient algorithms by resorting to approximation.

Heffernan and Schirra [30] considered an approximate version of the point

pattern matching for one-to-one matching under rigid motions. The basic idea

of their algorithm is as follows. First, axis-parallel grid lines are drawn on the

plane with width and height γ, and each point of P and Q is snapped to the

nearest intersection of two grid lines, called a grid point. They compute a one-to-one

matching by reduction to max-flow on a customized flow network G(s, t, P, Q, C),

where s is connected to all points in P , and t is connected to all points in Q. To

speed-up the processing, a compressed graph is considered. They build a set C

satisfying the following conditions. Let ai denote the grid cell for pi, and let bj

denote the grid cell for qj . If dist(ai, bj) ≤ δ then, a vertex cij is entered in the set C

and connected to pi and qj . In this setting, if the resulting max-flow value is n, then

there exists a perfect matching on the original graph within distance δ =
√

2σ. Since

the grid snapping process introduces an error, this algorithm yields an approximate

version for the one-to-one problem. Note that the resolution of the grid determines

the approximation error. For a given (optimal) distance parameter ε, they observe

that the distance between the centroids of the two point sets is at most ε. With this

fact, they solve the translation problem easily with an additional error of ε. For the

case of rotation, they pick the farthest point from a fixed center and draw a circle.

By subdividing the circular arc with a function of γ, they compute a candidate set

20

of rotations in which subdivided arcs have corresponding points within a distance

depending on both ε and γ. Then, check all possible rotations of the candidate set.

Combining the two, they solve the problem under rigid motion approximately in

running time O(n2.5(ε/γ)5).

Utrianinen presented a (1 + ε) approximate algorithm for one-to-one point

pattern matching under rigid motions and the least squares error. First, given two

point sets, an optimal translation is computed by aligning their centroids. Comput-

ing the optimal rotation is a more difficult problem. He shows that it is a special

case of the vector-weighted bipartite matching problem, for which no polynomial

time algorithm is known. In 2-d, it can be solved approximately by sampling a

collection of 2π
ε

angles uniformly about the circle, testing each, and returning the

best solution among them. This yields a (1+ ε) approximate solution. The running

time of this algorithm is O(n3/ε).

2.4 Many-to-One Matching and Hausdorff Distance

As mentioned earlier, in applications where there may be spurious or duplicate

points in the pattern set, one-to-one matchings may not be appropriate. When

many-to-one matches are allowed, it is possible to match each pattern point against

its closest reference point.

A commonly used distance function in this context is the directional Hausdorff

distance. Recall that, given two point sets P and Q, the directional Hausdorff

21

distance, denoted h(P, Q), is defined to be

dist(P, Q) = max
p∈P

min
q∈Q

‖pq‖,

where ‖pq‖ denotes the Euclidean distance between points p and q.

Note that the definition is asymmetric since every point of P must be mapped

to some of point of Q, but not vice versa. Each point of Q can be matched with many

points of P . The directional Hausdorff distance is a natural choice in applications

where the pattern P is expected to match some subset of the reference Q. In

applications where it is desired that every point of P matches some point of Q and

vice versa, a bidirectional similarity measure may be more appropriate, such as the

bidirectional Hausdorff distance, which is defined to be max(h(P, Q), h(Q, P)) [2,

4, 23, 31, 41]. Unless stated otherwise, we will use the term Hausdorff distance to

denote the directional Hausdorff distance.

A number of algorithms have been proposed for computing the optimal pat-

tern matching under the Hausdorff distance [14, 34]. The best-known algorithm

for determining the rigid motion that minimizes the directional Hausdorff distance

between two planar point sets P and Q of sizes m and n, respectively, runs in

O(m3n2 log2 mn) time [14]. Chew, Goodrich, Huttenlocher, Kedem, Kleinberg, and

Kravets compute an optimal solution by first solving a decision problem for a given

distance threshold δ, then compute the optimal value of δ by parametric search [1].

They apply the observation that, if P and Q are an optimal placement, each point

of P lies within a disc of radius δ centered a point of Q. For the special case of trans-

lation only, discs of radius δ are drawn centered at each point of Q. For each point

22

p ∈ P , the resulting disc sets are translated by the vector −~p. Thus, m disc sets

are generated. In this context, each disc set represents the transformation spaces of

each point of Q. They show that there is a point that is contained within m discs

if and only if the Hausdorff distance between P and Q is at most δ.

To solve the general problem rotation must also be considered. They approach

this by treating this as a kinetic algorithm parameterized by the rotation angle θ.

Although θ is a continuous function, point correspondences only changed when the

overlap of discs changes. They count the number of the critical events at which two

discs are tangent or three circles meet at a point. They present an upper bound

of O(m3n2) on the number of such events and, by using dynamic Vornoi diagrams,

they show that the decision problem can be solved in O(m3n2 log mn) time. Thus,

the overall running time of their algorithm is O(m3n2 log2 mn).

2.5 Approximation Algorithms for the Hausdorff Distance

Given the high complexity of the above algorithm, it is natural to consider approx-

imation algorithms. In a traditional approximation formulation, the objective is

to output a solution that is within a factor of (1 + ε) times the optimal distance,

for some ε > 0. An alternative formulation, which is often used in point pattern

matching, is to return a distance that is within (1 + ε)δ, where δ is a user-supplied

distance threshold. (This choice motivated by the fact that, in many applications,

errors result from digitization to some known resolution, and there is little point

in achieving an approximate solution that is of higher resolution than this.) In

23

addition, random sampling techniques can be applied for further performance im-

provement. The approximation ratio of a pattern matching algorithm is defined to

be the maximum ratio, over all input instances, between the distance produced by

the algorithm and the optimum distance.

Alt, Aichholzer, and Rote [2] presented a very simple (almost trivial) algorithm

to achieve a constant factor approximation to the point pattern matching problem

under translation bidirectional Hausdorff distance. The algorithm works by first

computing a representative point, called Steiner point, of each of the two sets and

then computing the translation that aligns these two points. They show that the

approximation factor depends only on the Lipschitz constant c of the Steiner point.

In particular, given two point sets P and Q and an associated distance function

dist, the associated Steiner points, s(P) and s(Q), respectively, should satisfy the

following two conditions, for any allowed transformation t:

s(tP) = t(s(P)) and ‖s(P) − s(Q)‖ < c · Dist(P, Q).

Goodrich, Mitchell, and Orletsky [28] considered the point pattern matching

problem under a number of different transformation groups and in various dimen-

sions for the (directional) Hausdorff distance. They presented a simple approxima-

tion algorithm based on alignments of small tuples of points. For example, in the

case of rigid transformations in the plane, their alignment algorithm proceeds as

follows. Let (p1, p2) denote a pair of points having the greatest distance in P , that

is, a diametrical pair. For each distinct pair (q1, q2) in Q, their algorithm computes a

rigid transformation matching (p1, p2) with (q1, q2) as follows. First, it applies to P

24

a translation that maps p1 to q1. Then it performs a rotation about p1 (after transla-

tion) that aligns the directed line segment −−→p1p2 with −−→q1q2. The rigid transformation

E resulting from the composition of this translation and rotation is then applied to

the entire pattern set P , and the Hausdorff distance h(E(P), Q) is computed. After

repeating this for all pairs (q1, q2), the transformation with the smallest Hausdorff

distance is returned. The running time of this algorithm is O(n2m log n) because,

for each of the n(n− 1) distinct pairs of Q, we compute the aligning transformation

E in O(1) time, and then, for each point p ∈ P , we compute the distance from

E(p) to its nearest neighbor in Q. Nearest neighbors queries in a planar set Q

can be answered in time O(log n) after O(n log n) preprocessing [22]. They prove

that this algorithm returns an aligning transformation whose Hausdorff distance is

at most a factor of 4 larger than optimum Hausdorff distance. (In Chapter 3, we

will present an algorithm that improves the approximation factor. We show that as

the ratio of the diameter and the optimal Hausdorff distance tends to infinity, the

approximation factor our algorithm approaches 3.)

Indyk, Motwani, and Venkatasubramanian [39] presented an ε-approximation

algorithm for the planar point pattern matching problem under rigid transforma-

tions for the Hausdorff distance. That is, the Hausdorff distance produced by their

algorithm is at most a factor of (1 + ε) greater than the optimum, where ε > 0

is a user-supplied parameter which is given an estimate of the optimum Haus-

dorff distance. Their algorithm first computes the diametrical pair p1, p2 of P .

Then it enumerates all the pairs (q1, q2) of points in Q that lie within a distance

of 2ε with respect to p1p2. They show that the number of such pairs is at most

25

O(min(εn4/3∆1/3 log n, n2)), where ∆ is the ratio of the distances between the far-

thest and closest pairs of points. To obtain the desired accuracy, they employ the

approach of Heffanan and Schirra [31] for discretizing transformation space. Let C1

and C2 denote circles centered p1 and p2, respectively, each of radius ε. First, C1 is

covered with a grid of width and height with γ. Then, for each grid point, a circular

arc of radius q1q2 centered at the grid point and intersecting the disc C2 is computed.

The arc is subdivided into subarcs of length γ. Now, q1 and q2 can be placed on

the grid points. By using the alignment algorithm, they compute a transformation

for each placement and compute the Hausdorff distance of this transformation. The

running time is O(m·min(εn4/3∆1/3 log n, n2)·min(ε2, log n)) where m is the number

of elements in P .

Cardoze and Schulman [11] also gave efficient ε-approximation algorithms for

2-dimensional point pattern matching under both translation and rigid transforma-

tion for the Hausdorff distance. Their algorithms are randomized. For the case

of translations, their algorithm operates by reduction to a collection of O(n) 1-

dimensional point pattern matching problems, each of which is then reduced to

computing a convolution. They exploit the fact that convolutions can be computed

efficiently in O(n log n) time using the fast Fourier transform. Its running time

is O(n2 log n + logO(1) ∆) for any fixed precision parameter and any fixed success

probability.

26

2.6 Robustness and the Partial Hausdorff Distance

One shortcoming of simple Hausdorff-based matching is the lack of sensitivity to

outliers, that is, the presence of points in the pattern set that do not match any

part of the reference set. Such an outlying point may distort the Hausdorff distance

by an arbitrary amount. A distance function is said to be robust if it is insensitive

to the presence of outliers. One approach to reduce sensitivity to outliers is to allow

up to k points to not be matched, where k is a value chosen by the user, varying

from a constant up to a constant factor times n.

The partial Hausdorff distance [35] handles this isssue well. Given two point

sets P and Q, the Partial Hausdorff distance is defined by

hK(P, Q) = Kth
p∈P min

q∈Q
‖p − q‖,

where Kth
p∈P denote the K-th ranked value in the set of distance.

Another approach is by a method called the Largest Common Point Set (LCP).

Given two point sets P and Q, it finds a transformation that maximizes the cardi-

nality of the subset Q′ ⊆ Q, such that the Hausdorff distance or bottleneck distance

is at most δ. Let LCP(P, Q) denote the size of the optimal solution to the above

problem. The degree of robustness can be controlled by two parameters, the distance

δ and the cardinality |Q′|. Thus, two kinds of approximate algorithms exist: size

approximation and distance approximation. The α-LCP is a size-approximate ver-

sion of LCP such that the solution subset Q′ is of cardinality at least 1
α
LCP(P, Q).

The β-distance LCP is a distance-approximate version where the result distance is

less than (1 + β)δ.

27

In recent work, Choi and Goyal [17] present various combinations of LCP

algorithms. First, they give a 4-distance approximation algorithm for LCP problem

under the bottleneck distance in 3-d. As in the algorithm of Goodrich et al. [28],

for each pair (p1, p2) ∈ P and (q1, q2) ∈ Q, they align p1 to q1 by translation.

Then, align p2 with q2 by rotating at p1. To fix a transformation in 3-d, one more

correspondence should be selected. For each point p ∈ P−{p1, p2}, they compute all

possible rotation angles where p lies within distance ε of q ∈ Q. Since the maximum

overlap among all angles represents the maximum matching, this will be the solution

of the LCP problem. Since one of combination of all pairs (p1, p2) and (q1, q2) is the

diameter pairs of an optimal solution, this algorithm returns a 4-approximation. In

addition, they present an α-approximation for the exact LCP (δ = 0) in which the

result set is larger than the optimal solution by at most 1
α
LCP (P, Q). Let n denote

the number of elements in P . They subdivide P into n
α

disjoint subsets, each of

size α. They observe that, by a pigeonhole argument, at least one of these subsets

must have a valid pair in LCP(P, Q). They improve the running time from O(n2)

to O(n
α
· α2).

2.7 Point Pattern Similarity Search

In this section, we present a new type of problem that finds similar sets in a large

database of point sets, as opposed to the classical problem of comparing a single

pair of point sets.

Definition 2 Let T be geometric transformation group. Let dist be distance func-

28

tion. Let Dist be distance function under the set of transformations T . Given a

collection of point sets P, point pattern similarity search is defined as finding the

point set P ∗ ∈ P that minimizes the distance. That is,

P ∗ = argmin
P∈P

Dist(P, Q) = argmin
P∈P

min
t∈T

dist(tP, Q).

♦

The trivial solution would be to compute the distance from the query point

set to each point set of the collection (by any single-pair algorithm) and return the

closest. However, this brute-force search is not acceptable in cases where the total

number of point sets of P is very large.

As before, several problems can be defined depending on criteria, such as the

distance function, error model, and permitted transformations. Note that these

types of problems have not been heavily studied from the perspective of computa-

tional geometry.

First, let us consider perhaps the simplest problem of determining whether

there is a congruent point set from a set of point sets under translation. One idea

would be adapt the approach of Atkinson [8]. Recall that his algorithm reduces the

point-set congruence problem to a string search problem. If successful, the point

pattern matching problem would then be reduced to a dictionary search. There are

some technical difficulties to be faced in a straightforward implementation of his

algorithm. For example, Atkinson’s approach of storing points in polar coordinates

would result in real-valued (irrational) quantities, which would then need to be

encoded as strings. If rotation is not involved and the input coordinates are integers,

29

however, it is possible to encode point coordinates in a manner that is translation

invariant, for example, relative to the lower left corner of the point set’s bounding

box.

Another well-known algorithm for point pattern similarity search is geometric

hashing [61], which is a framework developed for matching geometric features in a

database of point sets. The intuition behind this method is straightforward. For each

point set, it generates all possible transformed sets and generates a data-structure

like a hash table. When a query point set is given, it evaluates whether there exists a

point set matching with all points in the query point set. This approach works well

when the number of point sets are relatively small. Otherwise, the performance may

be degraded if there exist many candidate sets that are returned for each point in the

query point set. Note that the space complexity and query times grow exponentially

with the number of degrees of freedom in the group of transformations.

When outliers exists, the point pattern similarity search problem under ge-

ometric transformation becomes significantly more challenging. The presence of

outliers renders most methods based on finding a small number of canonical align-

ments invalid or requires the consideration of a large number of possible alignments.

This has an adverse effect either on space or on query time. In some cases, even

computing individual distances is a nontrivial task. One approach to circumventing

this problem is based on the notion of embedding, which we discuss next.

30

2.7.1 Point Pattern Similarity Search and Embeddings

In point pattern similarity searching, we are given a database of point sets, which

are to be preprocessed, so that, given a query point set, it is possible to find the

closest matches from the database efficiently subject to a set of allowable aligning

transformations. An important tool in this area is the notion of an embedding, which

maps points from one metric space to another. Through embeddings, we can map

a proximity search problem in a complex metric space, to an equivalent problem

in a simpler metric space. In this section we introduce a few of the most relevant

concepts from this field. Recall the following definitions.

Definition 3 Given metric spaces (X, d) and (X ′, d′) a map f : X → X ′ is called

an embedding. An embedding is distance-preserving or isometric if for all x, y ∈ X,

d(x, y) = d′(f(x), f(y)).

The contraction of f is the maximum factor by which distances are shrunk, i.e.,

max
x,y∈X

d(x, y)

d′(f(x), f(y))
,

the expansion or stretch of f is the maximum factor by which distances are stretched:

max
x,y∈X

d′(f(x), f(y))

d(x, y)
,

and the distortion of f is the product of the contraction and expansion. ♦

Thus, one approach to solving point pattern similarity search problem is to

design a low-distortion, transformation-invariant embedding which maps each point

set into a well-known metric space. Then a nearest neighbor search algorithm can

31

be applied on the embedded point sets of the database. I present some literature

related to this approach.

Let us begin with the case of point pattern similarity search with translation

under symmetric difference. A popular method in computer vision to determine

similarity of point patterns is through the use of invariant features, that is, some

statistic of the set that is invariant under some given set of transformations [13,29,

33, 44].

An interesting example of an invariant for point sets is based on the observation

that the distance between a pair of points is invariant under rigid transformations.

The distance histogram of a set of n points is the set of O(n2) inter-point distances

defined by all pairs of points in the set.

If two point sets are similar, then clearly their distance histograms are similar

as well. Note that histograms can be compared using the ℓ1 or EMD metrics, and so

standard nearest neighbor search algorithms can be applied. However, the converse

of this observation does not hold. For example, consider the following two sets:

P = {0, 1, 4, 10, 12, 17} and Q = {0, 1, 8, 11, 13, 17}.

These sets have identical distance histograms but only three points out of six are

matched. Thus, the distortion of the resulting embedding is unbounded. Point

sets that have equal distance histograms are called homometric. Homometric sets

and their properties have been studied in mathematics and computational geom-

etry [21, 50, 56]. (In Chapter 4, we present a theoretical bound for point pattern

similarity searching under translation with outliers based on the symmetric differ-

32

ence distance.)

A common method for comparing histograms, and distributions in general, is

the Earth-Mover’s Distance (EMD). The EMD distance is defined as a deformation

distance between two sets of equal cardinality, that is, the total distance needed to

move each point of one set to a corresponding point of the other set. (See Chapters 1

and 5 for definitions.)

Indyk and Thaper [40] consider an image database search problem under the

earth mover’s distance. They present a randomized embedding of the EMD distance

into ℓk
1 (real k dimensional space under the ℓ1 metic). The expected distortion of

their embedding is O(log ∆), where ∆ is the diameter of both point sets.

Here is a sketch of their method. Let P and Q denote two point sets in

R
d each of cardinality n. Let V = P ∪ Q. Assume that the smallest interpoint

distance is 1. Assume first that ∆ is rounded up to the next larger power of 2, and

apply a random shift to the coordinate axes. Generate a series of grids, with side

lengths 2i, for i ∈ {−1, 0, 1, 2, . . . , log ∆}. Let Gi denote grid of side 2i. For each Gi,

compute a vector vi(P) with dimension (∆/2i)d such that each dimension represents

the number of elements on in cell of the grid. They show that there is a constant

c, such that the upper bound on the EMD distance between P and Q is at most

c
∑log ∆

i=1 ‖vi(P) − vi(Q)‖1. For the lower bound, they show that the EMD distance

is at least Ω(log ∆) in expectation. Note that their formulation does not allow for

any transformation between the two sets.

Shirdhonkar and Jacobs [55] presented a wavelet-based variant of EMD. They

show that their measure is a metric, and that the ratio of the EMD to the wavelet

33

EMD is bounded within some constant. This wavelet EMD metric is based on the

weighted wavelet coefficients of the difference of two histograms and the computation

requires only linear time, so that they improve the computation time of EMD with

small constant distortion. Also, empirically they showed that their algorithm is

more accurate than that of Indyk and Thaper.

Farach-Colton and Indyk [24] presented an embedding algorithm for point sets

with translation under the Hausdorff metric. Letting s denote the cardinality of the

database, and d′ = s2(1/ǫ)O(d), they show that their embedding achieves a distortion

of (1 + ǫ). The embedded space has size that is quadratic of the size of database,

which is too large for most practical applications.

34

Chapter 3

Improved Approximation Bounds for Planar Point

Pattern Matching

3.1 Introduction

In this chapter we will consider point sets in the Euclidean plane under rigid trans-

formations (translation and rotation). Distances between two point sets P and

Q will be measured by the directed Hausdorff distance, denoted h(P, Q), which is

defined to be

h(P, Q) = max
p∈P

min
q∈Q

‖pq‖,

where ‖pq‖ denotes the Euclidean distance between points p and q.

The directional Hausdorff distance is natural in applications where the pat-

tern P is expected to match some subset of the background Q. In applications

where it is desired that every point of P matches some point of Q and vice versa, a

bidirectional similarity measure may be more appropriate such as the bidirectional

Hausdorff distance, which is defined to be max(h(P, Q), h(Q, P)). When matching

with bidirectional similarity measures it may be possible to identify a global refer-

ence point (such as the centroid of each set) about which to anchor the alignment.

35

This is not possible, however, under the directed Hausdorff distance. Throughout,

unless otherwise specified, we use the term Hausdorff distance to denote the directed

Hausdorff distance.

A simple and natural approach is to consider transformations induced by align-

ing a small subset of points from one set to the other. This is arguably the sim-

plest and most easily implemented algorithm for approximate pattern matching,

and it is the basis of some of the most popular methods in computer vision such as

RANSAC [26]. Goodrich, Mitchell, and Orletsky [28] were the first to prove an up-

per bound on the approximation ratio of such a simple alignment-based algorithm.

They considered point pattern matching under a number of different transforma-

tion spaces and in different dimensions. For the case of rigid transformations in

the plane, their algorithm computes a diametrical pair for P and then computes

for every pair of distinct points of Q a rigid transformation that aligns these pairs.

(Details are presented in the next section.) It returns the transformation achieving

the minimum Hausdorff distance. It runs in O(n2m log n) time. They prove that it

returns an aligning transformation whose Hausdorff distance is at most a factor of

4 larger than the optimum Hausdorff distance.

In this chapter, we revisit the approximation ratio for the alignment-based

algorithm of Goodrich, Mitchell, and Orletsky [28]. Their algorithm is based on

aligning points one by one, and henceforth we refer to this as serial alignment.

(We will describe their algorithm detail Section 3.2.) Given the simplicity of this

approach, it is natural to establish good bounds on its performance. This also

points toward larger questions such as what are the best approaches to alignment-

36

based matching and what are the inherent limits on the accuracy of alignment-based

matching. We show that it is possible to improve on their approximation ratio of

4. Our approach has the same running time as theirs and, like theirs, is very easy

to implement. It is based on a minor modification that selects the transformation

that best aligns the entire subset of points, which we call symmetric alignment. Let

Aser and Asym denote the approximation ratios for these respective algorithms.

Rather than just considering the worst-case approximation ratios, we analyze

the approximation ratios of these algorithms in a manner that is sensitive to the

optimal Hausdorff distance. For each problem instance P and Q, we define an

geometric parameter ρ, called the distance ratio, to be half the ratio of the diameter

of P to the optimum Hausdorff distance between P and Q. (A formal definition is

given in Section 3.3.) We show that as the distance ratio increases, the accuracy

of the approximation increases as well. We feel that this analysis is useful because

large values of ρ often arise in applications. For example, in document analysis and

satellite image analysis, the ratio of the diameter of a typical pattern ranges from

tens to hundreds of pixels, while the expected digitization error is on the order of

a single pixel. Let Aser(ρ) and Asym(ρ) denote the approximation ratios for serial

and symmetric alignment, respectively, as a function ρ. Our results are summarized

in Table 3.1. The quantity c∞ is the approximation ratio Aser(ρ) in the limit as ρ

approaches infinity, which we show later to be roughly 3.19.

Our results imply that the approximation ratio for symmetric alignment is

better than that of serial alignment for almost all but very small values of ρ. Further,

for (typical) applications where distance ratio is large, the approximation factor of

37

Table 3.1: Summary of results for alignment-based approximation. Bounds on the

approximation ratios for symmetric and serial alignment algorithms are given as a

function of the distance ratio ρ, where c∞ ≈ 3.19.

Approximation Ratio

Algorithm
Upper Bound

(all ρ)
Upper Bound Lower Bound

Symmetric Alignment Asym ≤ 3.14 Asym(ρ) ≤ 3 +
1√
3 ρ

Asym(ρ) ≥ 3 +
1

10ρ2

Serial Alignment Aser ≤ 3.44 Aser(ρ) ≤ c∞ +
9

4ρ
Aser(ρ) ≥ c∞ +

1

27ρ2

symmetric alignment is close to 3. Our results can also be applied to provide a

modest improvement in the running time of the ε-approximation algorithm of Indyk

et al. [39]. Their algorithm uses the simple alignment algorithm as a subroutine. The

running time of their algorithm has a cubic dependence on the (upper bound on the)

approximation ratio of the alignment algorithm. So, improving the approximation

ratio bound by a factor of f results in factor of f 3 reduction in the running time of

their algorithm.

The remainder of the chapter is organized as follows. In Section 3.2 we present

the serial and symmetric alignment algorithms, and we provide an overview of their

approximation ratios. In Sections 3.3 and 3.4, we present our upper and lower

bounds, respectively, on the approximation ratio for symmetric alignment. In Sec-

tions 3.5 and 3.6, we present upper and lower bounds for serial alignment. Finally,

38

in Section 3.7 we summarize and present concluding remarks.

