7,140 research outputs found

    Assessment of the State-of-the-Art of System-Wide Safety and Assurance Technologies

    Get PDF
    Since its initiation, the System-wide Safety Assurance Technologies (SSAT) Project has been focused on developing multidisciplinary tools and techniques that are verified and validated to ensure prevention of loss of property and life in NextGen and enable proactive risk management through predictive methods. To this end, four technical challenges have been listed to help realize the goals of SSAT, namely (i) assurance of flight critical systems, (ii) discovery of precursors to safety incidents, (iii) assuring safe human-systems integration, and (iv) prognostic algorithm design for safety assurance. The objective of this report is to provide an extensive survey of SSAT-related research accomplishments by researchers within and outside NASA to get an understanding of what the state-of-the-art is for technologies enabling each of the four technical challenges. We hope that this report will serve as a good resource for anyone interested in gaining an understanding of the SSAT technical challenges, and also be useful in the future for project planning and resource allocation for related research

    Verification and Validation for Flight-Critical Systems (VVFCS)

    Get PDF
    On March 31, 2009 a Request for Information (RFI) was issued by NASA s Aviation Safety Program to gather input on the subject of Verification and Validation (V & V) of Flight-Critical Systems. The responses were provided to NASA on or before April 24, 2009. The RFI asked for comments in three topic areas: Modeling and Validation of New Concepts for Vehicles and Operations; Verification of Complex Integrated and Distributed Systems; and Software Safety Assurance. There were a total of 34 responses to the RFI, representing a cross-section of academic (26%), small & large industry (47%) and government agency (27%)

    Survey of Human Models for Verification of Human-Machine Systems

    Full text link
    We survey the landscape of human operator modeling ranging from the early cognitive models developed in artificial intelligence to more recent formal task models developed for model-checking of human machine interactions. We review human performance modeling and human factors studies in the context of aviation, and models of how the pilot interacts with automation in the cockpit. The purpose of the survey is to assess the applicability of available state-of-the-art models of the human operators for the design, verification and validation of future safety-critical aviation systems that exhibit higher-level of autonomy, but still require human operators in the loop. These systems include the single-pilot aircraft and NextGen air traffic management. We discuss the gaps in existing models and propose future research to address them

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    Get PDF
    The progress made by levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology is described. Emphasis is placed upon the Space Station Freedom Program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) progress report 10, the flight telerobotic servicer, and the Advanced Development Program. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom

    Operations planning and analysis handbook for NASA/MSFC phase B development projects

    Get PDF
    Current operations planning and analysis practices on NASA/MSFC Phase B projects were investigated with the objectives of (1) formalizing these practices into a handbook and (2) suggesting improvements. The study focused on how Science and Engineering (S&E) Operational Personnel support Program Development (PD) Task Teams. The intimate relationship between systems engineering and operations analysis was examined. Methods identified for use by operations analysts during Phase B include functional analysis, interface analysis methods to calculate/allocate such criteria as reliability, Maintainability, and operations and support cost

    Model Based Mission Assurance: NASA's Assurance Future

    Get PDF
    Model Based Systems Engineering (MBSE) is seeing increased application in planning and design of NASAs missions. This suggests the question: what will be the corresponding practice of Model Based Mission Assurance (MBMA)? Contemporaneously, NASAs Office of Safety and Mission Assurance (OSMA) is evaluating a new objectives based approach to standards to ensure that the Safety and Mission Assurance disciplines and programs are addressing the challenges of NASAs changing missions, acquisition and engineering practices, and technology. MBSE is a prominent example of a changing engineering practice. We use NASAs objectives-based strategy for Reliability and Maintainability as a means to examine how MBSE will affect assurance. We surveyed MBSE literature to look specifically for these affects, and find a variety of them discussed (some are anticipated, some are reported from applications to date). Predominantly these apply to the early stages of design, although there are also extrapolations of how MBSE practices will have benefits for testing phases. As the effort to develop MBMA continues, it will need to clearly and unambiguously establish the roles of uncertainty and risk in the system model. This will enable a variety of uncertainty-based analyses to be performed much more rapidly than ever before and has the promise to increase the integration of CRM (Continuous Risk Management) and PRA (Probabilistic Risk Analyses) even more fully into the project development life cycle. Various views and viewpoints will be required for assurance disciplines, and an over-arching viewpoint will then be able to more completely characterize the state of the project/program as well as (possibly) enabling the safety case approach for overall risk awareness and communication

    Distributed, cooperating knowledge-based systems

    Get PDF
    Some current research in the development and application of distributed, cooperating knowledge-based systems technology is addressed. The focus of the current research is the spacecraft ground operations environment. The underlying hypothesis is that, because of the increasing size, complexity, and cost of planned systems, conventional procedural approaches to the architecture of automated systems will give way to a more comprehensive knowledge-based approach. A hallmark of these future systems will be the integration of multiple knowledge-based agents which understand the operational goals of the system and cooperate with each other and the humans in the loop to attain the goals. The current work includes the development of a reference model for knowledge-base management, the development of a formal model of cooperating knowledge-based agents, the use of testbed for prototyping and evaluating various knowledge-based concepts, and beginning work on the establishment of an object-oriented model of an intelligent end-to-end (spacecraft to user) system. An introductory discussion of these activities is presented, the major concepts and principles being investigated are highlighted, and their potential use in other application domains is indicated

    Safety Analysis Methods for Complex Systems in Aviation

    Full text link
    Each new concept of operation and equipment generation in aviation becomes more automated, integrated and interconnected. In the case of Unmanned Aircraft Systems (UAS), this evolution allows drastically decreasing aircraft weight and operational cost, but these benefits are also realized in highly automated manned aircraft and ground Air Traffic Control (ATC) systems. The downside of these advances is overwhelmingly more complex software and hardware, making it harder to identify potential failure paths. Although there are mandatory certification processes based on broadly accepted standards, such as ARP4754 and its family, ESARR 4 and others, these standards do not allow proof or disproof of safety of disruptive technology changes, such as GBAS Precision Approaches, Autonomous UAS, aircraft self-separation and others. In order to leverage the introduction of such concepts, it is necessary to develop solid knowledge on the foundations of safety in complex systems and use this knowledge to elaborate sound demonstrations of either safety or unsafety of new system designs. These demonstrations at early design stages will help reducing costs both on development of new technology as well as reducing the risk of such technology causing accidents when in use. This paper presents some safety analysis methods which are not in the industry standards but which we identify as having benefits for analyzing safety of advanced technological concepts in aviation

    Design, Development, Testing, and Evaluation: Human Factors Engineering

    Get PDF
    While human-system interaction occurs in all phases of system development and operation, this chapter on Human Factors in the DDT&E for Reliable Spacecraft Systems is restricted to the elements that involve "direct contact" with spacecraft systems. Such interactions will encompass all phases of human activity during the design, fabrication, testing, operation, and maintenance phases of the spacecraft lifespan. This section will therefore consider practices that would accommodate and promote effective, safe, reliable, and robust human interaction with spacecraft systems. By restricting this chapter to what the team terms "direct contact" with the spacecraft, "remote" factors not directly involved in the development and operation of the vehicle, such as management and organizational issues, have been purposely excluded. However, the design of vehicle elements that enable and promote ground control activities such as monitoring, feedback, correction and reversal (override) of on-board human and automation process are considered as per NPR8705.2A, Section 3.3
    corecore