35,921 research outputs found

    Perceptually-Driven Video Coding with the Daala Video Codec

    Full text link
    The Daala project is a royalty-free video codec that attempts to compete with the best patent-encumbered codecs. Part of our strategy is to replace core tools of traditional video codecs with alternative approaches, many of them designed to take perceptual aspects into account, rather than optimizing for simple metrics like PSNR. This paper documents some of our experiences with these tools, which ones worked and which did not. We evaluate which tools are easy to integrate into a more traditional codec design, and show results in the context of the codec being developed by the Alliance for Open Media.Comment: 19 pages, Proceedings of SPIE Workshop on Applications of Digital Image Processing (ADIP), 201

    Wavelet transform - artificial neural network receiver with adaptive equalisation for a diffuse indoor optical wireless OOK link

    Get PDF
    This paper presents an alternative approach for signal detection and equalization using the continuous wavelet transform (CWT) and the artificial neural network (ANN) in diffuse indoor optical wireless links (OWL). The wavelet analysis is used for signal preprocessing (feature extraction) and the ANN for signal detection. Traditional receiver architectures based on matched filter (MF) experience significant performance degradation in the presence of artificial light interference (ALI) and multipath induced intersymbol interference (ISI). The proposed receiver structure reduces the effect of ALI and ISI by selecting a particular scale of CWT that corresponds to the desired signal and classifying the signal into binary 1 and 0 based on an observation vector. By selecting particular scales corresponding to the signal, the effect of ALI is reduced. We show that there is little variation when using 30 and 5 neurons in the first layer, with one layer ANN model showing a consistently worse BER performance than other models, whilst the 15 neuron model show some behaviour anomalies from a BER of approximately 10-3. The simulation results show that the Wavelet-ANN architecture outperforms the traditional MF based receiver even with the filter is matched to the ISI affected pulse shape. The Wavelet-ANN receiver is also capable of providing a bit error rate (BER) performance comparable to the equalized forms of traditional receiver structure

    An efficient Two-Layer wall model for accurate numerical simulations of aeronautical applications

    Get PDF
    Two-Layer wall models have been widely studied since they allow wall modeled Large Eddy Simulationsof general non-equilibrium flows. However, they are plagued by two persistent problems, the "log-layermismatch" and the resolved Reynolds stresses inflow. Several methodologies have been proposed so far todeal with these problems separately. In this work, a time-filtering methodology is used to tackle both issuesat once with a single and low-computational-cost step, easily applicable to complex three-dimensionalgeometries. Additionally, it is shown that the techniques intended to suppress the Reynolds stresses inflowproposed so far, were not sufficient to completely mitigate their detrimental effects.Peer ReviewedPostprint (published version

    Better than a lens -- Increasing the signal-to-noise ratio through pupil splitting

    Full text link
    Lenses are designed to fulfill Fermats principle such that all light interferes constructively in its focus, guaranteeing its maximum concentration. It can be shown that imaging via an unmodified full pupil yields the maximum transfer strength for all spatial frequencies transferable by the system. Seemingly also the signal-to-noise ratio (SNR) is optimal. The achievable SNR at a given photon budget is critical especially if that budget is strictly limited as in the case of fluorescence microscopy. In this work we propose a general method which achieves a better SNR for high spatial frequency information of an optical imaging system, without the need to capture more photons. This is achieved by splitting the pupil of an incoherent imaging system such that two (or more) sub-images are simultaneously acquired and computationally recombined. We compare the theoretical performance of split pupil imaging to the non-split scenario and implement the splitting using a tilted elliptical mirror placed at the back-focal-plane (BFP) of a fluorescence widefield microscope
    • …
    corecore