3.2 The Serial and Symmetric Alignment Algorithms

In this section we present a description of the serial alignment algorithm of Goodrich,

Mitchell, and Orletsky [28] and review its approximation ratio. We also described

our modification of this algorithm, called symmetric alignment. Recall that we are

given two planer point sets, a pattern set P = {p1, . . . , pm} and a background set

Q = {q1, . . . , qn}. We seek a rigid transformation E that minimizes the (directed)

Hausdorff distance from E(P) to Q.

Lemma 3.2.1 (Goodrich, Mitchell, and Orletsky) The approximation ratio for se-

rial alignment algorithm satisfies Aser ≤ 4.

Proof : It is easy to see that the serial alignment algorithm is invariant to the initial

placement of P in the sense that if P and P ′ are equal up to a rigid transformation,

then (assuming general position) the algorithm will map both these point sets to the

same final positions with respect to Q and with the same Hausdorff distance. Thus

to simplify matters, we may assume that P has been presented to the algorithm in

its optimal position with respect to Q. Thus, for each pi ∈ P , if we let qi denote

its closest point of Q then ‖piqi‖ ≤ hopt. Now, run the serial alignment algorithm.

We will bound the maximum distance by which any point of P has been displaced

relative to its original optimal position, and this will provide the approximation

ratio.

39

First, consider the effect of translation. Since p1 is within distance hopt of q1,

each point of P is translated by a distance of at most hopt, and so is now within

distance hopt + hopt = 2hopt of its closest point of Q. Next, consider the effect of

rotation. After translation we have ‖p2q2‖ ≤ 2hopt, from which it follows that the

rotation displaces p2 by an additional distance of at most 2hopt. Since p2 is the

farthest point of P from p1, every other point of P is displaced through rotation by

at most this distance. We see that after translation and rotation each point of P is

at distance at most 2hopt + 2hopt = 4hopt from its closest point of Q. Therefore the

approximation bound is at most 4hopt/hopt = 4.

(Observe further that after running the algorithm p1 coincides with q1. Also,

since rotation can only decrease the distance between p2 and q2, after serial alignment

has completed the distance from p2 to q2 is at most 2hopt. These observations will

be used below in Lemma 3.2.3.) ⊓⊔

There are two obvious shortcomings with this algorithm and its analysis. The

first is that the algorithm does not optimally align the pair (p1, p2) with the pair

(q1, q2) with respect to Hausdorff distance. One would expect such an optimal

alignment to provide a better approximation ratio. This observation is the basis of

our algorithm. The second shortcoming is that the use of the triangle inequality in

summing the two displacements neglects the presence of any geometrical dependence

between these two vector quantities.

We present a new approach called symmetric alignment. The algorithm differs

only in how the aligning transformation is computed. Let the pairs (p1, p2) in P

and (q1, q2) in Q be chosen in the same way as they are in the serial alignment

40

algorithm. Let mp and mq denote the respective midpoints of line segments p1p2

and q1q2. First, translate P to map mp to mq and then rotate P about mp to align

the directed segments −−→p1p2 with −−→q1q2. Thus, the only difference is that we align and

rotate around the midpoints. It is easy to see that this alignment transformation

minimizes the Hausdorff distance between the pairs (p1, p2) and (q1, q2).

There is a pathological setting in which symmetric alignment can perform

arbitrarily poorly compared to the optimum. This happens when, in the optimal

Hausdorff placement of P , both p1 and p2 share the same closest point of Q. The

problem is that symmetric alignment assumes that q1 and q2 are distinct (for other-

wise the rotation angle is undefined). For this to occur the distance between p1 and

p2 (that is, the diameter of P) must be less than the distance between the closest

pair of points of Q. In such a case, the optimal placement results by simply aligning

the center of the smallest enclosing disk for P with any point of Q. By standard

methods in computational geometry (see [22]) this situation an be detected and

handled in O(m + n log n) time, and so henceforth we will assume that it is not an

issue.

Before giving our detailed analysis of the approximation ratio we establish a

crude bound on the approximation ratio for symmetric alignment, which justifies

the benefit of this approach over serial alignment.

Lemma 3.2.2 Asym ≤ 2 +
√

3 ≈ 3.732.

Proof : As in the proof of Lemma 3.2.1, let us assume that P has been presented

to the algorithm in its optimal position with respect to Q. Thus, each point of P

41

is within distance hopt of its closest point of Q. Recall that q1 and q2 denote the

closest points of Q to p1 and p2, respectively. For i ∈ {1, 2} let ~vi denote the vector

−→piqi.

First, let us consider translation. To match the midpoints mp and mq, we

translate the pattern set P by the vector ~t = (~v1 +~v2)/2. Since both of these points

are within distance hopt of their closest point of Q, we have ‖~t‖ ≤ hopt. Next we

consider rotation. The distance between the translated point p1 + ~t and q1 is

∥∥∥∥~v1 −
~v1 + ~v2

2

∥∥∥∥ =

∥∥∥∥
~v1 − ~v2

2

∥∥∥∥ ≤ hopt.

Because (p1, p2) is a diametrical pair, it follows that all the points of P lie in a lune

defined by the intersection of two discs both of radius ‖p1p2‖ centered at each of

these points. Thus, no point of P is farther from the center of rotation (mp) than

the apex of this lune, which is at distance (
√

3/2)‖p1p2‖. Since this rotation moves

p1 by a distance of at most hopt, and p1 is within distance (1/2)‖p1p2‖ of mp, it

follows that every point p ∈ P is moved through rotation by an additional distance

of at most
√

3hopt.

Thus, we see that each point of P started within distance hopt of its closest

point of Q, and it has been displaced through translation and rotation by distances

of at most hopt and
√

3hopt, respectively. Therefore, after symmetric alignment each

point of P is within distance

hopt + hopt +
√

3hopt =
(
2 +

√
3
)

hopt ≈ 3.732 · hopt,

of its closest point of Q. The approximation ratio follows immediately.

42

(Further observe that the points p1 and p2 started out within distance hopt

from their closest points of Q, and after alignment this is still true. This fact will

be used below in Lemma 3.2.3.) ⊓⊔

Even though this crude approximation ratio is already an improvement, it

suffers from the same problem as the earlier analysis in that it does not consider

the geometric relationship between the translation and rotation vectors. Note that

this does not imply that symmetric alignment is better than serial alignment for all

input instances. In Fig. 1 we show two informal examples. In the first case serial

alignment is better and in the second symmetric alignment is better. The following

lemma shows, nonetheless, that the two methods achieve comparable approximation

ratios on all input instances.

Q symmetric alignmentP serial alignment

dser

dser

dsym

dsym

dser < dsym

dser > dsym

Fig. 1: Comparison of the two algorithms.

Lemma 3.2.3 Given two planar point sets P and Q, let dsym and dser denote the

Hausdorff distances between P and Q after running symmetric alignment and serial

alignment, respectively. Then

dsym ≤ dser + min

(
dser

2
, hopt

)
≤ 3

2
dser and

dser ≤ dsym + hopt ≤ 2dsym.

43

Proof : Let us assume that P has been presented to the symmetric alignment

algorithm in the position output by the serial alignment algorithm. Recall that

(p1, p2) is a diametrical pair from P , and (q1, q2) is the corresponding pair from Q.

From the comments made at the end of the proof of Lemma 3.2.1 we know that p1

and q1 coincide, and the distance between p2 and q2 is at most 2hopt. Clearly, the

distance between p2 and q2 is also at most dser. Now, we apply symmetric alignment.

In order to align the midpoints of p1p2 with q1q2, each point of P is translated by

the distance ‖p2q2‖/2, which is at most min(dser, 2hopt)/2. No rotation is needed.

Therefore, we have

dsym ≤ dser +
‖p2q2‖

2
≤ dser + min

(
dser

2
, hopt

)
≤ 3

2
dser.

To prove the other bound, let us assume that the point set P has been pre-

sented to the serial alignment algorithm in the positions output by the symmet-

ric alignment algorithm. As observed at the end of the proof of Lemma 3.2.2,

‖p1q1‖ ≤ hopt. If we apply serial alignment to these point sets, each point of P will

be translated by at most ‖p1q1‖. No rotation is needed. Therefore,

dser ≤ dsym + ‖p1q1‖ ≤ dsym + hopt ≤ 2dsym.

⊓⊔

44

3.3 Symmetric Alignment: Upper Bound

In this section we derive an upper bound on the approximation ratio for symmetric

alignment. As before let hopt denote the optimum Hausdorff distance between P

and Q achievable under any rigid transformation of P . As mentioned above, our

analysis is sensitive to a geometric parameter that is proportional to the ratio of P ’s

diameter to the optimum Hausdorff distance. Define the distance ratio to be

ρ =
diam(P)

2hopt

,

where diam(P) denotes diameter of P . Clearly hopt ≤ diam(P) and therefore ρ ≥ 1
2
.

Recall that Asym(ρ) denotes the approximation ratio for symmetric alignment as a

function of the distance ratio. The main result of this section is presented next.

Theorem 5 Consider two planar point sets P and Q, and let ρ be the distance ratio

for P and Q. Then

Asym(ρ) ≤ min

(
3 +

1√
3 ρ

,
√

4ρ2 + 2ρ + 1

)
,

and further Asym(ρ) ≤ 3.14 for all ρ.

Recall that the distance ratio is large in many applications. This theorem

shows that as ρ tends to infinity, the approximation ratio is at most 3. The remainder

of this section is devoted to proving this theorem. As usual, it will simplify the

presentation to assume that P has been transformed to its optimal placement with

respect to Q, and we will bound the amount of additional displacement of each

point of P relative to this placement. Without loss of generality we may scale space

45

uniformly so that the optimum Hausdorff distance hopt is 1. Recall that (p1, p2) is

a diametrical pair from P , and (q1, q2) is the corresponding pair from Q. From our

scaling it follows that for i ∈ {1, 2}, qi lies within a disc of radius 1 centered at pi.

(See Fig. 2.) Let mp and mq denote the respective midpoints of the segments p1p2

and q1q2. Note that ρ is just the distance from mp to either p1 or p2. Let α ≥ 0

denote the absolute acute angle between the lines supporting the segments p1q1 and

p2q2. If ρ > 1, then the two unit discs do not intersect. Hence, after aligning the

midpoints by translation, the distance from p1 to q1 is still at most hopt(= 1) (see

Lemma. 3.2.2) and the orthogonal distance from p1 to the line q1q2, which is ρ sin α,

is less than or equal to the distance from p1 to any point on the line. It follows

therefore that 0 ≤ ρ sin α ≤ 1.

p1 p2mpρ

α

q2

mq
hop

t

q1

hopt

Fig. 2: The positions of the point sets prior to running the algorithm.

Before presenting the details, we give a brief overview of our proof structure.

We establish two upper bounds on the approximation ratio, each a function of

ρ. One bound is better for small ρ and the other better for large ρ. We shall

show by numerical computations that the two functions cross over one another at a

value ρ∗
sym ≈ 1.26 and that Asym(ρ∗

sym) ≈ 3.14. Furthermore, both these functions

decrease monotonically as ρ moves away from ρ∗
sym. We begin by establishing the

approximation ratio for low distance ratios.

46

Lemma 3.3.1 For all ρ, Asym(ρ) ≤
√

4ρ2 + 2ρ + 1.

Proof : Let (p1, p2) and (q1, q2) be as defined in the algorithm. As mentioned in the

proof of Lemma 3.2.2, every point of P lies within a lune formed by the intersection

of two discs of radius 2ρ centered at p1 and p2. Hence, every point of P is within

distance
√

3ρ of the midpoint mp. After applying symmetric alignment, p1p2 and

q1q2 are collinear and, for i ∈ {1, 2}, the distance ‖piqi‖ is at most hopt(= 1).

Since, ‖pimp‖ = ρ, it follows directly that every point of P is within distance
√

(ρ + 1)2 + (
√

3ρ)2 of either q1 or q2. Simplifying yields the desired bound. ⊓⊔

The above approximation ratio is very crude as it considers no points of Q

other than q1 and q2. Hence, it is only useful for very small values of ρ. To deal

with the case of high ρ values we consider the effects of translation and rotation

separately. We will characterize the set of possible translations that align mp with

mq as a function of ρ and the rotation angle α. The distance by which an arbitrary

point of p ∈ P \ {p1, p2} can be displaced by the rotation is not only a function

of these two parameters, but is also a function of the distance of this point from

the center of rotation mp. We will then bound the sum of these two displacement

distances. These translation and rotation analyses are presented in Sections 3.3.1

and 3.3.2, respectively, and these results are combined in Section 3.3.3.

3.3.1 Translational Displacement

We begin by considering the space of possible translations that align mp with mq. It

will make matters a bit simpler to think of translating Q to align mq with mp, but

47

of course any bounds on the distance of translation will apply to case of translating

P . The translation is given by a vector which we denote by ~t. The following lemma

bounds the length of this translation vector as a function of ρ and α.

Lemma 3.3.2 The symmetric alignment’s translation transformation displaces any

point of P by a vector ~t of length

‖~t‖ ≤
√

1 − ρ2 sin2 α.

Proof : Recall that (p1, p2) and (q1, q2) denote the respective point pairs from the

sets P and Q and that α is the acute angle between the lines p1p2 and q1q2. Since

we have assumed that P is placed in the optimal position, q1 and q2 must lie inside

the circles of radius hopt(= 1) centered at p1 and p2, respectively. For the sake of

illustration let us assume that −−→p1p2 is directed horizontally from left to right and

that q1q2 has a nonpositive slope. (See Fig. 3(a).)

p1

h

ρ

α

s1 s2

q1

q2

~tu

mq

mp

ρ cos α

ℓ r1 r2q2

q1 r1

r2

mq

mp

p2

(a) (b)

Fig. 3: Analysis of the midpoint translation.

Consider a line passing through mp that is parallel to q1q2. Let r1 and r2 be

the respective orthogonal projections of p1 and p2 onto the line q1q2, and let s1 and

s2 denote the respective signed displacements ‖−−→r1q1‖ and ‖−−→r2q2‖ along this line (See

Fig. 3(b).) Consider a coordinate system centered at mp whose positive u-axis is

48

located along a line ℓ that is directed from left to right, and whose positive v-axis is

perpendicular to this and directed upwards. In this coordinate system we have mp =

(0, 0), q1 = (s1 − ρ cos α, h), and q2 = (s2 + ρ cos α, h). Thus, mq = ((s1 + s2)/2, h),

and the translation vector ~t is mq − mp = mq. By straightforward calculations we

have |s1| ≤
√

1 − (ρ sin α + h)2 and |s2| ≤
√

(1 − (ρ sin α − h)2. Therefore,

‖~t‖2 = u2 + v2 =

(
s1 + s2

2

)2

+ h2 =
1

2
(s2

1 + s2
2) −

1

4
(s1 − s2)

2 + h2

≤ 1

2
(s2

1 + s2
2) + h2 ≤ 1

2

[
(1 − (ρ sin α + h)2) + (1 − (ρ sin α − h)2)

]
+ h2

= 1 − ρ2 sin2 α.

Observe that the translation is maximized when s1 = s2, and this implies that the

line q1q2 passes through mp. (This will be used in our lower bound construction in

Section 3.4.) ⊓⊔

Given α and ρ, let us refer to the set of all valid (u, v) translation vectors as

the translation space, denoted Tρ(α). A more detailed analysis of the set of valid

(u, v) pairs shows that the set of possible translational displacements lies within a

region of the (u, v) plane as illustrated in the shaded region of Fig. 4, but we will

not need this for our subsequent analysis.

1 − ρ sinα
(u, v)

~t

O
√

1 − ρ2 sin2 α

u

v

Fig. 4: Translation space, Tρ(α), for symmetric alignment.

49

3.3.2 Rotational Displacement

Next we consider the effect of rotation on the approximation error. Unlike transla-

tion we consider the placement of points in P because the distance by which a point

is displaced by rotation is determined by the distance to the center of rotation. For

each point p ∈ P , let ~rp denote its displacement due to rotation. As mentioned in

the proof of Lemma 3.2.2 every point of P lies within a lune formed by the intersec-

tion of two discs of radius 2ρ centered at p1 and p2. (See Fig. 5(a).) The following

lemma describes the possible displacements of a point of P under the rotational

part of the aligning transformation. This is done relative to a coordinate system

centered at mp, whose x-axis is directed towards p2.

Lemma 3.3.3 The symmetric alignment’s rotation transformation displaces any

point p ∈ P by a vector ~rp of length

‖~rp‖ ≤ 2
√

3ρ sin
α

2
.

Proof : Let θ be the signed angle from −−−→mpp2 to −−→mpp. We may assume −π ≤ θ ≤

π. Let p′ denote the point after rotating p clockwise about mp by angle α. (See

Fig. 5(a).)

By simple trigonometry and the observation that △mppp
′ is isosceles, it follows

that the displacement vector −→pp′, length ‖~rp‖ = ‖mpp‖ · 2 sin α
2
. The farthest point

of the lune from mp is easily seen to be the apex, which is at distance
√

3ρ. Thus,

‖~rp‖ is at most 2
√

3ρ sin α
2
.

⊓⊔

50

2 √
3

2

O α

2

p2ρ

α
p1 mp

p

ρ sin
α

2

ρ
sin

α

2

θ

p′
φr

(a) (b)

x

y

Fig. 5: Analysis of the rotational displacements for symmetric alignment.

As we did for translation, for a given pair of parameter values α and θ we can

define the set of possible vector displacements for all points p ∈ P , which we call

the rotation space, denoted Rρ(α). This is illustrated in Fig. 5(b), but is not needed

for the rest of our analysis. Henceforth, when p is clear for context, we will refer to

~rp as ~r.

3.3.3 Combining Translation and Rotation

We are now ready to derive the approximation ratio for the symmetric alignment

algorithm by combining the bounds on the translational and rotational displace-

ments. Recall that we apply Lemma 3.3.1 to bound Asym(ρ) for small values of ρ,

and so here we will assume that ρ ≥ ρ∗
sym.

Recall that at the start of the algorithm, the points are assumed to be placed

in the optimal positions and that space has been scaled so that hopt = 1. Let us fix

any point p ∈ P and let ~t denote its displacement due to translation and let ~r = ~rp

denote its displacement due to rotation. It follows that p has been displaced from its

initial position by a distance of ‖~t+~r‖. Since its initial position was within distance

hopt (= 1) of some point of Q, it is now within distance ‖~t + ~r‖+ 1 of some point of

51

Q. Recalling that Tρ(α) and Rρ(α) denote the space of possible translational and

rotational displacement vectors and that 0 ≤ sin α ≤ 1/ρ, we have

Asym(ρ) ≤ max
α



 max
~t∈Tρ(α)

~r∈Rρ(α)

‖~t + ~r‖



+ 1.

Unfortunately, determining this length bound exactly would involve solving a

relatively high order equation involving trigonometric functions. Instead, we will

simplify matters by applying the triangle inequality to separate the translational

and rotational components, which are in turn bounded in Lemmas 3.3.2 and 3.3.3.

Asym(ρ) ≤ max
α

(
max

~t∈Tρ(α)
‖~t‖ + max

~r∈Rρ(α)
‖~r‖
)

+ 1

≤ max
α

(√
1 − ρ2 sin2 α + 2

√
3ρ sin

α

2

)
+ 1.

Substituting x = cos α, it follows that the quantity to be maximized is

fρ(x) =
√

1 − ρ2(1 − x2) +
√

6ρ
√

1 − x + 1, where

√
1 − 1

ρ2
≤ x ≤ 1.

To determine the maximum value of fρ we take the partial derivative with respect

to x, yielding

∂fρ

∂x
= −

√
3ρ√

2(1 − x)
+

ρ2x√
1 − ρ2(1 − x2)

.

By our assumption that ρ ≥ ρ∗
sym ≈ 1.26, it follows by symbolic manipulations that

∂fρ/∂x = 0 has a single real root for ρ ≥ ρ∗
sym, which is

x0(ρ) =
1

6

(
−1 + c1(ρ) +

1

c1(ρ)

)
,

where c1(ρ) =
ρ2

(161ρ6 + 18ρ4
√

c2(ρ) − 162ρ4)1/3

and c2(ρ) = 80ρ4 − 161ρ2 + 81.

52

By an analysis of this derivative it follows that the function fρ achieves its maximum

value when x = x0(ρ). Thus, we have the following.

Lemma 3.3.4 For ρ ≥ ρ∗
sym ≈ 1.26 we have

Asym(ρ) ≤ fρ(x0(ρ)) =
√

1 − ρ2(1 − x0(ρ)2) +
√

6ρ
√

1 − x0(ρ) + 1,

where x0(ρ) is defined above.

Unfortunately, this function is too complex to reason about easily. Nonethe-

less, we can evaluate it numerically for any fixed value of ρ. The resulting approx-

imation ratio (together with the alternate approximation ratio of Lemma 3.3.1) is

plotted as a function of ρ in Fig. 6 below. A numerical analysis shows that the

two functions cross over at ρ∗
sym ≈ 1.26, and at this point the function achieves its

maximum value of roughly 3.14. The figure also indicates that the approximation

ratio approaches 3 as ρ tends to ∞. The following result establishes this asymptotic

convergence by proving a somewhat weaker approximation ratio.

Lemma 3.3.5 If ρ > ρ∗
sym then Asym(ρ) ≤ 3 + 1√

3ρ
.

Proof : Before presenting the general case, we consider the simpler limiting case

when ρ tends to ∞. Since 0 ≤ sin α ≤ 1/ρ, in the limit α approaches 0. Using the

fact of limα→0
sinα

α
= 1 we have

Asym(∞) = lim
ρ→∞

Asym(ρ) ≤ lim
ρ→∞

√
1 − ρ2 sin2 α + 2

√
3ρ sin

α

2
+ 1

= lim
ρ→∞

√
1 − ρ2α2 +

√
3ρα + 1.

53

Fig. 6: The approximation ratio for the symmetric alignment algorithm as a function

of ρ.

Let x = ρα. In the limit we have 0 ≤ x ≤ 1 and so

Asym(∞) ≤ max
0≤x≤1

(√
1 − x2 +

√
3x + 1

)
.

It is easy to verify that Asym(∞) achieves a maximum value of 3 when x =
√

3/2.

Next, we consider the general case. To simplify Asym(ρ), we apply a Taylor’s

series expansion.

Asym(ρ) ≤ max
α

(√
1 − ρ2 sin2 α + 2

√
3ρ sin

α

2
+ 1

)
(3.1)

≤ max
α




√

1 − ρ2

(
α − α3

6

)2

+
√

3ρα + 1



 .

Since 0 ≤ α ≤ arcsin (1/ρ), we have 0 ≤ ρα ≤ ρ arcsin (1/ρ). For all ρ > ρ∗
sym,

observe that ρ arcsin (1/ρ) is at most ρ∗
sym arcsin(1/ρ∗

sym). Let us denote the value by

c0, which by numerical evaluation is approximately 1.16. Thus, we have 0 ≤ ρα < c0.

The rest of the analysis is broken into two cases: 0 ≤ ρα ≤ 1 and 1 < ρα < c0.

In the first case (0 ≤ ρα ≤ 1) observe that 1 − ρ2α2 ≥ 0. We argued above

54

that (
√

1 − ρ2α2 +
√

3ρα + 1) ≤ 3 and so

Asym(ρ) ≤ max
α

(√
1 − ρ2 (α − α3/6)2 +

√
3ρα + 1 +

[
3 −

(√
1 − ρ2α2 +

√
3ρα + 1

)])

= max
α

(√
1 − ρ2 (α − α3/6)2 −

√
1 − ρ2α2 + 3

)
.

To simplify this let x = ρα. We see that Asym(ρ) ≤ max0≤x≤1 g(x) where,

g(x) =

√

1 − x2

(
1 − x2

6ρ2

)2

−
√

1 − x2 + 3.

For all fixed ρ this is a monotonically increasing function in x. Since x ≤ 1, it is

easy to verify that this function achieves its maximum value at x = 1. Therefore,

Asym(ρ) ≤ g(1) = 3 +

√

1 −
(

1 − 1

6ρ2

)2

= 3 +

√
1

3ρ2
− 1

36ρ4
≤ 3 +

1√
3ρ

,

as desired.

For the second case (1 < ρα < c0) we cannot use the above approach because

1 − ρ2α2 < 0. Nonetheless, by expanding the first term of Eq. (3.1) we have

√
1 − ρ2 sin2 α ≤

√
1 − ρ2 (α − α3/6)2 =

√
(1 − ρ2α2) +

1

3
ρ2α4 − 1

36
ρ2α6

<

√
1

3
ρ2α4 =

1√
3
ρα2.

Therefore,

Asym(ρ) ≤ max
α

(
1√
3
ρα2 +

√
3ρα + 1

)
.

It is straightforward to verify that the above function achieves its maximum value

when ρα = c0, and this value is at most 3 + 1/(
√

3ρ). ⊓⊔

Combining this with Lemma 3.3.1 and the previous comments about the cross-

over point completes the proof of Theorem 5.

