75,280 research outputs found

    Dynamic task allocation for a man-machine symbiotic system

    Get PDF
    This report presents a methodological approach to the dynamic allocation of tasks in a man-machine symbiotic system in the context of dexterous manipulation and teleoperation. This report addresses a symbiotic system containing two symbiotic partners which work toward controlling a single manipulator arm for the execution of a series of sequential manipulation tasks. It is proposed that an automated task allocator use knowledge about the constraints/criteria of the problem, the available resources, the tasks to be performed, and the environment to dynamically allocate task recommendations for the man and the machine. The presentation of the methodology includes discussions concerning the interaction of the knowledge areas, the flow of control, the necessary communication links, and the replanning of the task allocation. Examples of task allocation are presented to illustrate the results of this methodolgy

    A human performance modelling approach to intelligent decision support systems

    Get PDF
    Manned space operations require that the many automated subsystems of a space platform be controllable by a limited number of personnel. To minimize the interaction required of these operators, artificial intelligence techniques may be applied to embed a human performance model within the automated, or semi-automated, systems, thereby allowing the derivation of operator intent. A similar application has previously been proposed in the domain of fighter piloting, where the demand for pilot intent derivation is primarily a function of limited time and high workload rather than limited operators. The derivation and propagation of pilot intent is presented as it might be applied to some programs

    The case for the development of novel human skills capture methodologies

    Get PDF
    As the capabilities of industrial automation are growing, so is the ability to supplement or replace the more tacit, cognitive skills of manual operators. Whilst models have been published within the human factors literature regarding automation implementation, they neglect to discuss the initial capture of the task and automation experts currently lack a formal tool to assess feasibility. The definition of what is meant by "human skill" is discussed and three crucial theoretical underpinnings are proposed for a novel, automation-specific skill capture methodology: emphasis upon procedural rules, emphasis upon action-facilitating factors and taxonomy of skill

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud

    Full text link
    With the advent of cloud computing, organizations are nowadays able to react rapidly to changing demands for computational resources. Not only individual applications can be hosted on virtual cloud infrastructures, but also complete business processes. This allows the realization of so-called elastic processes, i.e., processes which are carried out using elastic cloud resources. Despite the manifold benefits of elastic processes, there is still a lack of solutions supporting them. In this paper, we identify the state of the art of elastic Business Process Management with a focus on infrastructural challenges. We conceptualize an architecture for an elastic Business Process Management System and discuss existing work on scheduling, resource allocation, monitoring, decentralized coordination, and state management for elastic processes. Furthermore, we present two representative elastic Business Process Management Systems which are intended to counter these challenges. Based on our findings, we identify open issues and outline possible research directions for the realization of elastic processes and elastic Business Process Management.Comment: Please cite as: S. Schulte, C. Janiesch, S. Venugopal, I. Weber, and P. Hoenisch (2015). Elastic Business Process Management: State of the Art and Open Challenges for BPM in the Cloud. Future Generation Computer Systems, Volume NN, Number N, NN-NN., http://dx.doi.org/10.1016/j.future.2014.09.00

    Market-Based Task Allocation Mechanisms for Limited Capacity Suppliers

    No full text
    This paper reports on the design and comparison of two economically-inspired mechanisms for task allocation in environments where sellers have finite production capacities and a cost structure composed of a fixed overhead cost and a constant marginal cost. Such mechanisms are required when a system consists of multiple self-interested stakeholders that each possess private information that is relevant to solving a system-wide problem. Against this background, we first develop a computationally tractable centralised mechanism that finds the set of producers that have the lowest total cost in providing a certain demand (i.e. it is efficient). We achieve this by extending the standard Vickrey-Clarke-Groves mechanism to allow for multi-attribute bids and by introducing a novel penalty scheme such that producers are incentivised to truthfully report their capacities and their costs. Furthermore our extended mechanism is able to handle sellers' uncertainty about their production capacity and ensures that individual agents find it profitable to participate in the mechanism. However, since this first mechanism is centralised, we also develop a complementary decentralised mechanism based around the continuous double auction. Again because of the characteristics of our domain, we need to extend the standard form of this protocol by introducing a novel clearing rule based around an order book. With this modified protocol, we empirically demonstrate (with simple trading strategies) that the mechanism achieves high efficiency. In particular, despite this simplicity, the traders can still derive a profit from the market which makes our mechanism attractive since these results are a likely lower bound on their expected returns

    A framework for smart production-logistics systems based on CPS and industrial IoT

    Get PDF
    Industrial Internet of Things (IIoT) has received increasing attention from both academia and industry. However, several challenges including excessively long waiting time and a serious waste of energy still exist in the IIoT-based integration between production and logistics in job shops. To address these challenges, a framework depicting the mechanism and methodology of smart production-logistics systems is proposed to implement intelligent modeling of key manufacturing resources and investigate self-organizing configuration mechanisms. A data-driven model based on analytical target cascading is developed to implement the self-organizing configuration. A case study based on a Chinese engine manufacturer is presented to validate the feasibility and evaluate the performance of the proposed framework and the developed method. The results show that the manufacturing time and the energy consumption are reduced and the computing time is reasonable. This paper potentially enables manufacturers to deploy IIoT-based applications and improve the efficiency of production-logistics systems
    corecore