38,494 research outputs found

    Reconstructing propagation networks with natural diversity and identifying hidden sources

    Get PDF
    Our ability to uncover complex network structure and dynamics from data is fundamental to understanding and controlling collective dynamics in complex systems. Despite recent progress in this area, reconstructing networks with stochastic dynamical processes from limited time series remains to be an outstanding problem. Here we develop a framework based on compressed sensing to reconstruct complex networks on which stochastic spreading dynamics take place. We apply the methodology to a large number of model and real networks, finding that a full reconstruction of inhomogeneous interactions can be achieved from small amounts of polarized (binary) data, a virtue of compressed sensing. Further, we demonstrate that a hidden source that triggers the spreading process but is externally inaccessible can be ascertained and located with high confidence in the absence of direct routes of propagation from it. Our approach thus establishes a paradigm for tracing and controlling epidemic invasion and information diffusion in complex networked systems.Comment: 20 pages and 5 figures. For Supplementary information, please see http://www.nature.com/ncomms/2014/140711/ncomms5323/full/ncomms5323.html#

    Searching for superspreaders of information in real-world social media

    Full text link
    A number of predictors have been suggested to detect the most influential spreaders of information in online social media across various domains such as Twitter or Facebook. In particular, degree, PageRank, k-core and other centralities have been adopted to rank the spreading capability of users in information dissemination media. So far, validation of the proposed predictors has been done by simulating the spreading dynamics rather than following real information flow in social networks. Consequently, only model-dependent contradictory results have been achieved so far for the best predictor. Here, we address this issue directly. We search for influential spreaders by following the real spreading dynamics in a wide range of networks. We find that the widely-used degree and PageRank fail in ranking users' influence. We find that the best spreaders are consistently located in the k-core across dissimilar social platforms such as Twitter, Facebook, Livejournal and scientific publishing in the American Physical Society. Furthermore, when the complete global network structure is unavailable, we find that the sum of the nearest neighbors' degree is a reliable local proxy for user's influence. Our analysis provides practical instructions for optimal design of strategies for "viral" information dissemination in relevant applications.Comment: 12 pages, 7 figure

    Optimal localization of diffusion sources in complex networks

    Get PDF
    abstract: Locating sources of diffusion and spreading from minimum data is a significant problem in network science with great applied values to the society. However, a general theoretical framework dealing with optimal source localization is lacking. Combining the controllability theory for complex networks and compressive sensing, we develop a framework with high efficiency and robustness for optimal source localization in arbitrary weighted networks with arbitrary distribution of sources. We offer a minimum output analysis to quantify the source locatability through a minimal number of messenger nodes that produce sufficient measurement for fully locating the sources. When the minimum messenger nodes are discerned, the problem of optimal source localization becomes one of sparse signal reconstruction, which can be solved using compressive sensing. Application of our framework to model and empirical networks demonstrates that sources in homogeneous and denser networks are more readily to be located. A surprising finding is that, for a connected undirected network with random link weights and weak noise, a single messenger node is sufficient for locating any number of sources. The framework deepens our understanding of the network source localization problem and offers efficient tools with broad applications.The final version of this article, as published in Royal Society Open Science, can be viewed online at: http://rsos.royalsocietypublishing.org/content/4/4/17009

    Uncovering the overlapping community structure of complex networks in nature and society

    Full text link
    Many complex systems in nature and society can be described in terms of networks capturing the intricate web of connections among the units they are made of. A key question is how to interpret the global organization of such networks as the coexistence of their structural subunits (communities) associated with more highly interconnected parts. Identifying these a priori unknown building blocks (such as functionally related proteins, industrial sectors and groups of people) is crucial to the understanding of the structural and functional properties of networks. The existing deterministic methods used for large networks find separated communities, whereas most of the actual networks are made of highly overlapping cohesive groups of nodes. Here we introduce an approach to analysing the main statistical features of the interwoven sets of overlapping communities that makes a step towards uncovering the modular structure of complex systems. After defining a set of new characteristic quantities for the statistics of communities, we apply an efficient technique for exploring overlapping communities on a large scale. We find that overlaps are significant, and the distributions we introduce reveal universal features of networks. Our studies of collaboration, word-association and protein interaction graphs show that the web of communities has non-trivial correlations and specific scaling properties.Comment: The free academic research software, CFinder, used for the publication is available at the website of the publication: http://angel.elte.hu/clusterin

    Global-Scale Resource Survey and Performance Monitoring of Public OGC Web Map Services

    Full text link
    One of the most widely-implemented service standards provided by the Open Geospatial Consortium (OGC) to the user community is the Web Map Service (WMS). WMS is widely employed globally, but there is limited knowledge of the global distribution, adoption status or the service quality of these online WMS resources. To fill this void, we investigated global WMSs resources and performed distributed performance monitoring of these services. This paper explicates a distributed monitoring framework that was used to monitor 46,296 WMSs continuously for over one year and a crawling method to discover these WMSs. We analyzed server locations, provider types, themes, the spatiotemporal coverage of map layers and the service versions for 41,703 valid WMSs. Furthermore, we appraised the stability and performance of basic operations for 1210 selected WMSs (i.e., GetCapabilities and GetMap). We discuss the major reasons for request errors and performance issues, as well as the relationship between service response times and the spatiotemporal distribution of client monitoring sites. This paper will help service providers, end users and developers of standards to grasp the status of global WMS resources, as well as to understand the adoption status of OGC standards. The conclusions drawn in this paper can benefit geospatial resource discovery, service performance evaluation and guide service performance improvements.Comment: 24 pages; 15 figure

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed
    • 

    corecore