55

3.4 Symmetric Alignment: Lower Bound

It is natural to wonder whether the upper bound on the approximation ratio Asym

proved in Theorem 5 is tight. We show that this is nearly the case. In particular,

we show that for all sufficiently large ρ the approximation factor is strictly greater

than 3, and it approaches 3 in the limit.

Theorem 6 For all sufficiently large ρ, there exists an input on which symmetric

alignment achieves an approximation ratio of at least 3 + 1
10ρ2 .

The remainder of this section is devoted to proving this. Our approach is to

consider a configuration of points that generates the worst case (that is, the largest

translation and rotational displacements) for Lemmas 3.3.2 and 3.3.3. Consider a

fixed value of ρ. We define the pattern point set P = {p1, p2, p3, p4} as follows.

The first three points form an equilateral triangle of side length 2ρ oriented in

counterclockwise order. We place p4 at the midpoint of p1p2. (See Fig. 7(a)) By an

infinitesimal perturbation of the points, we may assume that the pair (p1, p2) is the

unique diametrical pair for P .

sinα =
√

3

2ρ

q3

p2

C2

q1

p2

p3

q1

~t

p1

p1

q2 q2

q4

p4

p4 = q4

C1

p3

C3

C2

C1

C3

~r

q3 ~e
~t ~r

~e

(a) (b)

Fig. 7: The lower bound on Asym.

56

We define the background set Q = {q1, q2, q3, q4} so that the optimum Haus-

dorff distance will be at most 1. For 1 ≤ i ≤ 4, let Ci be a circle of unit radius

centered pi. Consider an angle α > 0 such that sin α =
√

3
2ρ

and construct a line

passing through p4 (the midpoint of p1p2) forming an angle α with line p1p2. Place

q1 and q2 at the rightmost intersection points of this line and C1 and C2, respec-

tively. (See Fig. 7(a).) Running symmetric alignment so that (p1, p2) is aligned with

(q1, q2) results in a translation and rotation. Let ~t and ~r denote the translation and

rotational displacement vectors for p3, respectively. Let q3 = p3 + ~e, where ~e is a

vector of unit length whose direction is chosen to be directly opposite that of ~t + ~r.

Intuitively, q3 has been chosen to be as far away as possible from p3 after alignment.

Finally, place q4 at the midpoint of q1q2. Observe that prior to alignment, each pi

is within distance 1 from qi, and therefore hopt ≤ 1.

Consider the placement of P and Q after symmetric alignment. (See Fig. 7(b).)

We will analyze the displacement distance of p3 relative to q3. Because of the

asymmetry introduced by p4 and q4, it is intuitively clear that if the distance ratio

is high enough, symmetric alignment will achieve the best match by aligning the

pair (q1, q2) with (p1, p2). We establish this formally in the next lemma.

Lemma 3.4.1 For all sufficiently large ρ, symmetric alignment aligns (p1, p2) with

(q1, q2).

Proof : Assume that ρ > 2Asym. We will show that the choice of any other

alignment pair will result in a Hausdorff distance greater than Asymhopt, a con-

tradiction. Suppose that the algorithm aligns (p1, p2) with some pair (qi, qj), where

57

(qi, qj) 6= (q1, q2). For 1 ≤ i ≤ 4, let Ci denote the circle of radius Asym centered at

point pi, after alignment. (These are different from the circles Ci used in the con-

struction.) Since ρ > 2Asym, all these circles are disjoint. In order for the Hausdorff

distance to be less than Asym, after alignment each of these circles must contain

exactly one point of Q.

First, we will show that q4 should be in C4. Suppose that to the contrary that

q4 is in circle Ck, k 6= 4. Then q1 must lie in some other circle. Since q1 and q2

are symmetric with respect to the point q4, the point q2 cannot be in any circle, a

contradiction.

From the hypothesis that (p1, p2) 6= (q1, q2), either q1 or q2 should be in C3.

Let us assume that q1 is in C3. (The other case is similar.) Then q2 may be in

either C1 or C2. However, if q2 lies in C2, then clearly q3 lies in none of the circles.

(Note that we do not allow for reflection.) Thus, q2 must lie within C1 and q3 lies

within C2, implying that (q2, q3) is the chosen aligning pair for (p1, p2). Thus, (after

alignment) the midpoint of q2q3, called it m23, coincides with p4. Since △q4q2m23

and △q1q2q3 are similar up to a scale factor of 2, we have

‖p4q4‖ =
‖q1q3‖

2
.

Also, observe that prior to alignment, each point of Q is within distance hopt of its

corresponding point of P , and so by the triangle inequality the distance between

any two points ‖qiqj‖ of Q is within 2hopt of the distance ‖pipj‖. So ‖q1q3‖ ≥

‖p1p3‖ − 2hopt. Since the transformation is rigid, this is true after alignment. Since

58

‖p1p3‖ = 2ρ, we have

‖p4q4‖ ≥ ‖p1p3‖ − 2hopt

2
=

2ρ − 2hopt

2
= ρ − hopt.

This exceeds Asymhopt for all sufficiently large ρ, yielding the desired contradiction.

⊓⊔

To complete the analysis of the lower bound, let us consider the translational

and rotational displacement distances of p3 that result from symmetric alignment.

The line segment q1q2 passes through p4 (the midpoint of p1p2). Let q′2q2 denote

the intersection of the line segment q1q2 with the circle C2. By simple trigonometry

‖q′2q2‖ = 2
√

1 − ρ2 sin2 α, which equals 1 by our choice of α. It is easy to see that

the translation distance is half the chord length ‖q′2q2‖ along a direction at angle

−α. Thus the translational displacement vector is

~t =
1

2
‖q2q

′
2‖ (cos (−α), sin (−α)) =

1

2
(cos (−α), sin (−α)) .

Next, let us consider the displacement of p3 due to rotation. The rotation is

about p4, the midpoint of p1 and p2, and the angle of rotation is α. Since △p1p2p3

is an equilateral triangle of side length 2ρ, the distance from the center of rotation

to p3 is
√

3ρ. From simple trigonometry, the displacement distance due to rotation

is
√

3ρ · 2 sin α
2

and the direction of the displacement is −α
2
. Thus the rotational

displacement vector is

~r = 2
√

3ρ sin
α

2

(
cos
(
−α

2

)
, sin

(
−α

2

))
.

Observe that the angle between ~t and ~r is α/2.

59

To complete the analysis, we decompose the rotational displacement vector ~r

into two components, ~r1 is parallel to ~t and ~r2 is perpendicular to it. we have

‖~r1‖ = 2
√

3ρ sin
α

2
cos

α

2
=

√
3ρ sin α =

3

2

‖~r2‖ = 2
√

3ρ sin2 α

2
=

√
3ρ(1 − cos α) =

√
3ρ

(
1 −

√
1 − 3

4ρ2

)
.

The squared length of the displacement vector is D = ‖~t+~r1+~r2‖2 =
(
‖~t‖ + ‖~r1‖

)2
+

‖~r2‖2. Thus, we have

D =

(
1

2
+

3

2

)2

+ ‖~r2‖2 = 4 + 3ρ2

(
1 −

√
1 − 3

4ρ2

)2

.

Using the fact that
√

1 − x ≤ 1 − x
2

we have

D ≥ 4 + 3ρ2

(
1 −

(
1 − 3

8ρ2

))2

= 4 +
27

64ρ2
.

We may assume that ρ ≥ 2, from which it follows that

27

64ρ2
≥ 4

10ρ2
+

1

400ρ2
≥ 4

10ρ2
+

1

100ρ4
.

Thus, we obtain

D ≥ 4 +
4

10ρ2
+

1

100ρ4
=

(
2 +

1

10ρ2

)2

and so
√

D ≥ 2 +
1

10ρ2
.

By adding the initial distance of 1 from q3 to p3 to the displacement, it follows

that the final distance from p3 to q3 is 1 +
√

D. Combining this with the fact that

hopt ≤ 1, the approximation ratio satisfies

Asym(ρ) ≥ 1 +
√

D

hopt
≥ 3 +

1

10ρ2
.

This completes the proof of Theorem 6. Clearly this is greater than 3 for all positive

ρ and converges to 3 in the limit as ρ tends to ∞.

60

3.5 Serial Alignment: Upper Bound

In this section we derive an upper bound on the approximation ratio Aser(ρ) for serial

alignment as a function of the distance ratio ρ. (Recall the definitions presented at

the start of Section 3.3.) The main result of this section is presented below.

Theorem 7 Consider two planar point sets P and Q, and let ρ be the distance ratio

for P and Q. Then

Aser(ρ) ≤ min

(
c∞ +

9

4ρ
, 2ρ

)
,

where c∞ is defined to be limρ→∞ Aser(ρ) ≈ 3.196. Further Aser(ρ) ≤ 3.44 for all ρ.

As in the analysis of symmetric alignment we will establish two approximation

ratios as functions of ρ, one is better for low ρ and the other for high ρ. We will show

that the two functions cross over at a value ρ∗
ser ≈ 1.72 and that Aser(ρ

∗
ser) ≈ 3.44.

Furthermore, both these functions decrease monotonically as ρ moves away from

ρ∗
ser. The approximation ratio for low distance ratios is presented in Lemma 3.5.1

below. As usual, assume that P has been transformed to its optimal placement with

respect to Q. Let (p1, p2) denote the diametrical pair in P and let (q1, q2) denote

the corresponding pair Q. Let α ≥ 0 denote the absolute acute angle between the

lines p1p2 and q1q2.

Lemma 3.5.1 For all ρ, Aser(ρ) ≤ 2ρ.

Proof : After applying serial alignment p1 and q1 coincide. Thus, after alignment

the distance between any point p ∈ P and q1 is at most 2ρ since the distance from

61

p1 to p is at most 2ρ. Therefore, the Hausdorff distance after alignment is at most

2ρ. ⊓⊔

To deal with the more interesting case of high ρ we consider the effects of

translation and rotation separately as functions of ρ and the rotation angle α. These

results are presented Sections 3.5.1 and 3.5.2, respectively. Unlike the corresponding

analysis for symmetric alignment of Section 3.3, the analysis here will require a more

detailed understanding of the geometric structure of the translation and rotation

spaces.

3.5.1 Translational Displacement

Let us consider the space of possible translation vectors that align p1 with q1. Since

P is in its optimal placement, it follows that q1 and q2 lie within two circles C1 and

C2 of radius hopt (= 1) centered at p1 and p2, respectively. (See Fig. 8(a).) For the

sake of illustration, let us assume that −−→p1p2 is directed horizontally from left to right

as shown in the figure and that the line q1q2 has a nonpositive slope (that is, α is a

clockwise angle). Consider a line ℓ that is parallel to q1q2 and is tangent to C2 from

below. This line forms an angle of α with respect to p1p2 and clearly it intersects

C1.

Let h1 denote the orthogonal projection of p1 onto the line ℓ, and let h2 denote

the orthogonal projection of p2 onto the line passing through p1 and parallel to ℓ.

By simple trigonometry ‖p2h2‖ = ‖p1p2‖ sinα and since C2’s radius is 1, the signed

distance from p1 to h1 is 2ρ sin α− 1. The interior of circle C1 lying above ℓ defines

62

p1

ℓ

α

q2

C1

q1

h2

p2

h1

C2 u

1

1

2ρ sinα − 1

βtO

v

(a) (b)

Fig. 8: The translation space for serial alignment.

a region called a segment of C1. (This is the shaded region of Fig. 8(a).) Clearly, q1

lies within this segment. It follows that the set of possible translation vectors −−→p1q1

is a copy of this region translated so that p1 coincides with the origin.

As in Section 3.3.1, we introduce (u, v) coordinate system by rotating original

coordinate system by α. In particular, the u-axis is parallel to q1q2, and the v-

axis is orthogonal and directed upwards. This yields the following characterization

of the translation space in terms of this coordinate system, which is illustrated in

Fig. 8(b). In this section and the next it will simplify notation somewhat to use

polar coordinates to represent vectors. The polar coordinates 〈s, φ〉 indicate that s

is the length of the vector, and φ is a counterclockwise angle with respect to the

positive horizontal axis.

Lemma 3.5.2 For fixed α and ρ, the translation space Tρ(α) in (u, v) coordinates

is the segment of a circle of radius hopt (= 1) centered the origin that lies above the

line v = 2ρ sin α − 1. The rightmost vertex of this segment has polar coordinates

〈1, βt〉, where sin βt = 2ρ sin α − 1.

For now we assume that βt > 0. Later in Lemma 3.5.6 we will show that

63

this assumption is safe, since if βt ≤ 0 the resulting bound will be weaker than for

positive βt.

3.5.2 Rotational Displacement

Next we consider the effects of rotation on the approximation error. As in Sec-

tion 3.3.2 we need to consider the placement of points in P because the distance by

which a point is displaced by rotation depends on the distance from this point to

the center of rotation. For given ρ and α values, let Rρ(α) denote the set of possible

rotational displacement vectors.

Because (p1, p2) is a diametrical pair, every point of P lies within a lune formed

by the intersection of two discs of radius 2ρ centered at p1 and p2, respectively. (See

Fig. 9(a).) As before, for the sake of illustration let us assume that −−→p1p2 is directed

horizontally from left to right as shown in the figure, and that α is a clockwise angle.

Along any fixed direction, the farther that a point is from the center of rotation p1

the greater its rotational displacement is. So we will concentrate on the most distant

points from the center of rotation, that is, points lying on the boundary of this lune.

For any angle θ, where −π/2 ≤ θ ≤ π/2, let pθ denote the point on this lune such

that the signed angle ∠p2p1pθ is θ. (See Fig 9(a).) Let p′θ denote this point’s position

after a clockwise rotation about p1 by angle α. Let ~r(θ) =
−−→
pθp

′
θ be the corresponding

rotational displacement vector.

The following lemma characterizes Rρ(α) by describing ~r(θ) as a function of

θ. This region is illustrated in Fig. 9(b).

64

p22ρ

α
p1

pθ

θ
p′

θ

θ
φr

(a) (b)

O

4ρ sin α
2

π

6
+ α

2

π

6
−

α

2

α

2

y

x

Fig. 9: The rotation space for serial alignment.

Lemma 3.5.3 Consider fixed α and ρ, and let

s0 = 4ρ sin
α

2
, φ1 = −

(
5π

6
+

α

2

)
, and φ2 = −

(π

6
+

α

2

)
.

The rotational displacement space Rρ(α) is a region bounded by two circular arcs:

(i) the arc of a circle centered at the origin of radius s0 for φ ∈ [φ1, φ2].

(ii) the arc of a circle passing through the origin whose radius is s0, and whose

center lies at the polar coordinates
〈
s0,−π+α

2

〉
, for φ ∈ [φ2, 0] ∪ [−π, φ1].

Furthermore, for all ~r ∈ Rρ(α), we have ‖~r‖ ≤ s0.

Proof : Throughout we will use the following simple observation. The triangle

△p1pθp
′
θ is isosceles and its apex angle is α. Thus, the length of the displacement

vector
−−→
pθp

′
θ is the length of the triangle’s base, which is 2‖p1pθ‖ sin α

2
, and its angle

with respect to −−→p1p2 is −
(

π
2
− θ + α

2

)
. We consider two cases depending on θ, where

−π/2 ≤ θ ≤ π/2.

(i) If θ ∈ [−π/3, π/3] then pθ lies on the opposite side of the lune from p1, that

is, on the arc of the circle of radius 2ρ centered at p1. Because all such

points are at distance 2ρ from p1, by the above observation, the length of the

65

displacement vector for all such points is 4ρ sin α
2

= s0, and the direction is

φ = −
(

π
2
− θ + α

2

)
. For the given range of θ we have

φ ∈
[
−
(π

2
+

π

3
+

α

2

)
,−
(π

2
− π

3
+

α

2

)]
=

[
−
(

5π

6
+

α

2

)
,−
(π

6
+

α

2

)]
= [φ1, φ2].

Clearly this is a circular arc centered at the origin of radius s0.

(ii) If θ ∈ [π/3, π/2] ∪ [−π/2,−π/3] then pθ lies on the left boundary of the lune

passing through p1. This is the arc of the circle of radius 2ρ centered at p2.

By simple trigonometry we have

‖p1pθ‖ = 2ρ · 2 sin
π − 2θ

2
= 4ρ cos θ.

By the above observation, the length of the rotational displacement vector is

8ρ cos θ sin α
2

and its direction is φ = −
(

π
2
− θ + α

2

)
. Therefore, as a function

of θ, the polar coordinates of the displacement vector are

〈
8ρ cos θ sin

α

2
,−
(π

2
− θ +

α

2

)〉
.

It is easy to verify algebraically the resulting curve is the arc of a circle passing

through the origin whose radius is 4ρ sin α
2

= s0, and whose center lies at the

polar coordinates

〈
4ρ sin

α

2
,−π + α

2

〉
=

〈
s0,−

π + α

2

〉
.

⊓⊔

3.5.3 Combining Translation and Rotation

Finally we use the results of the prior two sections to derive the approximation ratio

for the serial alignment algorithm. The space of possible translational displacement

66

vectors, Tρ(α), was shown in Fig. 8 and space of possible rotational displacement

vectors, Rρ(α), was shown in Fig. 9. The former was shown in (u, v) coordinates

(aligned with q1q2) and the latter was shown in (x, y) coordinates (aligned with

p1p2). We show them both in Fig. 10 in (u, v) coordinates by rotating the latter

counterclockwise by angle α.

1

π

6
−

α

2

βt

2ρ sinα − 1

O

t0

r0

v

u

π

6
−

α

2
ρ sin α

2

4

Fig. 10: Translation and rotation space for serial alignment.

To derive the overall approximation bound it suffices to find (as a function

of ρ and maximizing over all α) the two vectors ~t ∈ Tρ(α) and ~r ∈ Rρ(α) whose

sum produces the largest total displacement distance ‖~t + ~r‖. Because each point

of P is initially within distance hopt (= 1) of its closest point of Q, and so the final

approximation bound will be ‖~t + ~r‖+ 1. In order to do this, we need to determine

the pair of vectors from these spaces whose sum achieves the greatest distance. A

visual inspection of Fig. 10 suggests that the desired pair consists of the rightmost

vertex of each region. We establish this in the following lemma.

Recall from Lemma 3.5.2 the angle βt where sin βt = 2ρ sin α − 1, which the

angle to the rightmost vertex of Tρ(α). Recall from the comments after Lemma 3.5.2

that we may assume that βt > 0. Let ~t0 denote the unit length vector to this vertex,

67

whose polar coordinates are 〈1, βt〉. Also recall from Lemma 3.5.3 that the angle

(in (x, y) coordinates) to the rightmost vertex of Rρ(α) is φ2 = −
(

π
6

+ α
2

)
. To

convert this into (u, v) coordinates we add α, and so let us define φr = φ2 + α =

−π
6

+ α
2
. Let ~r0 ∈ Rρ(α) denote the vector to this vertex whose polar coordinates

are
〈
4ρ sin α

2
, φr

〉
.

Lemma 3.5.4 Assuming βt > 0,

max
~t∈Tρ(α)

~r∈Rρ(α)

‖~t + ~r‖2 ≤ 1 +
(
4ρ sin

α

2

)2

+ 8ρ sin
α

2
sin
(π

3
− βt +

α

2

)
.

The sum of the vectors ~t0 and ~r0 achieves this maximum length.

Proof : We will show that for all ~t ∈ Tρ(α) and ~r ∈ Rρ(α), ‖~t + ~r‖ ≤ ‖~t0 + ~r0‖.

First we observe that φr < 0. To see this recall that ρ > ρ∗
ser and sin α < 1/ρ. Thus

sin α <
1

ρ∗
ser

≈ 1

1.72
<

√
3

2
= sin

π

3
.

Therefore α < π/3, implying that φr < 0.

Assuming that the angle between the two vectors ~t and ~r is acute, in order to

maximize ‖~t +~r‖ we should maximize the lengths of these vectors while minimizing

the angle between them. Because the upper boundary of Tρ(α) is a circle centered

at the origin, it is easy to see that the optimal choice would be at either the leftmost

or rightmost vertices of the region. Because of the asymmetry introduced by α, the

rightmost vertex t0 is easily seen to be the better choice. (This is based on our

assumption that α is a clockwise angle. The leftmost vertex would be chosen if the

rotation had been counterclockwise.)

68

The remaining problem is to determine the best choice of ~r. The lower bound-

ary of Rρ(α) is a circular arc centered at the origin, and so the optimal choice

cannot be in the interior of this arc. Thus, the optimal choice must lie along the

upper boundary of Rρ(α), and in particular, along the arc running from the origin

to ~r0. We will show that the optimum is achieved at ~r0. Recall from case (ii) of the

proof of Lemma 3.5.3 that the points of this arc have polar coordinates (relative to

(x, y) coordinates)

〈
8ρ cos θ sin

α

2
,−
(π

2
− θ +

α

2

)〉
,

where π/3 ≤ θ ≤ π/2. We can convert this to polar coordinates relative to (u, v)

coordinates by adding α to the angle. Let

~r(θ) = 〈s(θ), φ(θ)〉 , where s(θ) = 8ρ cos θ sin α
2
, and φ(θ) = −π

2
+ θ + α

2
.

Observe that ~r0 = ~r(π/3). Recall from Lemma 3.5.2 that the polar representation of

~t0 is 〈1, βt〉. By the law of cosines, the squared length of their sum can be expressed

as a function f(θ) = ‖~t0 + ~r(θ)‖2, where

f(θ) = 12 + s(θ)2 − 2 · 1 · s(θ) · cos (π − (βt − φ(θ)))

= 1 +
(
8ρ cos θ sin

α

2

)2

+ 16ρ cos θ sin
α

2
sin
(
θ − βt +

α

2

)
.

To determine its maximum value, we consider the partial derivative of f with respect

to θ.

∂f

∂θ
= −128ρ2 sin2 α

2
cos θ sin θ +

16ρ sin
α

2

(
− sin θ sin

(
θ − βt +

α

2

)
+ cos θ cos

(
θ − βt +

α

2

))

= −128ρ2 sin2 α

2
cos θ sin θ + 16ρ sin

α

2
cos
(
2θ − βt +

α

2

)
.

69

To simplify notation let w = 8ρ sin α
2
, and by simple trigonometry we have

∂f

∂θ
= −2w2 cos θ sin θ + 2w cos

(
2θ − βt +

α

2

)

= −w2 sin 2θ + 2w cos 2θ cos
(
βt −

α

2

)
+ 2w sin 2θ sin

(
βt −

α

2

)
.

Now we will show that the derivative is negative under our assumption that π/3 ≤

θ ≤ π/2 and βt > 0. Observe that sin 2θ ≥ 0 and cos 2θ < 0. To estimate the other

terms we first consider the range of βt − α
2
. Using the fact that sin βt = 2ρ sin α− 1

and βt > 0 it follows that 0 < βt ≤ π/2. Since 0 ≤ α < π/3 for ρ > ρ∗
ser we have

−π

6
≤ βt −

α

2
≤ π

2
.

Thus, cos (βt − α/2) ≥ 0. The only remaining term is sin (βt − α/2). If βt − α
2
≤ 0

it is obvious that the partial derivative is negative. Otherwise, βt − α
2

> 0, and so

∂f

∂θ
= −w2 sin 2θ + 2w cos 2θ cos

(
βt −

α

2

)
+ 2w sin 2θ sin

(
βt −

α

2

)

< −w2 sin 2θ + 2w sin 2θ = (2 − w)w sin 2θ.

Since βt > 0 it follows that 2ρ sin α > 1 and hence

w = 8ρ sin
α

2
> 4ρ sin α > 2.

Therefore, the partial derivative is negative for π/3 ≤ θ ≤ π/2 and βt > 0, and

so f(θ) is a decreasing function of θ. This implies that the maximum rotational

displacement is achieved at the minimum value of θ = π
3
. Thus, the maximum

combined displacement is achieved by the sum of ~t0 and ~r(π/3) = ~r0, as desired. By

plugging θ = π/3 into f(θ) we obtain the maximum squared displacement distance

value given in the statement of the lemma. ⊓⊔

70

Combining this result with our earlier remarks we have

Aser(ρ) ≤ max
α



 max
~t∈Tρ(α)

~r∈Rρ(α)

‖~t + ~r‖



+ 1

= max
α

√
1 +

(
4ρ sin

α

2

)2

+ 8ρ sin
α

2
sin
(π

3
− βt +

α

2

)
+ 1.

Unfortunately, this function is too complex to reason about easily. However,

the resulting approximation ratio can be computed numerically and plotted as a

function of ρ. (See Fig 11.) By numerical means we determine that the cross-over

point, denoted ρ∗
ser is approximately 1.72, and Aser(ρ

∗
ser) ≤ 3.44. The figure shows

that as ρ tends to ∞ the approximation bound decreases and converges to a value,

which we denote by c∞. The next lemma provides a characterization of this function.

Fig. 11: The approximation ratio for serial alignment as a function of ρ.

Lemma 3.5.5 If ρ > ρ∗
ser then Aser(ρ) ≤ c∞ + 9

4ρ
, where c∞ = limρ→∞ Aser(ρ) ≈

3.196.

Proof : We will follow the approach we used in Lemma 3.3.5. We first find an

optimal solution for the limiting case when ρ → ∞ and then present the general

71

case. Let Dρ(α) denote the maximum squared total displacement length as given in

Lemma 3.5.4. When ρ and α are clear from context we simply write D.

D = Dρ(α) = 1 +
(
4ρ sin

α

2

)2

+ 8ρ sin
α

2
sin
(π

3
− βt +

α

2

)
.

As mentioned above, Aser(ρ) ≤ maxα

√
D + 1. Since 0 ≤ sin α ≤ 1/ρ, in the limit

α approaches 0. Using the fact of limα→0
sin α

α
= 1 and elementary trigonometry we

have

lim
ρ→∞

D = lim
ρ→∞

(
1 +

(
4ρ sin

α

2

)2

+ 8ρ sin
α

2

(
sin
(π

3
+

α

2

)
cos βt − sin βt cos

(π

3
+

α

2

)))

= lim
ρ→∞

1 + (2ρα)2 + 4ρα

(√
3

2

√
4ρα − 4ρ2α2 − (2ρα − 1)

1

2

)

= lim
ρ→∞

1 + 2ρα + 4
√

3ρα
√

ρα − ρ2α2.

Substituting x = ρα (0 ≤ x ≤ 1), let

f(x) = 1 + 2x + 4
√

3x
√

x − x2.

To find the value x = x0 at which the maximum is achieved, we set the derivative

to 0, from which we obtain

x0 =
1

6

(
3 +

√
2 cos φ0 +

√
6 sin φ0

)
, where φ0 =

1

3
arctan

√
47

9
. (3.2)

Observe that x0 is slightly greater than
√

2/3. Thus, we have

c∞ = Aser(∞) = lim
ρ→∞

max
α

√
Dρ(α) + 1 =

√
f(x0) + 1 ≈ 3.196. (3.3)

Next, we consider the general case. Before considering D, let us simplify the last

term of D first. Let

gρ(α) = sin
(π

3
− βt +

α

2

)
.

72

From basic trigonometry we have

gρ(α) = sin
(π

3
+

α

2

)
cos βt − sin βt cos

(π

3
+

α

2

)

= sin
π

3
cos

α

2
cos βt + cos

π

3
sin

α

2
cos βt − cos

π

3
cos

α

2
sin βt + sin

π

3
sin

α

2
sin βt.

To simplify gρ(α) we apply a Taylor’s series expansion.

gρ(α) ≤
√

3

2
cos βt +

α

4
cos βt −

1

2

(
1 − α2

8

)
sin βt +

√
3α

4
sin βt

≤
(√

3 +
α

2

)
√

ρα − ρ2

(
α − α3

6

)2

−

1

2

(
1 − α2

8

)(
2ρ

(
α − α3

6

)
− 1

)
+

√
3α

4
(2ρα − 1).

Now, applying a Taylor’s series expansion of D (as a function of α) we have

D = 1 +
(
4ρ sin

α

2

)2

+ 8ρ sin
α

2
· gρ(α)

≤ 1 + (2ρα)2 + 4ρα · gρ(α).

Substituting gρ(α) for the last term of D and removing all the negative terms we

have

D ≤ 1 + 2ρα + 4ρα

((√
3 +

α

2

)√
ρα − ρ2α2 +

ρ2α4

3
+

7ρα3

24
+

√
3ρα2

2

)
.(3.4)

Since 0 ≤ α ≤ arcsin (1/ρ), we have 0 ≤ ρα ≤ ρ arcsin (1/ρ). For all ρ > ρ∗
ser,

observe that ρ arcsin (1/ρ) is at most ρ∗
ser arcsin(1/ρ∗

ser). Let us denote this value by

c0, which by numerical evaluation is approximately 1.07. Thus, we have 0 ≤ ρα < c0.

We will show that D ≤ (c∞− 1)2 + 9
ρ
. We will consider two cases: 0 ≤ ρα ≤ 1

and 1 < ρα < c0. For the first case (0 ≤ ρα ≤ 1) we substitute x = ρα (0 ≤ x ≤ 1)

and use the fact that (1 + 2x + 4
√

3x
√

x − x2) ≤ f(x0), which we argued above.

73

And so we have

D ≤ D +
[
f(x0) −

(
1 + 2x + 4

√
3x

√
x − x2

)]

= f(x0) + 4
√

3x

(√

x − x2 +
x4

3ρ2
−
√

x − x2

)
+

4x

(
x

2ρ

√

x − x2 +
x4

3ρ2
+

7x3

24ρ2
+

√
3x2

2ρ

)
.

It is easily proved that this function is increasing for 0 ≤ x ≤ 1. Thus, it achieves

its maximum value at x = 1. By hypothesis, ρ > ρ∗
ser > 1.72, from which it follows

that

D ≤ f(x0) +

(
4 + 2

√
3

ρ
+

7 + 4
√

3

6ρ2

)

< f(x0) +
9

ρ
= (c∞ − 1)2 +

9

ρ
,

as desired.

For the second case (1 < ρα < c0), since ρα − ρ2α2 < 0, from Eq. (3.4) we

have

D < 1 + 2ρα + 4ρα

((√
3 +

α

2

)√ρ2α4

3
+

7ρα3

24
+

√
3ρα2

2

)
.

It is easily observed that the function is an increasing function with respect to ρα and

the maximum value is achieved at ρα = 1.07, and this value is at most (c∞−1)2 + 9
ρ
,

as desired.

Now, using the fact of c∞ > 3 we have

D < (c∞ − 1)2 +
9

ρ
<

(
c∞ − 1 +

9

4ρ

)2

.

Therefore,

Aser(ρ) ≤ max
α

√
D + 1 ≤ c∞ +

9

4ρ
,

which completes the proof. ⊓⊔

74

The analysis of Lemma 3.5.4 was performed under the assumption that βt > 0.

We can justify this assumption now by showing that any other value would lead to

a weaker approximation bound.

Lemma 3.5.6 For ρ > ρ∗
ser, if βt ≤ 0 then

dser(ρ) < Aser(ρ)hopt,

where dser(ρ) is a Hausdorff distance after running serial alignment.

Proof : To simplify matters, assume that hopt = 1 and let dser(ρ) ≤ maxα gρ(α). By

the triangle inequality we have

gρ(α) = max
~t∈Tρ(α)

~r∈Rρ(α)

(‖~t + ~r‖ + 1) ≤ max
~t∈Tρ(α)

~r∈Rρ(α)

(‖~t‖ + ‖~r‖ + 1).

By Lemmas 3.5.2 and 3.5.3 we have ‖~t‖ ≤ 1 and ‖~r‖ ≤ 4ρ sin α
2
, and so

gρ(α) ≤ 2 + 4ρ sin
α

2
= 2 +

2ρ sin α

cos α
2

.

By the assumption that βt ≤ 0, it follows 2ρ sin α−1 ≤ 0, and so gρ(α) ≤ 2+ 1
cos (α/2)

.

For ρ > ρ∗
ser and sin α ≤ 1/(2ρ), we have

cos
α

2
=

1√
2

√
1 +

√
1 − sin2 α >

1√
2

√
1 +

√
1 − 1/(2ρ∗

ser)
2 ≈ 1

1.01
.

Thus, we see that the bound on dser(ρ) generated under the hypothesis βt ≤ 0 is

significantly smaller than c∞. In the proof of Lemma 3.5.5 it was shown that for all

ρ > ρ∗
ser, the approximation bound is never smaller than c∞. ⊓⊔

Combining Lemmas 3.5.1, 3.5.5, and 3.5.6 completes the proof of Theorem 7.

75

3.6 Serial Alignment: Lower Bound

In this section we present a result analogous to Theorem 6, by proving that the

upper bound on the approximation ratio for serial alignment given in the previous

section is tight in the limit as ρ approaches ∞. Recall that c∞ = limρ→∞ Aser(ρ).

(See Eq. (3.3) in Lemma 3.5.5.)

Theorem 8 For all sufficiently large ρ there exists an input on which serial align-

ment achieves an approximation factor of at least c∞ + 1
27ρ2

The input configuration is structurally similar to the one used in the proof

of Theorem 6, except for the choice of the angle α. Here we select α such that

sin α
2

= x0/(2ρ), where x0 is as defined in Eq. (3.2) in the proof of Lemma 3.5.5.

Consider a fixed value ρ > 2Aser. As in Section 3.4 we define the pattern point

set P = {p1, p2, p3, p4}, where the first three points form an equilateral triangle of

side length 2ρ, and p4 is placed at the midpoint of p1p2. (See Fig. 12(a).) By an

infinitesimal perturbation of the points, we may assume that the pair (p1, p2) is the

unique diametrical pair for P .

sin α

2
= x0

2ρ

q3

p2

C2

q1

p2

p3

q4

~t

p1
p4

q2
q2

q4

p4 p1 = q1

C1

p3

C3

C2

C1

C3

~rq3 ~e~e
~t ~r

(a) (b)

Fig. 12: The lower bound on Aser.

76

We define the background set Q = {q1, q2, q3, q4} so that the optimum Haus-

dorff distance will be at most 1. For 1 ≤ i ≤ 4, let Ci be a circle of unit radius

centered pi. Consider a lower tangent line at C2 forming an angle α with line p1p2.

It is easy to verify that this line intersects C1. Place q1 at the rightmost intersection

point of the tangent line and C1, and place q2 at the point of tangency with C2. (See

Fig. 12(a).) Running serial alignment so that (p1, p2) is aligned with (q1, q2) results

in a translation and rotation. Let ~t and ~r denote the translation and rotational

displacement vectors for p3, respectively. Let q3 = p3 +~e, where ~e is a vector of unit

length whose direction is chosen to be directly opposite that of ~t + ~r. Intuitively,

q3 has been chosen to be as far away as possible from p3 after alignment. Finally,

place q4 at the midpoint of q1q2. Observe that prior to alignment, each pi is within

distance 1 from qi, and therefore hopt ≤ 1.

Consider the placement of P and Q after running serial alignment. (See

Fig. 12(b).) We will analyze the displacement distance of p3 relative to q3. As

in the construction of Section 3.4, p4 and q4 were introduced to induce an asymme-

try that forces the alignment of (p1, p2) with (q1, q2). We establish this formally in

the next lemma.

Lemma 3.6.1 For all sufficiently large ρ, serial alignment will align (p1, p2) with

(q1, q2).

Proof : We reduce the proof to the analogous result for symmetric alignment,

namely Lemma 3.4.1. In the proof of that lemma the only facts that we used

were that ρ is sufficiently large, and prior to alignment, each point of P lies within

77

distance hopt ≤ 1 of the corresponding point of Q. These are both true in the present

scenario.

Suppose that when we run serial alignment on the above input instance (p1, p2)

was not aligned with (q1, q2). In Lemma 3.2.3 we showed that on all input instances,

if serial alignment produces a Hausdorff distance of dser then (without altering the

individual point assignments) symmetric alignment will produce a Hausdorff dis-

tance of at most dsym ≤ dser + hopt. In the proof of Lemma 3.4.1 it was argued

that if (p1, p2) was not aligned with (q1, q2) in symmetric alignment, the resulting

Hausdorff distance would be at least ρ − hopt. Thus we have

ρ − hopt ≤ dsym ≤ dser + hopt,

which implies that dser ≥ ρ − 2hopt ≥ ρ − 2. This distance will exceed Aserhopt for

all sufficiently large ρ, which yields the desired contradiction. ⊓⊔

To complete the analysis let us consider the translational and rotational dis-

placement distances of p3 that result from symmetric alignment. It is easy to see

that ~t = −−→p1q1, and so ‖~t‖ = 1. To determine the direction of ~t, let us consider the

points of P prior to alignment. Let ℓ denote the line passing through p1 that is

parallel to q1q2. Let h1 and h2 denote the orthogonal projections of q1 and q2 onto ℓ,

respectively. Since line q1q2 is the lower tangent line of the circle C2 at q2, it follows

that p2, q2, and h2 are collinear. Combining the facts that ‖p1p2‖ = 2ρ, ‖p2q2‖ = 1,

and ℓ is perpendicular to p2q2, we have

‖q2h2‖ = ‖p1p2‖ sin α − ‖p2q2‖ = 2ρ sin α − 1.

78

Because ‖q1h1‖ is equal to ‖q2h2‖, the angle between the line p1q1 and ℓ, denoted

βt, satisfies

sin βt =
‖q1h1‖
‖p1q1‖

=
‖q2h2‖

1
= 2ρ sin α − 1.

Since ℓ forms an angle of α with p1p2 it follows that ~t forms an angle of φt = βt −α,

and hence expressing ~t in polar coordinates we have ~t = 〈1, φt〉.

Next, let us consider the effect of rotation at p3. Since △p1p2p3 is an equilateral

triangle we have ‖p1p3‖ = 2ρ. By simple trigonometry (or see the comments at the

start of the proof of Lemma 3.5.3) it follows that p3’s displacement distance due

to the rotation about p1 by angle α is 2ρ · 2 sin α
2

= 4ρ sin α
2

and the displacement

direction is

(π

3
− α

2

)
− π

2
= − π

6
− α

2
.

Let φr denote this angle. Thus, expressing ~r in polar coordinates we have

~r =
〈
4ρ sin

α

2
, φr

〉
.

Let D = ‖~t + ~r‖2 denote the length of the combined displacements. By the

law of cosines we have

D = ‖~t‖2 + ‖~r‖2 − 2‖~t‖ ‖~r‖ cos (π − (φt − φr))

= 1 +
(
4ρ sin

α

2

)2

− 8ρ sin
α

2
cos
(
π − (βt − α) +

(
−π

6
− α

2

))

= 1 +
(
4ρ sin

α

2

)2

+ 8ρ sin
α

2
sin
(π

3
+

α

2
− βt

)
.

79

Using the facts that sin α
2

= x0

2ρ
and 0 ≤ α ≤ π/3 and applying basic trigonometry

we have

D = 1 + (2x0)
2 + 4x0

(
sin
(π

3
+

α

2

)
cos βt − cos

(π

3
+

α

2

)
sin βt

)

≥ 1 + 4x2
0 + 4x0

(√
3

2
cos βt −

1

2
sin βt

)
.

Note that x0 is a constant slightly greater than
√

2/3. (See Eq. (3.2) in Lemma. 3.5.5.)

To relate this to c∞ we begin with a variable substitution. Let

s = cos
α

2
=

√

1 −
(

x0

2ρ

)2

.

Because 0 ≤ x0 < 1 and ρ > ρ∗
ser > 1.5 it follows directly that 3/4 < s ≤ 1. We can

restate a number of quantities in terms of x0 and s.

ρ sin α = 2ρ sin
α

2
cos

α

2
= x0s,

sin βt = 2ρ sin α − 1 = 2x0s − 1, and

cos βt = 2
√

x0s − x2
0s

2.

Substituting these values yields

D ≥ 1 + 4x2
0 + 4x0

(√
3
√

x0s − x2
0s

2 − x0s +
1

2

)
.

By definition of c∞ we have (c∞−1)2 = 1+2x0 +4
√

3x0

√
x0 − x2

0, and so it follows

that

D ≥ 1 + 4x2
0 + 4x0

(√
3
√

x0s − x2
0s

2 − x0s +
1

2

)
+

[
(c∞ − 1)2 −

(
1 + 2x0 + 4

√
3x0

√
x0 − x2

0

)]

= (c∞ − 1)2 + 4x2
0(1 − s) + 4

√
3x0

(√
x0s − x2

0s
2 −

√
x0 − x2

0

)
.

80

It is straightforward to verify that 1/(2x0) < s ≤ 1 for ρ > ρ∗
ser, and so it follows

that
√

x0s − x2
0s

2 −
√

x0 − x2
0 ≥ 0. We have

D ≥ (c∞ − 1)2 + 4x2
0(1 − s).

Using the fact that
√

1 − x ≤ 1 − x/2 and s =

√
1 −

(
x0

2ρ

)2

we have

D ≥ (c∞ − 1)2 + 4x2
0

[
1 −

(
1 − 1

2

(
x0

2ρ

)2
)]

= (c∞ − 1)2 +
x4

0

2ρ2
.

Since c∞ < 3.2 and
√

2/3 < x0 < 1 it is easy to verify that

D ≥ (c∞ − 1)2 +
x4

0

2ρ2
≥
(

c∞ − 1 +
x4

0

12ρ2

)2

≥
(

c∞ − 1 +
1

27ρ2

)2

.

Therefore,

Aser(ρ) ≥ 1 +
√

D

hopt
≥ c∞ +

1

27ρ2
,

which completes the proof of Theorem 8.

3.7 Summary and Concluding Remarks

We have presented a simple modification to the alignment-based algorithm of Goodrich,

Mitchell, and Orletsky [28]. Our modification has the same running time and re-

tains the simplicity of the original algorithm. We have analyzed the approximation

ratios for these algorithms as a function of the distance ratio ρ. We summarize and

compare these approximation ratios in Fig. 13.

Note that the approximation ratio for symmetric alignment is smaller for all

sufficiently large values of ρ. The cross-over point of two bounds is at (ρ, A) ≈

(1.54, 3.08). As a function of ρ, the highest upper bound for symmetric alignment

81

Fig. 13: The approximation ratios for serial alignment and symmetric alignment.

(Note that the y-axis does not start at 0.)

is at (ρ, Asym) ≈ (1.26, 3.14). The highest upper bound for serial alignment is at

(ρ, Aser) ≈ (1.72, 3.44). As ρ approaches ∞, Asym(ρ) converges to 3 and Aser(ρ)

converges to a value that is approximately 3.19. As mentioned earlier, in many

applications of point pattern matching, large values of ρ (exceeding 10, say) are to

be expected. We have also shown that both bounds are nearly tight for large ρ, and

they are tight in the limit.

82

Chapter 4

Embedding and Similarity Search for Point Sets

under Translation

4.1 Introduction

In this chapter we are given a large database of point sets, which is to be preprocessed

so that, given a query set, it is possible to efficiently compute its closest neighbor(s)

in the database. We consider this problem in a relatively simple context, but one

that still leads to quite an interesting computational problem. We assume that point

sets have integer coordinates, that they are to be matched subject to an unknown

translation, and that there is a significant fraction of outliers, that is, points from

one set may not match any point of the other set. We assume, however, the when

point coordinates match, they are identical (subject to the optimum translation).

This is in contrast with measures such as the partial Hausdorff distance [35], where

both outliers and near misses are tolerated. Outliers are challenging because global

properties of the point sets, based for example on the identification of reference

points such as centroids [2] are not applicable. The distance metric we use is the

size of the symmetric difference of the two point sets, which is to be minimized

83

through some translation of one set relative to the other. (Formal definitions are

given below.)

Our approach is based on finding an embedding, that is, a function that maps a

point set into a metric space [37]. The distortion of such an embedding is defined to

be the maximum multiplicative variation that distances might suffer in the mapping

process. Our objective is to produce an embedding of low distortion, ideally into a

space of low dimension, in which similarity search can be performed efficiently.

In the context of database search for point sets undergoing transformations, a

well-known solution is based on geometric hashing [61]. This involves encoding the

point positions of the points of each set relative to a small subset of points, called

a frame, which uniquely determines the underlying transformation. (In the case of

translation, a frame consists of a single point.) This approach is notably inefficient

when a significant number of outliers are present. The reason stems from the fact

that the points of the frame used to establish the matching transformation must

be present in both sets. However, the presence of outliers confounds methods to

select such a consistent frame from both sets. Suppose, for example, that there are

N possible frames to chose from, and the database encodes each point set using k

different frames. In the absence of some consistent method for selecting frames, the

query will need to try at least Ω(N/k) frames, in order to achieve even a constant

probability of succeeding in finding a common frame. Thus, irrespective of the value

of k, the product of the space and query time will be suboptimal by a factor of Ω(N).

Another common approach, which is widely used in computer vision and image

databases, is to compute some property that is invariant under motion. For example,

84

in image processing it is possible to construct a histogram of colors appearing in

the image. The resulting invariant feature sets can be represented as vectors and

can be compared using, for example, the Earth-Mover’s distance (EMD) [3, 18].

The problem of computing low distortion embeddings of variants of EMD has been

studied by Indyk and Thaper [40] and Wang, et al. [60]. Unfortunately, similarity

of two color histograms provides no guarantees on the similarity of the underlying

images.

The most popular invariant used for similarity search involving point sets

is the distance histogram, which is defined to be the multiset of Θ(n2) interpoint

distances [9, 21]. Again, retrieval can be based on metrics like the EMD [13, 44].

Although the distance histogram and other invariant have been employed success-

fully in some applications, they do not provide a general solution, because simi-

larity of such statistics does generally guarantee that the original objects match.

For example, in the case of the distance histogram there exist so called homo-

metric sets [50, 56], which have identical distance histograms, but which are not

at all similar to one another. For example, the sets P = {0, 1, 4, 10, 12, 17} and

Q = {0, 1, 8, 11, 13, 17} have identical distance histograms, but the symmetric dif-

ference of these sets under translation is never less than 6. Furthermore, there exist

homometric sets whose symmetric difference under translation is arbitrarily large.

The principal contribution of this chapter is the first translation-invariant em-

bedding for multi-dimensional point sets that provides provable quality guaran-

tees. More formally, consider a point set consisting of at most n points on the

d-dimensional integer grid, where d is a constant. We assume that each coordinate

85

of each point is bounded above by a polynomial function of n. Let Z denote the set

of integers, and let Zu denote {0, 1, 2, . . . , u−1}. Let Z
d denote the set of d-element

vectors over Z, and define Z
d
u analogously for Zu. Finally, let Z

d
u(≤ n) denote the

collection of point sets over Z
d
u that contain at most n points. Given two finite sets

P and Q, let P ⊖ Q denote their symmetric difference, that is,

P ⊖ Q = (P \ Q) ∪ (Q \ P).

The cardinality of the symmetric difference is a well known metric on finite sets,

which we denote by |P ⊖ Q|.

It will be useful to extend these concepts to multisets as well. We define a

multiset in Z
d
u(≤ n) to be one in which the total cardinality (counting multiplicities)

is at most n. We generalize |P ⊖ Q| by summing the absolute differences of the

multiplicities of corresponding elements. If P and Q are multisets of total cardinality

at most n, then clearly 0 ≤ |P ⊖ Q| ≤ 2n.

Given a point set P and any t ∈ Z
d, the translate P + t is defined to be

{p + t | p ∈ P}. Extending the symmetric difference, we define the symmetric

difference distance under translation, denoted 〈P ⊖ Q〉, to be

〈P ⊖ Q〉 = min
t∈Zd

|(P + t) ⊖ Q| .

For all of our results, the points P and Q will be assumed to be drawn from a

finite domain Z
d
u. It is understood that all arithmetic operations over individual

coordinates are to be applied modulo u. This means that translation is subject

to cyclic wraparound effects. It is easy to avoid these effects by first embedding

the points in a region with a sufficiently large surrounding buffer. For example,

86

given P, Q ⊆ Z
d
u, treat them as points in Z

d
3u. Translate each point by the vector

(u, . . . , u), thus mapping each set into the central third of Z
d
3u (see Fig. 1). In any

optimal solution at least one point of P coincides with a point of Q. It follows easily,

that any solution that involves wraparound in Z
d
3u cannot be optimal.

P

Q

u

3u

(u, . . . , u)

Fig. 1: Avoiding wraparound for point sets in Z
d
u by embedding them into Z

d
3u.

Before presenting our main results, let us first define a few more terms. Let ℓd
1

denote the metric space consisting of real d-dimensional space R
d endowed with the

L1 metric. Given x,y ∈ ℓd
1, we denote their L1 distance by ‖x − y‖1 =

∑
i |xi − yi|.

We use the terms randomized embedding and randomized function throughout to de-

note an embedding or function computed by a randomized algorithm. Throughout,

we use “log” to denote logarithm base 2 and “ln” to denote the natural logarithm.

Our first result states that there is a translation invariant randomized em-

bedding of distortion O(log2 n), that maps an n-element points set in Z
d, with

coordinates bounded by a polynomial in n, into ℓm
1 , where m is roughly linear in n.

Theorem 9 Given sufficiently large integers n and u, where u ≤ nO(1), a constant

d, and failure probability β, there exists a randomized embedding Ψ: Z
d
u(≤ n) → ℓm

1 ,

for m = O
(
n log2 n log 1

β

)
, such that for any two sets P, Q ∈ Z

d
u(≤ n) :

87

(i) ‖ΨP − ΨQ‖1 ≤ (2 log n) 〈P ⊖ Q〉.

(ii) ‖ΨP − ΨQ‖1 ≥ 1
17 log n

〈P ⊖ Q〉, with probability at least 1 − β, and

This embedding can be computed in time O
(
n log4 n log 1

β

)
.

Observe that part (i) holds unconditionally, irrespective of the algorithm’s

randomization. The probability that the distortion bound fails to hold for part (ii)

can be made arbitrarily small, while adding a logarithmic factor to the dimension

m.

The principal shortcoming of the above result is that the dimension of the

space into which the points are embedded is superlinear in n, and hence is larger

than the point set itself. Our other main result shows that the dimension can be

reduced to a quantity that grows only logarithmically in n. The price that we pay is

that the distortion bounds hold in expectation only, not with some given probability.

The expected distortion is O(log2 n).

Theorem 10 Given positive integers n and u, where u ≤ nO(1), and a constant d,

there exists a randomized embedding Ψ′ : Z
d
u(≤ n) → ℓm

1 , where m = O(log n), such

that for any two sets P, Q ∈ Z
d
u(≤ n) :

(i) E [‖Ψ′P − Ψ′Q‖1] ≤ (3 log n) 〈P ⊖ Q〉.

(ii) E [‖Ψ′P − Ψ′Q‖1] ≥ 1
17 log n

〈P ⊖ Q〉

This embedding can be computed in expected time O(n log4 n).

We know of no prior work on this problem. In a 1-dimensional discrete setting,

this problem is related to a version of edit distance on bit strings, where the number

88

of replacements corresponds to the symmetric difference in the sets, but it is possible

to shift one set relative to the other without cost. The most closely related work to

ours is that of Cormode and Muthukrishnan [20], on embedding strings under edit

distance with moves. They present an embedding with distortion O(log n log∗ n)

into L1 with an exponential number of dimensions.

Here is a brief outline of our embedding algorithm. The basic embedding

described in Theorem 9 involves a series of steps. First, we show that, through

an appropriate projection, it is possible to reduce our problem to one involving 1-

dimensional point sets of over Zu′ , where u′ = nO(d). We then reduce the size of

the domain, by applying a translation-respecting randomized hash function, which

maps the point set to Zs, where s = O(n logn). The resulting 1-dimensional integer

point set can be viewed as a bit-vector in Z
s
2. In order to obtain an embedding

that is invariant under translations, we select various sized probes, each of which is

a random subset of Zs. The application of a probe of size ρ to a single placement of

the vector produces an integer in Z2ρ , where this integer is based on the bit pattern

appearing in the bit-vector at each of the probed positions. We apply the probe at

each of the s positions (where indices are taken modulo s), and take the union of the

probe results. Because probes are applied at every position, the result is invariant

under translation. The result can be viewed as a vector in Z
2ρ

s+1. We then apply

another hash function to reduce the dimension of this space from Z
2ρ

s+1 to Z
O(s)
s+1 .

Consider two points sets P and Q. We show that, if ρ is chosen in a manner

that is sensitive to the actual distance between these point sets, then the distance

between the two vectors resulting from this construction is related to the distance

89

between P and Q under translation. Since this distance is not known, we apply

the construction to a series of exponentially increasing distance estimates, apply a

suitable weight factor to each resulting vector, and then concatenate them together.

In order to produce results that apply with the desired probability of success, we

repeat the process some number of times, using different random hash functions and

different random probes. We prove that the final result has the desired distortion

properties.

In order to establish Theorem 10, we begin with the same approach as in the

previous embedding, but we apply a sampling technique due to Kushilevitz, Os-

trovsky, and Rabani [43] to further reduce the dimension. Recall that the above

construction is applied multiple times with different distance estimates. We show

that, if the distance estimate is sufficiently far from the optimum, then it is not nec-

essary to use the entire vector and small random sample suffices. In order to produce

the final embedding, we need to apply a weighting factor to each of these sampled

vectors. Unfortunately, these weighting factors increases variances dramatically, and

as a result, we are able to bound the distortion only in expectation.

In the next section we present a number of preliminary results. In Section 4.3,

we present our translation invariant mapping. In Section 4.4, we show how to

the reduce the dimension of the resulting mapping through random sampling. In

Section 4.5, we present our embedding function and derive its distortion bounds.

In Section 4.6, we discuss applications to similarity search for point sets stored in a

database.

90

4.2 Preliminaries

Recall that a nonnegative function d(P, Q) is a metric if (1) d(P, P) = 0, (2)

d(P, Q) = d(Q, P), and (3) d(P, R) ≤ d(P, Q) + d(Q, R). The last condition is

the triangle inequality.

Lemma 4.2.1 The symmetric distance under translation is a metric.

Proof : It is easy to see that the first two requirements of a metric hold. To establish

the triangle inequality, let T (P, Q, R) = 〈P ⊖ Q〉 + 〈Q ⊖ R〉 − 〈P ⊖ R〉. It suffices

to show that T (P, Q, R) ≥ 0. Let t1, t2, and t3 denote the translations producing

the minimal distance alignments for 〈P ⊖ Q〉, 〈Q ⊖ R〉, and 〈P ⊖ R〉, respectively.

Clearly, |(P + t3) ⊖ R| ≤ |(P + t1) ⊖ (R − t2)| and |(Q + t2) ⊖ R| = |Q ⊖ (R − t2)|.

Thus, we have

T (P, Q, R) = |(P + t1) ⊖ Q| + |(Q + t2) ⊖ R| − |(P + t3) ⊖ R|

≥ |(P + t1) ⊖ Q| + |Q ⊖ (R − t2)| − |(P + t1) ⊖ (R − t2)|

≥ 0,

where the last implication follows from the triangle inequality for symmetric differ-

ence, which is well known to be a metric. ⊓⊔

Next, we observe that the problem of computing distances for point sets in

the d-dimensional space Z
d
u under translation can be reduced to computing distances

under translation in a 1-dimensional space ZO(ud). The result is based on the sim-

ple observation that we can unravel the d-dimensional grid into a sufficiently large

1-dimensional grid. Since the mapping is linear, it preserves similarity under trans-

91

lation. Here and throughout the chapter, when applying a function g to a set P , we

often denote the resulting set by gP .

Lemma 4.2.2 Consider a positive integer u and constant d. There exists a function

g : Z
d
u → Zud, such that for any sets P, Q ⊆ Zu, 〈gP ⊖ gQ〉 = 〈P ⊖ Q〉. (Note that

when computing 〈gP ⊖ gQ〉, translation is performed in Zud , and when computing

〈P ⊖ Q〉, translation is performed in Z
d
u.) This function is computable in O(1) time.

Proof : Given p = (p0, p1, . . . , pd−1) ∈ Z
d
u, define g(p) =

∑d−1
i=0 piu

i. Since we

assume that d is a constant, g can be computed in O(1) time.

We first observe that for p,q ∈ Z
d
u, p = q if and only if g(p) = g(q). To see

this, suppose that p 6= q, and let j be the largest index such that pj 6= qj . Without

loss of generality we may assume that pj > qj , and so we have

g(p) − g(q) =

(
j−1∑

i=0

(pi − qi)u
i

)
+ (pj − qj)u

j ≥
(

j−1∑

i=0

(1 − u)ui

)
+ 1 · uj

= (1 − u)
uj − 1

u − 1
+ uj > 0.

Therefore, g is a 1–1 function from Z
d
u to Zud . Since these sets have equal cardinal-

ities, this is a bijection. Therefore, |P ⊖ Q| = |gP ⊖ gQ|.

Observe that, since g is a linear function of the point coordinates, g(p + t) =

g(p) + g(t). Let t ∈ Z
d
u denote the optimal d-dimensional translation, so that

〈P ⊖ Q〉 = |(P + t) ⊖ Q|. Let s ∈ Zud be the optimal 1-dimensional translation so

that 〈gP ⊖ gQ〉 = |(gP + s) ⊖ gQ|. Applying the observations above, we have

〈P ⊖ Q〉 = |(P + t) ⊖ Q| ≤
∣∣(P + g−1(s)) ⊖ Q

∣∣

=
∣∣g(P + g−1(s)) ⊖ gQ

∣∣ = |(gP + s) ⊖ gQ| = 〈gP ⊖ gQ〉 .

92

A symmetrical argument, applied gP and gQ and s, implies that 〈gP ⊖ gQ〉 ≤

〈P ⊖ Q〉. Therefore, 〈gP ⊖ gQ〉 = 〈P ⊖ Q〉, as desired. ⊓⊔

Next, we present a couple of utility results. The first is a straightforward ob-

servation that the result of applying a randomized hash function with a low collision

probability to each of the elements of a pair of multisets produces two sets whose

symmetric difference is similar to the original sets. (Recall that the symmetric differ-

ence distance is defined on multisets by counting not just the number of mismatched

elements, but the absolute differences in the multiplicities of each distinct element.)

Lemma 4.2.3 Let 0 ≤ γ ≤ 1, and suppose that we are given a randomized function

h : Z → Z such that for all distinct x, y ∈ Z, Pr [h(x) = h(y)] ≤ γ. Given a positive

integer n and multisets P, Q ∈ Z(≤ n), let hP and hQ denote the sets (not multisets)

that result by applying h to each element of P and Q, respectively. Given any (failure

probability) 0 < β ≤ 1,

(i) |hP ⊖ hQ| ≤ |P ⊖ Q|, and

(ii) |hP ⊖ hQ| ≥
(
1 − 2nγ

β

)
|P ⊖ Q|, with probability at least 1 − β.

Proof : Part (i) is trivial, since applying any given function to both P and Q can

only decrease the size of the symmetric difference. To prove (ii), let δ = |P ⊖ Q|.

Define a collision to be any distinct pair x, y ∈ Z, such that h(x) = h(y). Observe

that this collision can affect the size of the symmetric difference only if both x and

y are in P ∪ Q, and at least one is in P ⊖ Q.

Let M denote the distinct elements in P ∪ Q, and let m = |M |. Clearly,

m ≤ 2n. Consider any fixed element x in M . Let δx denote the absolute difference

93

between the multiplicities of x in P and Q, and hence δ =
∑

x δx. For x, y ∈ P ∪Q,

define Ix,y to be an indicator random variable whose value is 1 if h(x) = h(y) and 0

otherwise. Let

Cx =
∑

y∈M\{x}
δx Ix,y.

The symmetric difference decreases only when an element of P⊖Q collides with some

other element of P∪Q. Thus, it is easy to see that |P ⊖ Q|−|hP ⊖ hQ| ≤
∑

x∈P⊖Q Cx.

We also have

E [Cx] =
∑

y∈M\{x}
δx Pr [h(x) = h(y)] < mδxγ.

Thus,

E [|P ⊖ Q| − |hP ⊖ hQ|] ≤ E

[
∑

x∈P⊖Q

Cx

]
=

∑

x∈P⊖Q

E [Cx]

< mγ
∑

x∈P⊖Q

δx = mγδ ≤ 2nγδ.

By Markov’s inequality, Pr [|P ⊖ Q| − |hP ⊖ hQ| ≥ 2nγδ/β] ≤ β. Recalling that

δ = |P ⊖ Q|, it follows that with probability at least (1 − β), we have

|hP ⊖ hQ| ≥
(

1 − 2nγ

β

)
|P ⊖ Q| ,

as desired. ⊓⊔

Our second utility lemma will be useful for compressing space. For positive

integers u and s, consider hash function h : Zu → Zs. We say that h is translation

respecting if, for any x and t, h(x+t) = h(x)+h(t). (Observe that x+t is computed

over Zu, and h(x)+h(t) is computed over Zs.) Common choices for low-collision hash

functions, such as the universal hash function h(x) = ((ax + b mod u) mod s), do

94

not satisfy this condition. Our next lemma presents such a function for the domain

of values in interest. It is similar to an approach that has used in the context of

string pattern matching [42].

Lemma 4.2.4 Consider positive integers n and u, where u ≤ nc for some constant

c ≥ 1. For any α and β, where 0 ≤ α, β ≤ 1, there exists s = Θ((n log n)/(αβ))

(with constant factors depending on c) and a randomized translation-respecting hash

function h : Zu → Zs, such that for any sets P, Q ∈ Zu(≤ n) we have

(i) |hP ⊖ hQ| ≤ |P ⊖ Q|, and

(ii) |hP ⊖ hQ| ≥ (1 − α) |P ⊖ Q|, with probability at least 1 − β.

The function h is computable in O(1) time (assuming that arithmetic operations on

numbers of magnitude at most s can be computed in constant time).

Proof : As before, (i) is trivial, and so we concentrate on proving (ii). Let σ =

6 + (8c/(αβ)) and let r = σn ln(σn). Let R denote the set of prime numbers in

the range n ln n to r. By the Prime Number Theorem [51], for all sufficiently large

n the number of primes less than or equal to n is at least n/(2 lnn) and at most

3n/(2 lnn). (If n is so small that this does not hold, we simply set s = u and define

h to be the identity function.) It follows that for all sufficiently large n we have

|R| ≥ σn ln(σn)

2 ln(σn ln(σn))
− 3n lnn

2 ln(n ln n)
≥ σn ln(σn)

4 ln(σn)
− 3n

2
≥
(

σ − 6

4

)
n =

2c

αβ
n.

For any s ∈ R, define hs(x) = x mod s. Linearity follows since

hs(x + t) = (x + t) mod s = (x mod s) + (t mod s) = hs(x) + hs(t).

95

(The addition x + t is performed over Zu, and all others are performed over Zs.)

For any distinct x, y ∈ Zu, hs(x) = hs(y) if and only if |x− y| is divisible by s.

Since x, y ≤ u ≤ nc, and s ≥ n, it follows that this can be true for at most c choices

of s. We define h(x) to be hs(x), where s is a random element of R. Observe that

for any fixed x, y ∈ Zu,

Pr [h(x) = h(y)] ≤ c

|R| =
αβ

2n
.

By applying Lemma 4.2.3(ii) with γ = αβ/(2n) and failure probability β, it follows

that

|hP ⊖ hQ| ≥
(

1 − 2nγ

β

)
|P ⊖ Q| = (1 − α) |P ⊖ Q|

holds with probability at least (1 − β), as desired. ⊓⊔

Henceforth, we may assume that u ≥ s, since otherwise we may set u = s and

take h to be the identity function.

Lemma 4.2.5 The bounds of Lemma 4.2.4 apply to the symmetric difference dis-

tance under translation. That is,

(i) 〈hP ⊖ hQ〉 ≤ 〈P ⊖ Q〉, and

(ii) 〈hP ⊖ hQ〉 ≥ (1 − α) 〈P ⊖ Q〉, with probability at least 1 − β.

Proof : Let s and h = hs be as defined in Lemma 4.2.4. For each t ∈ Zs, h(t) =

(t mod s) = t, and hence by our assumption that u ≥ s, for each t′ ∈ Zs, there exists

t ∈ Zu such that t′ = h(t). Combining this with the the fact that h is translation

96

respecting and Lemma 4.2.4(i) we have

〈hP ⊖ hQ〉 = min
t′∈Zs

|(hP + t′) ⊖ hQ| = min
t∈Zu

|(hP + h(t)) ⊖ hQ|

= min
t∈Zu

|(h(P + t) ⊖ hQ| ≤ min
t∈Zu

|(P + t) ⊖ Q| = 〈P ⊖ Q〉 .

Part (ii) follows analogously by applying Lemma 4.2.4(ii) to the sets P + t and Q,

where t is the optimal aligning transformation:

〈hP ⊖ hQ〉 = min
t∈Zu

|(h(P + t) ⊖ hQ| ≥ min
t∈Zu

(1−α) |(P + t) ⊖ Q| = (1−α) 〈hP ⊖ hQ〉 ,

with probability at least 1 − β. ⊓⊔

The following lemma is similar to the previous one, but it will be applied

in a context where the translation-respecting property of the hash function is not

required. This additional flexibility allows us to remove the restriction in the size

of u. It follows by applying Lemma 4.2.3 to a suitable universal hash function [12].

The choice of the hash function given in the proof will be discussed later when we

consider execution times. This lemma applies more generally to multisets.

Lemma 4.2.6 Consider positive integers n and u. For all α and β, where 0 ≤

α, β ≤ 1, there exists s = O(n/(αβ)) and a randomized function h : Zu → Zs such

that for any multisets P, Q ∈ Zu(≤ n) the multisets hP and hQ satisfy:

(i) |hP ⊖ hQ| ≤ |P ⊖ Q|, and

(ii) |hP ⊖ hQ| ≥ (1 − α) |P ⊖ Q|, with probability at least 1 − β.

We may further assume that s is a power of 2.

97

Proof : Let s be the smallest power of 2 that is at least as large as 2n/(αβ). For the

purposes of defining the function, it will be convenient to express each element of

Zu (resp., Zs) as a bit vector of length ⌈log u⌉ (resp., log s). Thus, P and Q can be

viewed as multisets of cardinality at most n where elements are drawn from Z
⌈log u⌉
2 .

Given a matrix M ∈ {0, 1}(log s)×⌈log u⌉ and a vector b ∈ Z
log s
2 , define hM,b : Z

⌈log u⌉
2 →

Z
log s
2 to be

hM,b(x) = Mx + b,

where arithmetic operations are performed over Z2. It is well known that if M and

b are randomly generated, the resulting randomized function h = hM,b is a universal

hash function [12,27], and for any fixed x, y ∈ Zu, Pr [h(x) = h(y)] ≤ 1/s ≤ αβ/(2n).

Given this bound on the collision probability, the rest is structurally similar

to the proof of Lemma 4.2.4. In particular, (i) is trivial, and to show (ii) we apply

Lemma 4.2.3(ii) with γ = αβ/(2n) and failure probability β. We have

|hP ⊖ hQ| ≥
(

1 − 2nγ

β

)
|P ⊖ Q| ≥ (1 − α) |P ⊖ Q| ,

with probability at least (1 − β), as desired. ⊓⊔

4.3 Translation-Invariant Mapping

The purpose of this section is to present a randomized function that maps a point set

in Zs(≤ n) to an integer vector, such that this function is invariant under translation.

We will then show that, by applying weighted repetitions of this function, it is

possible to produce the randomized embedding function described in Theorem 9.

98

Before presenting this transformation, consider a point set P ′ ∈ Zs(≤ n). (In

our algorithm, this set will arise as the image of P under a hash function that

maps elements to Zs.) Observe that we may interpret P ′ as a bit-vector in an s-

dimensional space, in particular, as an element of Z2s . More precisely, we represent

P ′ as [p0, . . . , ps−1], where pi = 1 if i ∈ P ′ and 0 otherwise. Given any translation

t ∈ Zs, we will continue to use the notation P ′ + t to denote the translation of P ′ by

t modulo s, which in this context corresponds to a right circular shift of the elements

of this bit vector by t positions.

Given a positive integer ρ, define an (s, ρ)-probe to be a ρ-element vector

π = (i1, i2, . . . , iρ), where ij ∈ Zs, for 1 ≤ j ≤ ρ. We say that such a probe

is random if each element ij is sampled independently at random from Zs with

replacement. Given P ′ ∈ Z
s
2, define P ′[π] to be the integer whose bit representation

is
〈
pi1pi2 . . . piρ

〉
, and define the multiset

Φ̂πP
′ = {(P ′ + t)[π] : t ∈ Zs} .

Observe that this is a multiset because different translations may generate the same

bit pattern. The total cardinality of Φ̂πP (counting multiplicities) is s, and its ele-

ments are drawn from Z2ρ . Because the probe is applied uniformly to all translations

in Zs we have:

Lemma 4.3.1 Given any (s, ρ)-probe π, Φ̂π is invariant under translation. That

is, for all t ∈ Zs, Φ̂π(P + t) = Φ̂πP .

A simple 5-point example of this transformation is shown in Figure 2, where

we have chosen s = 11 and ρ = 4. First, we hash the elements of P into Z11 by

99

the hash function h′(x) = x mod s. Let P ′ = h′P be the resulting set, which we

interpret as a binary vector in Z
11. Let π = [0, 3, 6, 7] be our random probe vector.

For t = 0, we have (P ′ + t)[π] = [P ′[0], P ′[3], P ′[6], P ′[7]] = [1, 1, 1, 0], which can

be represented as the bit vector 〈1110〉. By repeatedly shifting this probe pattern

(circularly) through P ′, we generate the multiset of bit vectors that form Φ̂πP
′ as

shown in Figure 2. We may interpret this multiset as a vector in Z
2ρ

= Z
16, where

the ith entry of this vector is the number of occurrences of the bit vector whose

integer value is i. This is shown in the last line of Figure 2. Since 2ρ may be quite

large, and this vector contains at most s nonzero entries, we will ultimately compress

its length through a second hash function, denoted h′′, which will be described later.

In this simple example we have taken h′′ to be the identity.

Object Notes Example

P ∈ Zu(≤ n) u = 24 {3, 6, 10, 14, 22}

0 1 2 3 4 5 6 7 8 9 10

P ′ ∈ Zs(≤ n) s = 11 1 0 0 1 0 0 1 0 0 0 1

Φ̂πP
′ ⊆ Z2ρ(≤ s)

∣∣∣Φ̂π

∣∣∣ = s {1110, 0000, 0000, 1101, 0011, 0010, 1000, 0101, 0110, 0000, 1001}

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

h′′Φ̂πP ′
3 0 1 1 0 1 1 0 1 1 0 0 0 1 1 0

Fig. 2: An example of the invariant transformation, where n = 5, u = 24, s = 11,

h′(x) = x mod s, and π = [0, 3, 6, 7]. (For simplicity we have chosen the second hash

function h′′ to be the identity.)

100

Given two sets P ′ and Q′, let δ∗ = 〈P ′ ⊖ Q′〉 denote their distance under

translation. Our next lemma shows that the distance between the transformed

objects can be bounded by a function of δ∗ and the probe length ρ. Intuitively, as

ρ increases, the likelihood of encountering a mismatch increases (depending on the

distance between the point sets). Part (i) of the lemma asserts that the L1 distance

between the resulting vectors grows at most linearly in each of ρ and δ∗. Part (ii)

asserts that if ρ is sufficiently large, the probability of encountering a mismatch is

so high that the distance between the resulting vectors will be almost as high as the

maximum possible value of 2s.

Lemma 4.3.2 Consider a positive integer s and two sets P ′, Q′ ∈ Zs(≤ n), and let

δ∗ = 〈P ′ ⊖ Q′〉. Given a positive integer ρ, let π be a random (s, ρ)-probe. Then

there exists a translation-invariant function Φ̂π : Zs(≤ n) → Z2ρ(≤ s), such that

(i)
∥∥∥Φ̂πP ′ − Φ̂πQ′

∥∥∥
1
≤ 2ρδ∗, and

(ii) if ρ ≥ (3s ln s)/δ∗ then
∥∥∥Φ̂πP

′ − Φ̂πQ
′
∥∥∥

1
≥ 2s − 2 with probability at least

(
1 − 2

s

)
.

Proof : Let Φ̂π be the above probing function, which by Lemma 4.3.1 is translation

invariant. Since δ∗ = 〈P ′ ⊖ Q′〉, this means that for some translation of P ′ there are

δ∗ elements of Zs in the symmetric difference P ′ ⊖Q′. Because Φ̂ is invariant under

translations, by applying a suitable translation to P ′, there is no loss in generality

if we assume that this optimal translation is the identity.

Since π has ρ elements, there are at most ρδ∗ choices of translations t such that

the result of (P ′ + t)[π] accesses one of these mismatched elements. Each of these

101

may produce a probe value that fails to match any of the probe results of Φ̂πQ
′.

All the others placements will match the corresponding probe of Q′. Symmetrically,

there are ρδ∗ choices of r such that (Q′ + r)[π] fails to match any probe value of

Φ̂πP ′, but all others will match. Thus we have

∥∥∥Φ̂πP ′ − Φ̂πQ′
∥∥∥

1
≤ 2ρδ∗,

which establishes (i).

In order to establish (ii), given any pair of translations t, r ∈ Zs, let δt,r =

|(P ′ + t) ⊖ (Q′ + r)|. Clearly, for any t, r ∈ Zs, δt,r ≥ δ∗. For any particular probe

placement π, the probe values (P ′ + t)[π] and (Q′ + r)[π] match if and only if all

of the probed positions match. Since the indices of π are chosen at random from

Zs, each position matches with probability (1 − δt,r/s). Since the elements of π are

chosen independently at random, we have

Pr [(P ′ + t)[π] = (Q′ + r)[π]] =

(
1 − δt,r

s

)ρ

≤
(

1 − δ∗

s

)ρ

≤ e−δ∗ρ/s.

By the union bound we have

Pr
[
(P ′ + t)[π] ∈ Φ̂πQ

′
]

=
⋃

r∈Zs

Pr [(P ′ + t)[π] = (Q′ + r)[π]] ≤
∑

r∈Zs

e−δ∗ρ/s = se−δ∗ρ/s.

Let XP ′ be a random variable whose value is the number of probe placements t such

that (P ′ + t)[π] ∈ Φ̂πQ′. By the linearity of expectation and since ρ ≥ (3s ln s)/δ∗,

we have

E [XP ′] =
∑

t∈Zs

Pr
[
(P ′ + t)[π] ∈ Φ̂πQ′

]
≤ s2e−δ∗ρ/s ≤ s2e−(3s ln s)/s =

s2

s3
=

1

s
.

By Markov’s inequality, it follows that Pr [XP ′ ≥ 1] ≤ 1
s
. By defining XQ′ symmet-

rically, it follows that Pr [XQ′ ≥ 1] ≤ 1
s
. Since Φ̂πP ′ and Φ̂πQ

′ each contain s values

102

(including multiplicities), their L1 distance is 2s minus the number of matches. And

so with probability at least
(
1 − 2

s

)
we have

∥∥∥Φ̂πP ′ − Φ̂πQ′
∥∥∥

1
= 2s − (XP ′ + XQ′) ≥ 2s − 2,

as desired. ⊓⊔

Using the above lemma, we present the main utility result upon which our

translation-invariant transformation is based. This lemma shows that, given two

points sets over Zu each containing at most n elements and an estimate δ on their

distance, there exists a function Φ that maps each point set to a vector such that

the distance between the two resulting vectors reveals whether δ is significantly

greater or significantly smaller than the optimal distance δ∗. Intuitively, this is

done by randomly probing the point sets such that, under the assumption that

δ = δ∗, the probability of encountering a mismatch will be a constant. Thus, if δ is

either significantly larger or significantly smaller than δ∗, the distance between the

resulting vectors will reflect this. (In subsequent sections, we will explore different

ways of dispensing with this distance estimate.)

As mentioned earlier, the process involves three stages: first, a randomized

translation-respecting hash function is invoked to reduce the domain size to O(n logn),

next, a random probe sequence is applied to produce a sparse translation-invariant

vector of very large size, and finally, a second hash function is invoked to reduce

the size of this vector. We start with a weak form of the process, which achieves

the desired goals with constant probability. (Later, we shall show how to boost the

probability of success through repeated trials.)

103

Lemma 4.3.3 Consider positive integers n and u, where u ≤ nc for some constant

c ≥ 1, and a distance estimate 1 ≤ δ ≤ 2n. There exists a randomized function

Φ′′ : Zu → Z
m
s+1, where s = Θ(n log n) and m = O(n log n), that satisfies the follow-

ing property. Consider any two sets P, Q ⊆ Zu, each of cardinality at most n, and

let δ∗ denote 〈P ⊖ Q〉. Then

(i) ‖Φ′′P − Φ′′Q‖1 ≤ s δ∗

δ
, and

(ii) if δ ≤ δ∗

8 ln s
then ‖Φ′′P − Φ′′Q‖1 ≥ 3s

2
, with constant probability.

More precisely, given any 0 < β0 < 1, case (ii) holds with probability at least (1 −

β0)
3. For any P ∈ Zu, ‖Φ′′P‖1 ≤ s.

Before presenting the proof, let us explore the utility of this lemma. Observe

first that, if δ > 2δ∗

3
, then by part (i) it follows that ‖Φ′′P − Φ′′Q‖1 < 3s

2
. On

the other hand, if δ < δ∗

8 ln s
, then by part (ii) this inequality will fail to hold with

constant probability. Thus, except for the interval δ ∈ δ∗
[

1
8 ln s

, 2
3

]
, this test will allow

us to determine whether the estimate δ is larger or smaller than δ∗, with constant

probability. The distortion in our final embedding arises directly as a consequence

of this interval of uncertainty.

Proof : (of Lemma 4.3.3)

By Lemmas 4.2.4(i) and 4.2.6(i), the functions that they produce cannot in-

crease distances. By Lemma 4.3.2 therefore, we have

‖Φ′′P − Φ′′Q‖1 ≤ 2ρδ∗ ≤ 2
s

2δ
δ∗ ≤ sδ∗

δ
,

which establishes (i).

104

To establish (ii), let α0 = 1/16 and β0 = 1/64. We begin by applying

Lemma 4.2.4, with α = α0 and β = β0. Let h′ : Zu → Zs denote the resulting

function, where s = Θ(n log n). We may assume that s ≥ 128. If we let P ′ = h′P

and Q′ = h′Q, by Lemma 4.2.5(ii), with probability at least 1 − β0, we have

〈P ′ ⊖ Q′〉 ≥ (1 − α0) 〈P ⊖ Q〉 = (1 − α0)δ
∗.

Let ρ = ⌊s/(2δ)⌋. Since δ∗ ≤ 2n ≤ 2s and by our hypotheses that δ ≤

δ∗/(8 ln s) and s ≥ 128, it is easy to show that ρ ≥ (3s ln s)/δ∗. Therefore, we

may apply Lemma 4.3.2(ii) to the sets P ′ and Q′. Let Φ̂π denote the resulting

translation-invariant transformation, and let P̂ = Φ̂πP ′ and Q̂ = Φ̂πQ′. We have

∥∥∥P̂ − Q̂
∥∥∥

1
≥ 2s − 2, with probability at least (1 − 2

s
).

P̂ and Q̂ are each multisets of cardinality s over Z2ρ , and hence each can be

interpreted as an integer vector in R
2ρ

, in which the ith component is the number

of occurrences of element i. Under this interpretation, the (multiset) symmetric

difference distance is equivalent to the L1 distance between P̂ and Q̂. Applying

these two different interpretations of P̂ and Q̂, we have

∣∣∣P̂ ⊖ Q̂
∣∣∣ =

∥∥∥P̂ − Q̂
∥∥∥

1
.

By the definition of ρ we have ρ+1 ≥ s/(2δ), and thus δ ≥ s/(2(ρ+1)). Since

s = Θ(n log n) and δ ≤ 2n, it follows that ρ = Ω(log n). We may assume therefore

that n is sufficiently large that ρ ≥ 6, from which it follows that 7/(2(ρ + 1)) ≥ 3
ρ
.

Combining all of this, we find that, with probability at least 1 − β0,

〈P ′ ⊖ Q′〉 ≥ (1 − α0)δ
∗ >

7

8
δ∗ ≥ 7δ ln s ≥ 7s ln s

2(ρ + 1)
≥ 3s ln s

ρ
.

105

Therefore, we may apply Lemma 4.3.2(ii) to obtain that, with probability at least

(1 − β0)
(
1 − 2

s

)
,

∥∥∥P̂ − Q̂
∥∥∥

1
≥ 2s − 2.

Given our assumption that s ≥ 128 and β0 = 1/64, the probability of this holding

is at least (1 − β0)
2.

Finally, we apply Lemma 4.2.6 to the multisets P̂ and Q̂, where n = s, u = 2ρ,

α = α0 and β = β0. Let the resulting function be h′′ : Z2ρ → ZO(s), and let P ′′ = h′′P̂

and Q′′ = h′′Q̂. (Given that ρ may be as large as Θ(n log n), we will not compute

this function explicitly. Computational issues will be discussed later.) Thus, we

have

‖P ′′ − Q′′‖1 =
∣∣∣h′′P̂ ⊖ h′′Q̂

∣∣∣ ≥ (1 − α0)
∣∣∣P̂ ⊖ Q̂

∣∣∣

= (1 − α0)
∥∥∥P̂ − Q̂

∥∥∥
1

≥ (1 − α0)(2s − 2),

with probability at least (1 − β0)
3.

Define Φ′′P = h′′(Φ̂π(hP)), which is a multiset over ZO(s), which we interpret as

a vector in Z
O(s). By endowing this space with the L1 norm, we have Φ′′ : Zu → ℓ

O(s)
1 .

By combining the above results, given point sets P and Q, with probability at least

(1 − β0)
3 we have

‖Φ′′P − Φ′′Q‖1 ≥ (1 − α0)(2s − 2) ≥ 3s

2
.

as desired.

To prove the final assertion about ‖Φ′′P‖1, recall that P̂ is a multiset of car-

dinality s, and therefore Φ′′P = h′′P̂ is of no greater cardinality. By interpreting

106

the cardinality of this set as the L1 norm of a vector, we have ‖Φ′′P‖1 ≤ s. This

completes the proof. ⊓⊔

Next, we consider the time needed to compute this function.

Lemma 4.3.4 For any P ∈ Zu(≤ n), the function Φ′′P given in Lemma 4.3.3 can

be computed in O(n log3 n) time.

Proof : The computation of P ′ = h′P involves evaluating a simple function to each

of the n points of P , which can be done in O(n) time. P ′ is a subset of Zs of

cardinality at most n, where s = Θ(n log n). Next, consider the computation of

Φ̂P ′. A naive implementation based on the definition of Φ̂ would involve excessive

time and space. (To see this, observe that each probe involves O(s) elements and

must be applied to O(s) distinct positions, which would yield a total time bound of

O(n2 log2 n) to compute the results of even a single probe.)

001001001

1

0

2

1

001001001

1

0

1

1

P’

P’

mi ∧ π

mj ∧ π

ri

rj

P’

mi

001001001

1 1 0

1 0 1 1
1
1

0
1

1

1
0 1

0 0 0 0 10 0 0

0
0

0
0

0
0

1
0

1

π

x0 x1 x2

x0 x1 x2

=
mj 0 1 0 1

2 0 1ri

rj

M

(P ′ + t)[π]

∑

∑

∑

∑

∑

∑

Fig. 3: Leapfrog computation with convolution operations

To achieve greater efficiency, we perform the probing and the second hash

functions as a single operation. Let π denote a probe vector, and let ρ denote its

107

size. Recall from Lemma 4.2.6 that the second hash function maps points from

Z2ρ to Zs′ , where s′ = Θ(s) and is a power of 2. This involves a random matrix

M ∈ {0, 1}log s′×ρ and random column vector b ∈ {0, 1}ρ.

Constructing Φ̂P ′ for each t ∈ Zs involves computing xt = (P ′ + t)[π], and

then applying the function h′′(xt) = Mxt + b (with operations performed over Z2).

To do this, we decompose this operation into log s′ operations. Let mi denote the

ith row of M , and let ri,t be the value of the boolean inner product (mi · xt). Our

objective is to compute ri,t for i ∈ {1, 2, · · · , log s′}. Since mi is a boolean bit-vector,

we have

ri,t = (mi · (P ′ + t)[π]) =

ρ∑

j=1

(mi[j] · ((P ′ + t)[π]) [j]) ,

where (u · v) denotes the dot product of vectors u and v. Observe that this a part of

a convolution. Thus, given a row mi, we can compute ri,t for all t as P ′ ⊗ [π ∧ mi],

where “⊗” denotes boolean convolution, and “∧” denotes the bitwise and operation.

Therefore, for all i ∈ Zlog s′ and t ∈ Zs ri,t can be computed through log s′

convolution operations. It is easy to see that h′′(xt) = r∗,t + b (interpreted now

as a binary number) where r∗,t = [r1,tr2,t · · · rρ,t]. Since each convolution can be

computed in time O((s + ρ) log(s + ρ)) = O(s log s) [19], the total running time is

O(n + s log2 s) = O(n log3 n). This completes the proof. ⊓⊔

Next, we will show how to increase the success probability bounds to any

desired threshold.

Lemma 4.3.5 Consider positive integers n and u, where u ≤ nc for some constant

c ≥ 1, a distance estimate 1 ≤ δ ≤ 2n, and failure probability 0 < β ≤ 1. There

108

exists s = Θ(n log n) and a randomized function Φ: Zu(≤ n) → ℓm
1 , where m =

O(n log n log(1/β)) that satisfies the following property. Given any two sets P, Q ∈

Zu(≤ n), and letting δ∗ denote 〈P ⊖ Q〉 we have

(i) ‖ΦP − ΦQ‖1 ≤ sδ∗/δ, and

(ii) if δ ≤ δ∗

8 ln s
then ‖ΦP − ΦQ‖1 ≥ s, with probability at least 1 − β.

ΦP can be computed in time O(n log3 n log(1/β)).

Proof : To increase the probability of success to 1−β, we repeat the above procedure

for k = ⌈8 ln(1/β)⌉ trials, where each trial is performed with a different set of random

choices. (All point sets being embedded use the same random choices.) We then

concatenate the resulting vectors.

There is a subtlety to be noted. Thus far, we have assumed that there is a

fixed value of s. Each invocation of Lemma 4.2.4 generates a different random prime

s. (Recall that s is Θ(n log n), irrespective of the random choice.) To correct for

the bias to the distance resulting from larger or smaller values of s, we take s to

be maximum possible value produced by the lemma, and for any smaller value s′

produced by invoking the lemma, we weight the associated vector by s/s′. As a

consequence of this weighting, we may assume for the sake of simplicity, that all

invocations of this lemma produce results of the same (weighted) length s.

Recalling that Φ′′P is the function defined in Lemma 4.3.3, we apply this

k times to obtain the desired vector. We define Φ: Zu(≤ n) → ℓm
1 , where m =

O(sk) = O(n log n log(1/β)), to be

ΦP =
1

k
〈Φ′′

1P, Φ′′
2P, . . . , Φ′′

kP 〉 .

109

Because the upper bound on ‖Φ′′P − Φ′′Q‖1 from Lemma 4.3.3 holds uncondition-

ally (irrespective of the randomization), assertion (i) follows immediately.

To establish (ii), consider the random variables Xi = ‖Φ′′
i P − Φ′′

i Q‖1, for 1 ≤

i ≤ k. Clearly these variables are independent and identically distributed, and

0 ≤ Xi ≤ 2s. With probability at least (1 − β0)
3 we have Xi ≥ (1 − α0)(2s − 2).

Therefore, we have

E [X] = E [‖Φ′′P − Φ′′Q‖1] ≥ (1 − β0)
3(1 − α0)(2s − 2) ≥ 3s

2
,

where the last inequality holds by our definitions of α0 and β0 and of our assumption

that s ≥ 128. Let X = 1
k

∑k
i=1 Xi. Since the Xi’s are independent, by Hoeffding’s

inequality [32], for any ε > 0 we have

Pr [E [X] − X > ε] ≤ exp

(
− 2kε2

(2s)2

)
.

By setting ε = s/2 and by our choice of k we have

Pr [‖ΦP − ΦQ‖1 ≤ s] = Pr [X ≤ s] ≤ Pr
[
E [X] − X ≥ s

2

]

≤ exp

(
−2(8 ln(1/β))(s/2)2

(2s)2

)
= β,

which establishes (ii).

In addition, the total computation time is O(n log3 n log (1/β)), since the num-

ber of trials involving the invocation of Lemma 4.3.3 is O(log (1/β)). ⊓⊔

4.4 Space Reduction Through Sampling

A significant shortcoming of the mapping Φ′′P given in Lemma 4.3.3 is that it

generates a vector in a space of relatively large dimension, namely O(n log n). In

110

this section, we show how to reduce the dimension to O(log(1/β)), where β denotes

the failure probability. Our approach will be similar to the dimension reduction

technique for the Hamming distance due to Kushilevitz, Ostrovsky, and Rabani

[43]. Intuitively, they show that if there is a sufficiently large difference in distance

between two vectors, it is possible reduce the dimension through random sampling.

For readers unfamiliar with their method here is a short summary. Let Hd denote

Hamming space of dimension d. Consider A, B ∈ Hd, and let ℓ = ‖A−B‖H denote

their distance. (Clearly ℓ ≤ d.) For a value r to be defined later, we generate

a single bit from any point A in Hd as follows. First, we sample the coordinates

of A independently at random with probability 1/r. Next, we sample from these

coordinates with probability 1/2. Finally, let f(A) denote the sum these coordinates

modulo 2. In the first step, with probability (1−1/r)ℓ none of the coordinates upon

which A and B disagree is sampled, implying that f(A) = f(B). Otherwise, with

probability 1/2 the number of disagreeing coordinates that are sampled in the second

phase is odd, and we have f(A) 6= f(B). Thus, we have

Pr [f(A) 6= f(B)] =
1

2

(

1 −
(

1 − 1

r

)ℓ
)

.

We can then convert this probability to a distance, by repeating this process some

number of times and storing the results in a vector.

Although we would like to apply this approach to Φ′′P , we face complications

due to the fact that this is a vector of integers, not bits. By Lemma 4.3.3, the

coordinates of Φ′′P are nonnegative integers whose total sum is s. In order to apply

the above approach, we encode each coordinate of Φ′′P as an s-bit unary number,

111

which implies that we can now view it as a point set in Hamming space of dimension

s · O(s) = O(s2). We may then apply the above sampling function to the resulting

vector.

The main lemma is stated below. We consider two cases depending on the

size of 〈P ⊖ Q〉, which by Lemma 4.3.3, constrains the value of ‖Φ′′P −Φ′′Q‖. This

constraint will allow us to apply the above method.

Lemma 4.4.1 Consider positive integers n and u, where u ≤ nc for some constant

c ≥ 1, a distance estimate 1 ≤ δ ≤ 2n and failure probability 0 < β < 1. There exist

s = Θ(n log n), a randomized function Ξ: Zu(≤ n) → Hm
1 , where m = O(log (1/β)),

and constants 0 < c1 < c2 < 1, which satisfies the following properties. Given any

two sets P, Q ∈ Zu(≤ n), and letting δ∗ denote 〈P ⊖ Q〉, with probability (1 − β):

(i) if δ ≥ δ∗ then ‖ΞP − ΞQ‖H ≤ c1m, and

(ii) if δ ≤ δ∗

8 ln s
then ‖ΞP − ΞQ‖H ≥ c2m.

ΦP can be computed in expected time O(n log3 n log(1/β)).

Proof : Throughout the proof, let β0 = 1/64. Given a fixed value s, we set r = 2s

and apply the aforementioned sampling process on Φ′′P , letting f(Φ′′P) denote the

result. If δ > δ∗, then by Lemma 4.3.3(i), we have ‖Φ′′P − Φ′′Q‖1 ≤ s, and so

by applying the sampling function to these vectors (after expanding to Hamming

space) we obtain

Pr [f(Φ′′P) 6= f(Φ′′Q) : ‖Φ′′P − Φ′′Q‖1 ≤ s] ≤ 1

2

(
1 −

(
1 − 1

2s

)s)
.

Let τ1 denote this probability.

112

Also, if δ ≤ δ∗

8 ln s
, then by Lemma 4.3.3(ii), we have ‖Φ′′P − Φ′′Q‖1 ≥ 3s

2
, with

probability (1 − β0)
3. Therefore, it follows that

Pr

[
f(Φ′′P) 6= f(Φ′′Q) : ‖Φ′′P − Φ′′Q‖1 ≥

3s

2

]
≥ 1

2

(

1 −
(

1 − 1

2s

)3s/2
)

.

Let τ2 denote this probability.

The remainder of the proof is similar to that of Lemma 4.3.3. We apply this

k times (with different random choices) to obtain the desired vector. We define

Ξ: Zu(≤ n) → Hm (where the value of m will be derived below)

ΞP = 〈f1(Φ
′′
1P), f2(Φ

′′
2P), . . . , fm(Φ′′

mP)〉 .

Note that each trial involves the use of a different random prime s. These

values in turn affect the choices of τ1 and τ2. Let s1, . . . , sm denote these random

values, where si = Θ(n log n) for all i. Let τi,1 and τi,2 denote the values of τ1 and

τ2, respectively, for the ith trial. We shall show that the effect of changing s is very

small, and hence the gap between any two values τi,1 and τi,2 will be sufficiently

large in order to apply the above method.

To prove this, we compare the upper bound of τ1 and the lower bound of τ2

over all the trials. Let τ+
1 = maxi(τi,1) and τ−

2 = mini(τi,2). Observe that τi,1 and

τi,2 are both decreasing functions of s. By simple substitution in the above formula,

it follows that τ+
1 < 0.22, for s ≥ 64. Also, by consideration of the limit as s tends

to ∞, substitution into the above formula yields τ−
2 > 0.24. Henceforth, we assume

that s ≥ 64, and so we have we have τ−
2 − τ+

1 > 0.02.

Let Xi denote a random indicator variable for the event that, in the i-th trial,

113

f(Φ′′P) 6= f(Φ′′Q). From Lemma 4.3.5 we have

Pr [Xi = 1 : δ > δ∗] = Pr [Xi = 1 : ‖Φ′′P − Φ′′Q‖1 < s] < τ+
1 .

As observed earlier, if δ ≤ δ∗

8 ln s
then ‖Φ′′P − Φ′′Q‖1 > 3s

2
with probability at

least (1 − β0)
3. Thus, we have

Pr

[
Xi = 1 : δ ≤ δ∗

8 ln s

]
≥ (1 − β0)

3 Pr

[
Xi = 1 : ‖Φ′′P − Φ′′Q‖1 >

3s

2

]

> (1 − β0)
3τ−

2 .

Define a constant c to be (1−β0)
3τ−

2 −τ+
1 . By our bounds on β0, τ−

2 and τ+
1 , it

follows that c is positive. Let X =
∑m

i=1 Xi. Since the Xi’s are clearly independent,

by Hoeffding’s inequality [32], for any ε > 0, we have

Pr [E [X] − X > mε] ≤ exp
(
−2mε2

)
.

By setting ε = c
3

> 0 and m = 9
(2c)2

ln(1/β) = O(ln(1/β)), we have, for δ > δ∗,

Pr
[
‖ΞP − ΞQ‖H > τ+

1 m +
c

3
m
]

≤ Pr
[
X − E [X] >

c

3
m
]

≤ exp

(
−2

9

2c2
ln(1/β))(c/3)2

)
= β,

and, for δ ≤ δ∗/(8 log s), we have

Pr
[
‖ΞP − ΞQ‖H < (1 − β0)

3τ−
2 m − c

3
m
]

≤ Pr
[
E [X] − X >

c

3
m
]

≤ exp

(
−2

9

2c2
ln(1/β)(c/3)2

)
= β.

Finally, setting c1 = τ+
1 + c

3
and c2 = (1 − β0)

3τ−
2 − c

3
yields the desired bounds.

The running time depends on the number of samples from Φ′′P . The expected

number of samples is O(s), since the size of the sample space is O(s2), and the sam-

pling ratio is 1
2s

. Thus, the expected running time is still O(n log3 n log (1/β)).

114

In the worst case, we can sample all O(s2) points. Thus, the running time is

O(s2 log (1/β)) = O(n2 log2 n log (1/β)). ⊓⊔

We will now present another lemma, which will be used in the next section.

Lemma 4.4.2 Given the same setup as in Lemma 4.4.1, let δ∗ = 〈P ⊖ Q〉. For a

given distance estimate δ, if δ∗ ≤ δ, then

E [‖ΞP − ΞQ‖H] ≤ δ∗

4δ
m.

Proof : By Lemma 4.3.3 and δ∗ ≤ δ, we have

‖Φ′′P − Φ′′Q‖1 ≤ s
δ∗

δ
.

Then, we apply sampling function f for each Φ′′, from which we obtain

Pr [‖f(Φ′′P) − f(Φ′′Q)‖ = 1] =
1

2

(

1 −
(

1 − 1

2s

)‖Φ′′P−Φ′′Q‖1
)

≤ 1

2

(
1 −

(
1 − ‖Φ′′P − Φ′′Q‖1

2s

))
(by Taylor expansion)

≤ δ∗

4δ
.

Thus,

E [‖ΞP − ΞQ‖H] ≤ δ∗

4δ
m.

⊓⊔

4.5 Embedding

In Sections 4.3 and 4.4 we showed that our translation-invariant feature Φ can

applied to provide a probabilistic relation between the distances between two points

115

set under translation. In this section, we will apply these results to show how to

embed a point set into a standard metric space (e.g., L1 or Hamming space). We

present two results. The first is an embedding into Euclidean space under the L1

metric of dimension O(n log2 n). The distortion bounds hold with high probability.

The second provides an embedding into Hamming space of dimension O(log n). The

distortion bounds hold only in expectation, however. The first result is presented

in Section 4.5.1 and the second in Section 4.5.2.

4.5.1 Embedding with High Probability

In this section we present a proof of Theorem 9. First, let β0 = β/(2 log n). By

Lemma 4.2.2, we may assume that the point sets, denoted P and Q, have already

been mapped from Z
d
u(≤ n) to the 1-dimensional space Zu′(≤ n), where u′ = O(ud).

We then apply Lemma 4.3.5 repeatedly with failure probability β0 and distance

estimates δ ranging over {20, 21, 22, . . . , 2k}, where k = ⌈log 2n⌉. (Note that some of

this notation overlaps with that used in the proof of Lemma 4.3.5, but the meanings

here are quite different.) Let δi = 2i, and let ΦiP denote the result of applying

Lemma 4.3.5 with δ = δi. We apply a scalar weight to each of the resulting vectors

and concatenate them to produce the following vector.

ΨP =

〈
1

s
Φ0P,

2

s
Φ1P,

4

s
Φ2P, . . . ,

2i

s
ΦiP, . . . ,

2k

s
ΦkP

〉
.

Observe that Ψ: Zu′(≤ n) → ℓm
1 , where the dimension of the range of m is O(kn log n log(1/β)) =

O(n log2 n log(1/β)).

116

We first establish part (i) of Theorem 9. Observe that

‖ΨP − ΨQ‖1 =

k∑

i=0

∥∥∥∥
2i

s
ΦiP − 2i

s
ΦiQ

∥∥∥∥
1

=

k∑

i=0

2i

s
‖ΦiP − ΦiQ‖1 . (4.1)

Let δ∗ = 〈P ⊖ Q〉. By Lemma 4.3.5(i) we have

‖ΦiP − ΦiQ‖1 ≤ sδ∗/δi = sδ∗/2i.

Also, ΦiP and ΦiQ each have at most s elements, and therefore ‖ΦiP − ΦiQ‖1 ≤ 2s.

Thus we have

‖ΨP − ΨQ‖1 ≤
k∑

i=0

2i

s
min

(
2s,

sδ∗

2i

)
≤

k∑

i=0

2i min

(
2,

δ∗

2i

)
.

Observe that, for i ≥ log δ∗ − 1, we have δ∗/2i ≤ 2. Letting k′ = ⌊log δ∗⌋, we obtain

‖ΨP − ΨQ‖1 ≤
k′−1∑

i=0

2i+1 +

k∑

i=k′

δ∗ ≤ 2k′+1 +

k∑

i=0

δ∗

≤ 2δ∗ + δ∗(2 + log 2n) ≤ 2δ∗ log n,

for all sufficiently large n. This establishes part (i).

To establish part (ii), Let k′′ = ⌊log (δ∗/(8 ln s))⌋. We start with Eq. (4.1).

Observe that for all i ≤ k′′, we have δi ≤ δ∗/(8 ln s). Therefore, by applying

Lemma 4.3.5(ii), with probability (1 − β) we have

‖ΨP − ΨQ‖1 =

k∑

i=0

2i

s
‖ΦiP − ΦiQ‖1 ≥

k′′∑

i=0

2i

s
s = 2k′′+1 − 1 ≥ δ∗

8 ln s
− 1.

If δ∗/(16 ln s) ≥ 1 then

‖ΨP − ΨQ‖1 ≥ δ∗

16 ln s
. (4.2)

If, on the other hand, δ∗/(16 ln s) < 1, then

‖ΨP − ΨQ‖1 ≥ 2k′′+1 − 1 ≥ 1.

117

Because δ∗ is less than 16 ln s and ‖ΨP − ΨQ‖1 ≥ 1, the distortion is at most

16 ln s (≤ 17 logn) for all sufficiently large n. This establishes part (ii).

Finally, to establish the running time, we observe that we have invoked Lemma 4.3.5

k = O(log n) times. Each invocation takes O(n log3 n log(1/β)) time. Thus, the

total time is O(n log4 n log(1/β)). This completes the proof.

4.5.2 Embedding into a Space of Logarithmic Dimension

In this section we provide a proof of Theorem 10. The proof is based on the use of

Lemma 4.4.1. The price that we pay for the lower dimension is that the distortion

bound holds only in expectation, not with high probability.

This proof is very similar to the proof presented in the previous section.

The difference is that we will use Ξ rather than Φ′′ and the weights. First, let

β0 = β/(2 logn). We may assume that the point sets have already been mapped

from Z
d
u(≤ n) to the 1-dimensional space Zu′(≤ n), where u′ = O(ud). We apply

Lemma 4.4.1 repeatedly, with failure probability β0 and distance estimates δ from

{
20, 21, 22, . . . , 2k

}
, where k = ⌈log(2n)⌉. Let δi = 2i, and let Φ′′′

i P denote the result

of applying Lemma 4.4.1 with δ = δi. We apply an integer weight to each of the

resulting vectors and concatenate them to produce:

Ψ′P =
〈
Φ′′′

0 P, 2 Φ′′′
1 P, 4 Φ′′′

2 P, . . . , 2i Φ′′′
i P, . . . , 2kΦ′′′

k P
〉
.

Observe that Ψ′ : Zu′(≤ n) → Hm
1 , where the dimension of the range of m is O(kT) =

O(log n).

118

To establish Theorem 10(i), observe that

‖Ψ′P − Ψ′Q‖1 =

k∑

i=0

∥∥2i Φ′′′
i P − 2i Φ′′′

i Q
∥∥

1
=

k∑

i=0

2i ‖Φ′′′
i P − Φ′′′

i Q‖1 .

Since ‖Φ′′′
i P − Φ′′′

i Q‖1 ≤ T and by Lemma 4.4.2 we have

E [‖Ψ′P − Ψ′Q‖1] =
k∑

i=0

2i E [‖Φ′′′
i P − Φ′′′

i Q‖1] ≤
k′∑

i=0

2i T +
k∑

i=k′+1

2i δ∗

4 · 2i
T

≤ 2δ∗T + (2 + log 2n)
δ∗

4
T ≤ 1

2
log nδ∗T,

for all sufficiently large n.

In order to establish Theorem 10(ii), let k′′ = ⌊log (δ∗/(8 ln s))⌋. For all suffi-

ciently large n we have

E [‖Ψ′P − Ψ′Q‖1] =

k∑

i=0

2i E [‖Φ′′′
i P − Φ′′′

i Q‖1] ≥
k′′∑

i=0

2ic2T

≥ c2(2
k′′+1 − 1)T ≥ c2

δ∗

17 logn
T,

where the last inequality follows by Eq. (4.2) of Section 4.5.1.

The expected distortion is 17
2c2

log2 n < 43 log2 n. Thus, to obtain the desired

bounds, we simply divide the embedded vector by c2T .

4.6 Similarity Search

We have shown how to embed point sets under translation into L1 space. Since each

point set is mapped into a point in this space, similarity search under translation

can be reduced to (approximate) nearest neighbor searching among the embedded

points. We leave the exact method for performing approximate nearest neighbor

searching unspecified, but any standard method may be applied [6,7,38,43]. Given

119

a set of N points in dimension d, let T (N, d), S(N, d), Q(N, d) denote the prepro-

cessing time, the space complexity, and query time for the nearest neighbor search

algorithm of interest.

First, we consider how to apply our high-probability embedding result.

Theorem 11 Given a database with N point sets drawn from Z
d
u(≤ n), where

u = nO(1), similarity search under the metric symmetric difference under trans-

lation can be reduced to the nearest neighbor search problem that the dimension

of each item is O(n log2 n log (1/β)). Then, the preprocessing for the similarity

search is Nn log3 n log (1/β) + T (N, O(n log2 n log (1/β))) and the space complex-

ity is S(N, O(n log2 n log (1/β))).

The other embedding result is to have a low dimension in expectation. We

could not use it directly since it doesn’t guarantee to find a proper one. Instead

using only one embedding space, we use small multiple embeddings. In Section 4.4,

each embedding is computed based on a given fixed distance and then sampled in

order to reduce the dimension. Here we can estimate the original distance by using

interactive queries That will give distortion O(log n) and sublinear space complexity.

Theorem 12 Given a database with N point sets ∈ Z
d
u(≤ n) and u ≤ nO(1), simi-

larity search on symmetric difference under translation can be reduced to the nearest

neighbor search problem with search on a sequence of ⌈log (2n) + 1⌉ distances that the

dimension of each item is O(log n log (1/β)). Then, the expected preprocessing for

the similarity search is Nn log3 n log (1/β)+T (N, O(logn log (1/β)))·⌈log (2n) + 1⌉,

and the space complexity is S(N, O(logn log (1/β))) · ⌈log (2n) + 1⌉.

120

Proof : We will introduce an alternative way of doing similarity search, which sig-

nificantly improved both dimension and distortion. We observe that the previous

distortion of O(log2 n) arises from two sources. One is from the translation invari-

ant feature mapping, and the other arises when we weighted and concatenated the

O(log n) subvectors based on geometric series of distance. Instead of concatenating

the vectors, we can instead apply binary search to them in order to estimate the

original distance. Although this will involve additional O(log log n) operations (since

we apply binary search on a sequence of ⌈log (2n) + 1⌉ distances), we shall see that

this allows us to reduce the distortion to O(log n). Furthermore, we will show that

a dimension reduction technique can be applied for this case, and thus the space

complexity can be reduced from O(n log2 n log (1/β)) to O(log n log (1/β)). That

is, the dimension is essentially logarithmic in n. ⊓⊔

Up to here, we didn’t specify the value of β. If we have N point sets, then we

have N2 pairwise distances. Thus, to obtain robust results, our embedding should

have at most O(1/N2) failure probability. Therefore, we simply set β = O(1/N2).

Moreover, n is the maximum number of points among point sets. Thus, if we can

partition the point sets according to n, we can, further, reduce the space.

4.7 Conclusions

We have presented a randomized algorithm that embeds an n-element point set over

the multidimensional grid Z
d
u, where u is nO(1), to a single point in a multidimen-

sional space under the L1 distance. We assume that distances over Z
d
u are measured

121

using the symmetric difference under translation. This embedding has the property

that with some given probability, it achieves a distortion of O(log2 n).

This algorithm can be used in the similarity search problem with single query.

If multiple queries are allowed, the distortion can be reduce to O(logn) with sub-

linear space of n. Also, we showed that, in expectation, for a single embedding

technique with sampling technique can be achieved sublinear space, too.

Our existing work applies to points with integer coordinates in arbitrary di-

mensions and is robust to missing and spurious points. The conditions under which

our embedding applies are admittedly restrictive, but to our knowledge this is the

first result in embeddings that are invariant under geometric transformations and

robust to outliers.

122

Chapter 5

Earth Mover’s Distance under Translation

5.1 Introduction

The concept of the Earth Mover’s Distance (EMD) was first introduced by Gas-

pard Monge in 1781. The name EMD was coined in 1998 by Rubner, Tomasi and

Guibas [52]. The concept was introduced as a means of describing the distance

between two probability distributions as a function of the effort needed to convert

one into the other. For example, given two distributions, one can be seen as a pile

of earth spread in space, the other as a set of holes in that same space. Then, the

EMD can be thought of as the minimum amount of work needed to fill the holes

with earth.

An early application of EMD was to compare two gray-scale images that may

differ due to dithering, blurring, or local deformations [49]. Since then, EMD has

been widely used in content-based image retrieval because it is more robust than

other histogram matching techniques [52, 55, 62].

The general definition of EMD (from [52]) is as follow. Let X denote a point

set in R
d×m. Let w denote a set of weights of X in R

m. We consider a finite

123

distribution X

X = {(x1, w1), (x2, w2), . . . , (xm, wm)}.

Analogously, given a point set Y ∈ R
d×n and associated weights u ∈ R

n, define the

distribution Y

Y = {(y1, u1), (y2, u2), . . . , (yn, un)}.

Given these two distributions, we define a flow between them to be a matrix F =

(fij) ∈ R
m×n, where fij is the amount of flow from xi to yj. A flow F between X

and Y said to be feasible if

fij ≥ 0 i = 1, . . . , m, j = 1, . . . , n,

n∑

j=1

fij ≤ wi i = 1, . . . , m,

m∑

i=1

fij ≤ uj j = 1, . . . , n, and

m∑

i=1

n∑

j=1

fij = min

(
m∑

k=1

wk,
n∑

k=1

uk

)
.

Let F denote the set of all feasible flows between X and Y . Then, we have

EMD (X ,Y) = min
F=(fij)∈F(X ,Y)

m∑

i=1

n∑

j=1

fijdij,

where dij is the distance from xi to yj. Such a flow can be represented as a linear

program and solved by any one of a number of standard methods.

It is possible to extend this distribution-based definition to the notion of the

EMD distance between a pair of finite point sets P and Q of equal cardinality.

Definition 4 Given two finite point sets P and Q of equal cardinality, let M denote

the set of bijections from P to Q. Then, the earth mover’s distance between P and

124

Q is defined to be

EMD (P, Q) = min
M∈M

∑

(p,q)∈M

‖p − q‖2 .

♦

Computing the EMD between two point sets reduces to computing a minimum

weight perfect matching in a complete bipartite graph, where the weight of each edge

of P × Q is the Euclidean distance between the associated points. Thus, the EMD

between two point sets of size n can be computed in time O(n3) by reduction to

minimum weighted perfect matching in a bipartite graph with with 2n vertices and

n2 edges. For the Euclidean planar versions, there exists (1+ε) algorithm computed

in O((n/ε3)log6n) [59].

It is straightforward to extend the definition of the EMD metric to apply to

matching under translation.

Definition 5 Given two finite point sets P and Q of equal cardinality, let M

denote the set of bijections from P to Q, and let T denote the space of allowable

translations. Then, the earth mover’s distance between P and Q under translation

is defined to be

EMD 〈P, Q〉 = min
t∈T

EMD (P + t, Q) = min
t∈T

min
M∈M

∑

(p,q)∈M

‖(p + t) − q‖2 .

♦

Shape-based retrieval is one of the useful applications of the EMD metric

under translations. Visual similarity may not be captured by a direct comparison

of the shapes due to differences in orientation or position. Thus, considering some

125

geometric transformations (e.g., translation and/or rotation) is useful to achieve

better recall and robustness.

The goal of this chapter is to design an algorithm for point pattern searching

for the EMD metric under translations. To achieve this goal, we first consider the

point pattern search problem for the EMD metric (without translation). As observed

earlier, one solution involves computing the distance between a query point set Q

and every point set P of the database, but this would be very slow. Instead, our

approach is based on finding a low distortion embedding into a space for which we

can apply nearest neighbor searching. Our embedding will be translation insensitive,

which means that it will be amenable to generalizing to the translation case. We will

then show how to adapt the results of the previous chapter to provide a translation-

invariant embedding.

Let us consider point sets in R
d of cardinality n. Let ∆ denote an upper

bound on the diameters of the point sets. For simplicity, we assume that ∆ has

been rounded up to a power of 2. Indyk and Thaper [40] designed an algorithm for

embedding EMD in R
d into ℓ1 in Z

d′ , where d′ depends on the cardinality n and

the diameter ∆. Under the assumption that the minimum distance between any

two points is at least 1, they showed that the distortion is O(log ∆). By merging

the embedding results and Locality Sensitive Hashing (LSH), they designed an al-

gorithm for point pattern search under the EMD metric. (Later we will describe

this algorithm in greater detail.) Henceforth, we refer to this as the IT algorithm.

Cohen and Guibas [18] presented a simple method for computing the EMD

under translation for two point sets. The algorithm computes a lower bound on

126

the EMD for all translations, and chooses the minimum one. Due to the high

computation time, they proposed an efficient iterative heuristic, which may fail to

produce the optimum matching, since it may fall into a local minimum.

Shirdhonkar and Jacobs [55] presented a wavelet-based variant of EMD. They

show that their measure is a metric, and that it is (approximately) equivalent to

the EMD in the sense that the ratio of the EMD to the wavelet EMD is bounded

within some constant. This wavelet EMD metric is based on the weighted wavelet

coefficients and the computation requires only linear time. They showed that the

wavelet EMD can be effectively applied to content-based image retrieval. Also, they

tested and compared their algorithm to other approximate EMD methods.

Ling and Okada [45] presented a fast algorithm for computing the EMD be-

tween a pair of histograms. They show that their embedding is isometric if the

original underlying distance is ℓ1, not ℓ2. Then, they show that it can be computed

in linear time since the number of constraints is linear. However, they did not for-

mally establish bounds on the relation to of their embedding and the standard EMD

in ℓ2.

Neither of these algorithms provides an efficient solution to the point pat-

tern searching problem for the EMD metric under translations. We present a new

algorithm for this problem. Our approach is to first modify Indyk and Thaper’s

randomized embedding algorithm to a deterministic version. In contrast to their

algorithm, ours is significantly less sensitive to translation. Our embedding does

involve some additional space complexity, however. Second, we show how to re-

duce the problem to point pattern searching with translation under the symmetric

127

difference distance, which we can solve by reduction to the algorithm of Chapter 4.

Before presenting our main results, we need to introduce an important assump-

tion about the input sets. Recall that Indyk and Thaper make the assumption that

the minimum distance between any two points of the union V = P ∪Q is at least 1.

This implies that the minimum EMD distance between P and Q is at least n, where

n = |P | = |Q|. This assumption is important for their algorithm, since it provides a

minimum scale at which point positions can be uniquely resolved and hence is basic

to the approach of hierarchical grids. This assumption would seem at first glance to

be ridiculous, since, for example, it rules out the possibility of computing the EMD

between two point sets that share even a single point in common.

A more reasonable interpretation of this assumption is to imagine that the

points have been derived from some measurement process, and the actual coordi-

nates of the points are known to some minimal precision, determined by the sensor’s

limitations. Let us assume that distances have been uniformly scaled so that this

minimal precision is roughly one unit. We assume that the distance between any

two points (even after alignment) is defined to be the maximum of 1 and the actual

distance. We call this the unit-distance assumption.

Recall that ∆ denotes the upper bound of diameters of point sets of our

database. We assume that it has been rounded up to a power of 2 for simplic-

ity. The space T of allowable translations is defined to be Z
d. Here are our main

results. Recall that |P ⊖ Q| denotes the symmetric difference distance between two

point sets P and Q.

128

Theorem 13 Given a positive real parameter ∆ = nO(1) and a constant dimension

d, there exists an embedding function Λ: R
d
∆(= n) → Z

m, for m = O(n∆d log2 ∆),

such that for any two sets P, Q ∈ R
d
∆(= n) under the unit-distance assumption

√
d · EMD (P, Q) ≤ |ΛP ⊖ ΛQ| ≤ 6

√
d(log ∆)EMD (P, Q) .

Under our assumption that the dimension d is a constant, the distortion of

the embedding is log ∆. By merging this theorem and Theorem 9 (of Chapter 4),

we obtain the following.

Theorem 14 Given a positive real parameter ∆ = nO(1), a constant dimension d,

and failure probability β, there exists a randomized embedding Γ: R
d
∆(= n) → ℓm

1 ,

for m = O(n∆d log2(n∆) log 1
β
), such that for any two sets P, Q ∈ R

d
∆(= n) under

the unit-distance assumption, with probability at least (1 − β)

√
d

17 log k
EMD 〈P, Q〉 ≤ ‖ΓP − ΓQ‖1 ≤ (12

√
d log k log ∆)EMD 〈P, Q〉 ,

where k = 2n∆d.

Under our assumption that d is a constant, the distortion is O(log2 k log ∆) =

O(log2 n log ∆ + log3 ∆). If we assume further than ∆ is polynomial function of n

(as we did in the previous chapter) then the distortion is O(log3 n).

In summary, given two point sets P and Q, we compute ΛP and ΛQ. Then,

we compute ΨΛP and ΨΛQ, where Ψ is the embedding function for symmetric

difference under translation into ℓ1 (see Theorem 9 in Chapter 4). That is, we

compose the two embedding functions, thus creating a new embedding function

Ψ◦Λ. We will establish the relationship between ‖ΨΛP − ΨΛQ‖1 and EMD 〈P, Q〉.

129

Therefore, this result shows that we can embed a point set with translation under

EMD into a vector space under the Minkowski ℓ1 distance.

In the remainder of this chapter, we will focus principally on giving a proof

of Theorem 13. First, we review the IT embedding algorithm, and explain how to

modify it to produce an initial translation-insensitive embedding. Next, we establish

its distortion bounds. We shall see that this initial method is not particularly space

or time efficient, however. We show how to improve the space and time complexity

of this simple approach by eliminating redundancy. After this, we show how to

reduce the point pattern searching problem for EMD under translations to that of

symmetric difference under translations. Then, by using the result of Chapter 4, we

complete the proof of the Theorem 14.

5.2 Translation Insensitive Embedding of the EMD into L1

As mentioned earlier, Indyk and Thaper designed a randomized algorithm for em-

bedding the EMD in R
d into ℓ1 in Z

d′ , where d′ is a function of n and ∆. The

distortion is O(log ∆) in expection.

For the completeness, we describe Indyk and Thaper’s algorithm here. Let

P and Q denote the point sets, recall that n denotes their cardinalities, and let ∆

be an upper bound on their diameters. The construction is based on imposing a

collection of aligned hypercube grids in R
d of side lengths 1

2
, 1, 2, 4, . . . , ∆. Let Gi

denote a grid of side length 2i. Further, impose the condition that the grid Gi is

a refinement of grid Gi+1. The grids are all translated by a common vector chosen

130

uniformly at random from [0, ∆]d. For each grid Gi, a vector vi(P) is constructed

with one coordinate per cell of the grid, where each coordinate counts the number

of points in the corresponding cell. In other words, each vi(P) forms a histogram of

P . Define a mapping v by setting v(P) to be the vector

v(P) =

[
v−1(P)

2
, v0(P), 2v1(P), 4v2(P), . . . , 2ivi(P), . . .

]

Note that v(P) lies in an O(∆d)-dimension space, but only O(log∆ · |P |) entries in

this vector are non-zero (i.e., the vector v(P) is sparse).

The randomness of their algorithm comes from the above random grid transla-

tion. The problem with applying their algorithm as a basis of a translation-invariant

embedding is that, due to the hierarchical nature of the grids, point sets whose

alignments differ by a quantity that is not a large power of two will likely produce

dramatically different vector histograms at higher levels of the hierarchy.

To remove the sensitivity, we consider all possible shifts of the grids at all levels

of the hierarchy, and then merge these results. Let Z
d
∆ = [0, . . . , ∆ − 1]d, that is, a

d-dimensional vector space of integers modulo ∆. For each translation t ∈ Z
d
∆, we

build an instance. Let v[t](P) denote a vector v(P) (from the IT algorithm) arising

from a t-translated grid. (Note that we translate each grid, not the point set.) The

collection of the vectors for all grid translations is denoted by ΛP =
⋃

t∈Z
d
∆

v[t](P).

The trivial space complexity increases by a factor of O(∆d). Later, we will show

how to reduce this addition space complexity factor to only O(log ∆).

Next, we establish bounds on ‖ΛP − ΛQ‖1.

131

Lemma 5.2.1 Given P, Q in R
d,

√
d∆d EMD (P, Q) ≤ ‖ΛP − ΛQ‖1 ≤ 6

√
d∆d log ∆ EMD (P, Q) .

Proof : Let us consider a pair of points (p, q) ∈ (P, Q). Let δpq = ‖p − q‖2 at level

0. Now, consider a grid at level i of side length 2i.

If δpq ≥ 2i
√

d, then it is obvious that there is no grid cell containing both p

and q. Thus, the contribution to the symmetric difference of ΛP and ΛQ at the

level i due to p and q is twice the total number of translated grids, that is, 2∆d.

For the other case, δpq < 2i
√

d, some grid cells may contain both p and q,

and hence, the symmetric difference may decrease. We can easily observe that only

(2i)d distinct instances exist among ∆d instances at level i. Thus, each distinct

instance occurs with multiplicity ∆d/(2i)d. Therefore, it suffices to consider all

possible translations in Z
d
2i

Before counting the number of instances, let us first express the distance δpq

in terms of its individual coordinates as (δ1, δ2, . . . , δd). The ℓ1 distance is
∑d

k=1 δk

and ℓ2 distance is δpq =
√∑d

k=1 δ2
k. From the basic algebra, the following inequality

about ℓ1 and ℓ2 is satisfied,

δpq ≤
d∑

k=1

δk ≤
√

d δpq.

In order to compute the symmetric difference distance, we need to know for

how many instances do both p and q lie within the same grid cell. Consider a d-

dimensional hypercube with side length 2i. The area of the region containing both

p and q is (2i − δ1)(2
i − δ2) · · · (2i − δd).

132

Thus, the number of distinct instances which contain only p is

2id − (2i − δ1)(2
i − δ2) · · · (2i − δd) ≤

d∑

k=1

(2i)d−1δk ≤ (2i)d−1 ·
√

d δpq

Let i2 be the minimum integer satisfying the condition 2i2 ≥ δpq. Thus, 2i2 < 2δpq.

For all levels, the contribution of two point p and q to the ℓ1 distance is at

most

‖Λp − Λq‖1 ≤
i2−1∑

i=0

2∆d · 2i +

log ∆∑

i=i2

2
∆d

(2i)d
· (2i)d−1

√
d δpq · 2i

≤ 2∆d2i2 +

log ∆∑

i=i2

2
√

d δpq · ∆d

≤ ∆d(4δpq + 2
√

d δpq log ∆)

≤
(
6
√

d∆d log ∆
)

δpq.

Summing over all pairs (p, q) in the matching M that define the EMD, we

have

‖ΛP − ΛQ‖1 =
∑

(p,q)∈M

‖Λp − Λq‖1

≤
∑

(p,q)∈M

(
6
√

d∆d log ∆
)

δpq

≤ 6
√

d∆d log ∆
∑

(p,q)∈M

δpq

≤
(
6
√

d∆d log ∆
)

EMD (P, Q) .

Next, we establish a lower bound on ‖ΛP − ΛQ‖1. Recall that v[t](P) denotes

a vector v(P) arising from a t translated grid. From Indyk and Thaper’s result, for

any t ∈ [0, . . . , ∆]d we have

∥∥v[t](P) − v[t](Q)
∥∥

1
≥

√
d EMD (P, Q) .

133

Because our construction involves ∆d translated copies of the Indyk and Thaper

construction, we have ‖ΛP − ΛQ‖1 ≥
√

d∆d EMD (P, Q). This completes the proof.

⊓⊔

Thus, we have established a translation-insensitive embedding for EMD into ℓ1

with distortion 6 log ∆ = O(log∆). Observe that the dimension of our construction

is larger than that of Indyk and Thaper by a factor of ∆d. In the next section, we

will consider how to reduce the dimension.

5.2.1 Improvement of Space Complexity and Preprocess Time

In the proof of Lemma. 5.2.1, although our construction involves ∆d copies of the

IT construction, we noticed that the number of distinct instances for the level i is

∆d

(2i)d . Using this information, we change the representation of ΛP as follows. Since

we only have one distinct instance at the level 0, we multiply by ∆d for this one

distinct instance. This will not change the symmetric difference between ΛP and

ΛQ. For level 1, we have 2d distinct instances, and so we multiply each by a scale

factor of ∆d/2d. In general, for level i, (2i)d distinct instances exist, and so we

multiply each by a scale factor of ∆d/(2i)d. Observe that the number of distinct

instances at level i is (2i)d and each instance contributes ∆d/(2i)d elements. Thus,

the total number of elements at level i is ∆d. Since there are O(log ∆) levels, the

total number of elements of ΛP is O(∆d log ∆).

Let us consider an efficient way to compute each element of level i. Let

Ai[j1, . . . , jd] denote the element at level i corresponding to translation (j1, . . . , jd) ∈

134

Z
d
∆, and the value of Ai[j1, . . . , jd] is the sum of elements of level 0 covered by the

grid cell with side length 2i whose origin is (j1, . . . , jd). That is,

Ai[j1, . . . , jd] =

2i−1∑

k1=0

· · ·
2i−1∑

kd=0

A0[j1 + k1, . . . , jd + kd].

By the hierarchical nature of the grid, this can be computed by summing two com-

ponents at the prior level. We observe that

Ai[j1, . . . , jd] =
1∑

k1=0

· · ·
1∑

kd=0

Ai−1[j1 + k12
i−1, . . . , jd + kd2

i−1]. (5.1)

The time complexity is O(2d∆d log ∆), because each can computed with 2d elements

of the prior level.

Here is the summary of our algorithm. Initially, for all j = (j1, . . . , jd) ∈ Z
d
∆,

set A0[j] = 1 if there is a point at position j, and 0 otherwise. For i from 1 to log ∆

and j ∈ Z
d
∆, compute Ai[j1, . . . , jd] by Eq. (5.1). In this manner, all elements of A

are computed in time O(2d∆d log ∆).

5.3 Similarity Search for EMD under Translations

Let us consider an algorithm for embedding a point set for EMD under translation

into a vector space in ℓ1 metric. In the previous section, we showed how to embed a

point set from EMD into the ℓ1 metric, without consideration of translation. Given

two point sets P and Q, ‖ΛP − ΛQ‖1 is can be related to EMD (P, Q). We observe

that all the elements of ΛP and ΛQ are nonnegative integers, since each component

is a count that is multiplied by an integer weight. To embed such a vector into a

space to which we can then apply the symmetric difference distance, we need to map

135

the resulting vector of integers into a {0, 1}-vector (which can then be interpreted

as the bit vector for a set).

Let us change the structure of ΛP slightly by adding two additional dimen-

sions. First, each count is transformed into unary notation, thus creating one addi-

tional dimension. For example, a vector entry whose value is 3 would be mapped to

the unary vector (1, 1, 1, 0, 0, . . .). Since each coordinate of the vector ΛP is a non-

negative integer of value at most n, the number of coordinates in this new dimension

is n. Next, each level can be considered as another dimension. In this way ΛP can

be viewed as a single array, rather than a collection of arrays of levels. From now

on, we treat ΛP as a binary array of dimension d+2. Distances are measured using

the symmetric difference (or equivalently the Hamming distance over the resulting

bit vectors).

In summary, given two point sets P and Q, we compute ΛP and ΛQ. We then

compute ΨΛP and ΨΛQ where Ψ is the embedding function for symmetric difference

under translation into ℓ1. We will establish a relationship between ‖ΨΛP − ΨΛQ‖1

and EMD 〈P, Q〉. This shows that we can simply reduce the similarity search for

EMD under translation to ℓ1.

Observe that we cannot directly apply the embedding results since ΛP has

additional two dimensions compared with P . Applying a translation to the original

point set affects only the first d dimensions of the resulting vector. After embedding,

it possible, at least in principal, to apply translation to any of the dimensions. We

will show that attempting to apply a translation to the additional two dimensions

has no affect the distance, since any such translation will only increase distances.

136

In particular, given a translation ~t of the first d components and two additional

translations, t′ for the unary component, and t′′ for the level component, we will

show that

min
(~t,t′,t′′)

∥∥ΛP~t,t′,t′′ − ΛQ
∥∥

1
= min

~t∈T

∥∥ΛP~t,0,0 − ΛQ
∥∥

1
,

where ~t = (t1, t2, · · · , td) and P~t,t′,t′′ denote the point set of P translated by (~t, t′, t′′).

Lemma 5.3.1 When t′ = 0, the distance between two point sets achieves its mini-

mum value.

Proof : Based on the construction, a unary dimension of ΛP and ΛQ has at most

one consecutive one from the base index (i.e., 0). We observe that the maximum

overlap between two consecutive strings of ones occurs when the two are aligned at

the lowest order position. This occurs when t′ = 0. ⊓⊔

Lemma 5.3.2 When t′′ = 0, the distance between two point sets achieves its mini-

mum value.

Proof : Recall that the sum of counts at level i after weighting is n2id, and the

number of points at the leaf level are same in P and Q. Thus, if the t′′ coordinate of

the translation vector is nonzero, we are attempting to match two different levels,

and hence the distance is at least

n + n2d log ∆ +

log ∆−1∑

i=1

n
(
2(i+1)d − 2id

)
.

However, the maximum possible distance for ‖ΛP − ΛQ‖1 for t′′ = 0 is
∑log ∆−1

i=0 n2(i+1)d,

since the distance between ΛP and ΛQ is zero at the topmost level. By simple cal-

culations, t′′ must be zero in order to achieve the minimum distance. ⊓⊔

137

Therefore, we can apply the same translations of P to ΛP without any loss of

generality. Next, we show that our embedding function is translation invariant.

Lemma 5.3.3 For any point set P and translation t ∈ T , Λ(P + t) = (ΛP) + t.

Proof : Let A denote our embedding result of ΛP . Let x and y denote the values of

the elements Ai(j) for position j = (j1, . . . , jd) at level i in Λ(P + t) and (ΛP) + t,

respectively. By the definition,

Ai[j1, . . . , jd] =

2i−1∑

k1=0

· · ·
2i−1∑

kd=0

A0[j1 + k1, . . . , jd + kd].

We observe that x = y = Ai[j − t]. Thus, Λ(P + t) = (ΛP) + t, as desired. ⊓⊔

We are now able to present the proof of Theorem 14.

Proof : (of Theorem 14)

Recall that Λ is an embedding function from the EMD metric to the symmetric

difference, and Ψ is an embedding function from the symmetric difference under

translations into ℓ1. By definition, we have EMD 〈P, Q〉 = mint∈T EMD (P + t, Q) .

Let t ∈ T be any translation. Then, by applying Lemma. 5.2.1 to P + t and Q, we

have

c1 · EMD (P + t, Q) ≤ |Λ(P + t) ⊖ ΛQ| ≤ c2 · EMD (P + t, Q)

where c1 =
√

d∆d and c2 = 6
√

d∆d log ∆. By Lemma. 5.3.3, we have

c1 · EMD (P + t, Q) ≤ |(ΛP + t) ⊖ ΛQ| ≤ c2 · EMD (P + t, Q) .

Let t∗ denote the optimal translation for P and Q under the EMD metric, and

let t̂ denote the optimal translation for ΛP and ΛQ under the symmetric difference

138

distance. That is,

t∗ = argmin
t∈T

EMD (P + t, Q) and t̂ = argmin
t∈T

|(ΛP + t) ⊖ ΛQ| .

Observe that

c1 · EMD (P + t∗, Q) ≤ c1 · EMD
(
P + t̂, Q

)
≤
∣∣(ΛP + t̂) ⊖ ΛQ

∣∣ ,

and

∣∣(ΛP + t̂) ⊖ ΛQ
∣∣ ≤ |(ΛP + t∗) ⊖ ΛQ| ≤ c2 · EMD (P + t∗, Q) .

Thus, we have

c1 · EMD 〈P, Q〉 ≤ 〈ΛP ⊖ ΛQ〉 ≤ c2 · EMD 〈P, Q〉 . (5.2)

By Theorem. 9, with probability (1 − β), we have

c3 〈ΛP ⊖ ΛQ〉 ≤ ‖ΨΛP − ΨΛQ‖1 ≤ c4 〈ΛP ⊖ ΛQ〉 , (5.3)

where c3 = 1
17 log n

and c4 = 2 log n.

Merging Eqs. 5.2 and 5.3, we obtain the desired bounds

c1c3 · EMD 〈P, Q〉 ≤ ‖ΨΛP − ΨΛQ‖1 ≤ c2c4 · EMD 〈P, Q〉 ,

with probability at least (1 − β). To complete the proof, we define Γ = Ψ ◦ Λ.

Observe that c1c3 =
√

d
17 log k

and c2c4 = (12
√

d log k log ∆), where k = 2n∆d. ⊓⊔

139

Chapter 6

Conclusions

Geometric point pattern matching problem is a fundamental computational problem

and has numerous applications in various areas. In this dissertation, approximation

algorithms for point pattern matching and searching have been considered. In this

dissertation, three principal results were presented.

First, we considered point pattern matching between two point sets P and Q

in the Euclidean plane under rigid transformations (translation and rotation), where

dissimilarity is measured under the directed Hausdorff distance. We introduced an

algorithm, called the symmetric-alignment algorithm, which operates by first com-

puting a diametrical pair for P and then computes, for every pair of distinct points

of Q, a rigid transformation that aligns these pairs. It returns the transformation

achieving the minimum Hausdorff distance. In our analysis, we introduced a geo-

metric parameter ρ, called the distance ratio, which is defined to be half the ratio of

the diameter of P to the optimum Hausdorff distance between P and Q. We showed

that the approximation ratios of these algorithms can be bounded, from both above

and below, as a function to the ρ. We proved that the approximation bounds that

we achieve are nearly tight.

140

Second, we considered the design of a new approach for point pattern simi-

larity search. Given a database of points sets, the objective is the preprocess the

these point sets so that similarity searches involving a query point set can be per-

formed efficiently. Our general approach is based on computing a low-distortion,

transformation-invariant embedding of each point set into a metric space. By com-

bining this embedding with any efficient nearest neighbor algorithm for the metric

space, it is possible perform similarity searches efficiently. We considered this prob-

lem in the context of pattern similarity search with translation under the symmetric

difference distance. In particular, we showed the existence of a translation-invariant

embedding for point sets in integer space to the L1 metric in real space. Through

the use of projection and hashing, we first showed that this problem can be reduced

to one involving 1-dimensional point sets. We then showed that, by applying ran-

dom probes, a set of translation-invariant bit patterns can be generated. Based on

the number of probes, the distance between the original point sets can be estimated

based on the similarity of the resulting sets of bit patterns. We prove that, by

applying this construction with an exponentially increasing sequence of distance es-

timates and appropriate weightings of the components, it is possible to construct a

randomized embedding with distortion O(log2 n). Moreover, the preprocessing time

is dramatically improved by leapfrogging over intermediate steps through the use of

the convolutions and the fast Fourier transform.

Finally, we considered point pattern similarity search under the earth mover’s

distance (EMD). We showed that, under the unit-distance assumption, the point

pattern similarity search problem for point sets in real space under the EMD metric

141

can be embedded into integer space under the symmetric difference metric. Our

embedding is translation insensitive, and achieves a distortion of O(log∆), where ∆

is the diameter of the point set. By combining this with the above embedding for

symmetric difference with translation, we obtain an embedding for the EMD metric

under translation to real space under the L1 metric that achieves a distortion of

O(log2 n log ∆).

6.1 Open Problems and Future Research

The work presented in this dissertation has demonstrated that point pattern similar-

ity searching can be solved, at least approximately, through the use of embeddings

into metric spaces. Our algorithms are not just heuristics, since they offer provably

good approximation bounds on the quality of the results. There are, however, a

number of interesting topics for future work.

6.1.1 Improving Performance for Point Pattern Searching

It is worthwhile considering improvements to the distortion bounds of Chapter 4. As

mentioned earlier, our embedding algorithm is randomized and achieves an expected

distortion of O(log2 n) in the L1 metric over a space of dimension that is roughly

O(n log2 n). We also improved the dimension to roughly O(log n), but the result

holds only in expectation. A natural question is whether this distortion bound is

the best achi

The most closely related work to ours is that of Cormode and Muthukrish-

142

nan [20], on embedding strings under edit distance with moves. They present a

deterministic embedding algorithm which achieves a distortion of O(log n log∗ n)

into L1 with an exponential number of dimensions. Although their algorithm is not

directly applicable to our problem, this suggests that lower distortion bounds may

yet be achievable.

Space and time complexities are other factors. It would be interesting to know

whether it is possible to achieve both logarithmic dimension with guaranteed proba-

bility bounds. Improving the preprocessing times is also an issue worth considering.

6.1.2 Application for Database Search

As mentioned, one of the motivating applications of our embedding algorithms of

Chapters 4 and 5 is to produce an algorithm for database similarity search on point

sets. The dimension of O(n log2 n) is quite large, implying the need for relatively

sophisticate data structures for nearest neighbor searching [6,43,48]. Thus, in order

to understand the ultimate performance of our approach, it would be worthwhile to

consider the simultaneous effects of the choice of embedding technique, dimension

of the metric space, and the nearest neighbor search algorithm. Tradeoffs among

these choices would be useful to explore.

6.1.3 Allowing for Noise and Other Transformations

The restriction of our embedding algorithm for symmetric difference distance can

apply only to points with integer coordinates. In practice, point coordinates are the

143

result of measurements, and will be subject to the presence of noise and digitization

errors. Handling noise is one important extension, which would be worthwhile to

consider.

In the EMD embedding algorithm of Chapter 5, the algorithm works for point

sets real space. However, it requires the strong unit-distance assumption, which

states that the minimum distance between any two points is 1. It would be inter-

esting to know whether this assumption can be weakened, or overcome entirely.

In addition, the embedding algorithms given in both Chapters 4 and 5 assume

that the group of transformations is limited to translation. It would be very useful to

extend these results to a more general group of geometric transformations, including,

for example, rotation and/or scaling. Because of the discrete nature of the symmetric

difference metric, upon which our results rely, such generalizations (such as rotation),

which map integer coordinates to non-integer values may require new insights.

144

Bibliography

[1] P. K. Agarwal, M. Sharir, and S. Toledo. Applications of parametric searching
in geometric optimization. In Proc. 3rd Annu. ACM-SIAM Sympos. Discrete
Algorithms, pages 72–82, 1992.

[2] H. Alt, O. Aichholzer, and G. Rote. Matching shapes with a reference point.
In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 85–92, 1994.

[3] H. Alt and L. Guibas. Discrete geometric shapes: Matching, interpolation, and
approximation. In Handbook of Computational Geometry, pages 121–153. 1999.

[4] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, similarity and
symmetries of geometric objects. Discrete Comput. Geom., 3:237–256, 1988.

[5] M. Alzina, W. Szpankowski, and A. Grama. 2d-pattern matching image and
video compression: Theory, algorithms, and experiments. IEEE Trans. Image
Proc., 11:318–331, 2002.

[6] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In Proc. 47th Annu. IEEE Sympos. Found.
Comput. Sci., pages 459–468, 2006.

[7] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal
algorithm for approximate nearest neighbor searching. In Proc. 5th Annu.
ACM-SIAM Sympos. Discrete Algorithms, pages 573–582, 1994.

[8] M. D. Atkinson. An optimal algorithm for geometrical congruence. J. Algo-
rithms, 8(2):159–172, 1987.

[9] M. Boutin and G. Kemper. Which point configurations are determined by
the distribution of their pairwise distances? Int. J. Comput. Geometry Appl.,
17(1):31–44, 2007.

[10] L. G. Brown. A survey of image registration techniques. ACM Comput. Surv.,
24:325–376, 1992.

[11] D. E. Cardoze and L. Schulman. Pattern matching for spatial point sets. In
Proc. 39th Annu. IEEE Sympos. Found. Comput. Sci., pages 156–165, 1998.

[12] L. Carter and M. N. Wegman. Universal classes of hash functions. J. Comput.
Syst. Sci., 18(2):143–154, 1979.

[13] F-H. Cheng. Point pattern matching algorithm invariant to geometrical trans-
formation and distortion. Pattern Recogn. Lett., 17(14):1429–1435, 1996.

145

[14] L. P. Chew, M. T. Goodrich, D. P. Huttenlocher, K. Kedem, J. M. Kleinberg,
and D. Kravets. Geometric pattern matching under Euclidean motion. Comput.
Geom. Theory Appl., 7:113–124, 1997.

[15] M. Cho and D. M. Mount. Embedding and similarity search for point sets
under translation. In Proc. 24th Annu. ACM Sympos. Comput. Geom., pages
320–327, 2008.

[16] M. Cho and D. M. Mount. Improved approximation bounds for planar point
pattern matching. Algorithmica, 50(2):175–207, 2008.

[17] V. Choi and N. Goyal. An efficient approximation algorithm for point pattern
matching under noise. In Latin American Theoretical Informatics Symposium,
pages 298–310, 2006.

[18] S. D. Cohen and L. J. Guibas. The earth mover’s distance under transformation
sets. In Proc. 4th Annu. IEEE Int’l Conf. on Computer Vision, pages 1076–
1083, 1999.

[19] J. Cooley and J. Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of Computation, 19(90):297–301, 1965.

[20] G. Cormode and S. Muthukrishnan. The string edit distance matching problem
with moves. ACM Trans. Algorithms, 3(1):2, 2007.

[21] T. Dakic. On the turnpike problem. PhD thesis, Simon Fraser University, 2000.

[22] M. de Berg, M. van Kreveld, M. H. Overmars, and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications. Springer-Verlag, 2nd edition,
2000.

[23] A. Efrat and A. Itai. Improvements on bottleneck matching and related prob-
lems using geometry. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages
301–310. ACM Press, 1996.

[24] M. Farach-Colton and P. Indyk. Approximate nearest neighbor algorithms for
hausdorff metrics via embeddings. In Proc. 40th Annu. IEEE Sympos. Found.
Comput. Sci., page 171, 1999.

[25] P. Finn, L. E. Kavraki, J. C. Latombe, R. Motwani, C. Shelton, S. Venkata-
subramanian, and A. Yao. Rapid: Randomized pharmacophore identification
for drug design. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages
324–333, 1997.

[26] M. A. Fischler and R. C. Bolles. Random Sample Consensus: A paradigm for
model fitting with applications to image analysis and automated cartography.
Commun. ACM, 24:381–395, 1981.

146

[27] O. Goldreich and A. Wigderson. Tiny families of functions with random proper-
ties: a quality-size trade-off for hashing. Random Struct. Algorithms, 11(4):315–
343, 1997.

[28] M. T. Goodrich, J. S. Mitchell, and M. W. Orletsky. Practical methods for
approximate geometric pattern matching under rigid motion. In Proc. 10th
Annu. ACM Sympos. Comput. Geom., pages 103–112, 1994.

[29] M. Hagedoorn and R. C. Veltkamp. Reliable and efficient pattern matching
using an affine invariant metric. Technical Report RUU-CS-97-33, Dept. of
Computing Science, Utrecht University, The Netherlands, 1997.

[30] P. J. Heffernan and S. Schirra. Approximate decision algorithms for point set
congruence. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 93–101,
Berlin, Germany, 1992. ACM Press.

[31] P. J. Heffernan and S. Schirra. Approximate decision algorithms for point set
congruence. Comput. Geom. Theory Appl., 4:137–156, 1994.

[32] W. Hoeffding. Probability inequalities for sums of bounded random variables.
J. Amer. Statist. Assoc., 58:13–30, 1963.

[33] J. E. Hopcroft, D. P. Huttenlocher, and P. C. Wayner. Affine invariants for
model-based recognition. MIT Press, Cambridge, 1992.

[34] D. P. Huttenlocher, K. Kedem, and M. Sharir. The upper envelope of Voronoi
surfaces and its applications. Discrete Comput. Geom., 9:267–291, 1993.

[35] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. Comparing
images using the Hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell.,
15:850–863, 1993.

[36] D. P. Huttenlocher and W. J. Rucklidge. A multi-resolution technique for
comparing images using the Hausdorff distance. In Proc. IEEE Conf. Comput.
Vision Pattern. Recogn., pages 705–706. IEEE, 1993.

[37] P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In
Proc. 42nd Annu. IEEE Sympos. Found. Comput. Sci., page 10, 2001.

[38] P. Indyk and R. Motwani. Approximate nearest neighbors: towards remov-
ing the curse of dimensionality. In Proc. 30th Annu. ACM Sympos. Theory
Comput., pages 604–613, New York, NY, USA, 1998. ACM.

[39] P. Indyk, R. Motwani, and S. Venkatasubramanian. Geometric matching under
noise: Combinatorial bounds and algorithms. In Proc. 10th Annu. ACM-SIAM
Sympos. Discrete Algorithms, pages 457–465, 1999.

[40] P. Indyk and N. Thaper. Fast image retrieval via embeddings. In 3rd Interna-
tional Workshop on Statistical and Computational Theories of Vision, 2003.

147

[41] P. Indyk and S. Venkatasubramanian. Approximate congruence in nearly linear
time. In Proc. 11th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages
354–360, San Francisco, 2000.

[42] R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algo-
rithms. IBM J. Res. Dev., 31(2):249–260, 1987.

[43] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate
nearest neighbor in high dimensional spaces. In Proc. 30th Annu. ACM Sympos.
Theory Comput., pages 614–623. ACM Press, 1998.

[44] H. Ling and D. W. Jacobs. Deformation invariant image matching. In Proc.
10th Annu. IEEE Int’l Conf. on Computer Vision, pages 1466–1473. IEEE
Computer Society, 2005.

[45] H. Ling and K. Okada. An efficient earth movers distance algorithm for robust
histogram comparison. IEEE Transactions on PAMI, 29(5):840–853, 2006.

[46] N. Megiddo. Applying parallel computation algorithms in the design of serial
algorithms. J. ACM, 30(4):852–865, 1983.

[47] D. M. Mount, N. S. Netanyahu, and J. Le Moigne. Efficient algorithms for
robust point pattern matching. Pattern Recogn., 32:17–38, 1999.

[48] R. Panigrahy. Entropy based nearest neighbor search in high dimensions. In
Proc. 17th Annu. ACM-SIAM Sympos. Discrete Algorithms, pages 1186–1195.
ACM Press, 2006.

[49] S. Peleg, M. Werman, and H. Rom. A unified approach to the change of
resolution: Space and gray-level. IEEE Trans. Pattern Anal. Mach. Intell.,
11:739–742, 1989.

[50] J. Rosenblatt and P. Seymour. The structure of homometric sets. SIAM J.
Alg. Disc. Methods, 3(3):343–350, 1982.

[51] B. Rosser. Explicit bounds for some functions of prime numbers. Amer. J.
Mathematics, 63(1):211–232, January 1941.

[52] Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a
metric for image retrieval. Int’l Journal of Computer Vision, 40:99–121, 2000.

[53] W. J. Rucklidge. Locating objects using the Hausdorff distance. In Proc. 5th
Int’l Conf. on Computer Vision, pages 457–464. IEEE, 1995.

[54] W. J. Rucklidge. Efficient visual recognition using the Hausdorff distance. Num-
ber 1173 in Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1996.

[55] S. Shirdhonkar and D. W. Jacobs. Approximate earth mover’s distance in linear
time. In IEEE Conference on Computer Vision and Pattern Recognition, 2008.

148

[56] S. S. Skiena, W. D. Smith, and P. Lemke. Reconstructing sets from interpoint
distances (extended abstract). In Proc. 6th Annu. ACM Sympos. Comput.
Geom., pages 332–339. ACM Press, 1990.

[57] J. Sprinzak and M. Werman. Affine point matching. Pattern Recogn. Lett.,
15(4):337–339, 1994.

[58] J. Ton and A. K. Jain. Registering landsat images by point matching. IEEE
Trans. Geoscience and Remote Sensing, 27:642–651, 1989.

[59] K. R. Varadarajan and P. K. Agarwal. Approximation algorithms for bipartite
and non-bipartite matching in the plane. In Proc. of the 10th ACM-SIAM
symposium on Discrete algorithms, pages 805–814, 1999.

[60] Z. Wang, W. Dong, W. Josephson, Q. Lv, M. Charikar, and K. Li. Sizing
sketches: a rank-based analysis for similarity search. In SIGMETRICS Per-
form. Eval. Rev., volume 35, pages 157–168, 2007.

[61] H. J. Wolfson and I. Rigoutsos. Geometric hashing: An overview. IEEE Com-
putational Science and and Engineering, 4:10–21, 1997.

[62] W. Xiong, S. H. Ong, W. Lee, and K. Foong. Local radon transform and earth
mover’s distances for content-based image retrieval. In MMM’08: Proceedings
of the 14th international conference on Advances in multimedia modeling, pages
436–445, 2008.

149

