4 research outputs found

    Hybridized Darts Game with Beluga Whale Optimization Strategy for Efficient Task Scheduling with Optimal Load Balancing in Cloud Computing

    Get PDF
    A cloud computing technology permits clients to use hardware and software technology virtually on a subscription basis. The task scheduling process is planned to effectively minimize implementation time and cost while simultaneously increasing resource utilization, and it is one of the most common problems in cloud computing systems. The Nondeterministic Polynomial (NP)-hard optimization problem occurs due to limitations like an insufficient make-span, excessive resource utilization, low implementation costs, and immediate response for scheduling. The task allocation is NP-hard because of the increase in the amount of combinations and computing resources. In this work, a hybrid heuristic optimization technique with load balancing is implemented for optimal task scheduling to increase the performance of service providers in the cloud infrastructure. Thus, the issues that occur in the scheduling process is greatly reduced. The load balancing problem is effectively solved with the help of the proposed task scheduling scheme. The allocation of tasks to the machines based on the workload is done with the help of the proposed Hybridized Darts Game-Based Beluga Whale Optimization Algorithm (HDG-BWOA). The objective functions like higher Cloud Data Center (CDC) resource consumption, increased task assurance ratio, minimized mean reaction time, and reduced energy utilization are considered while allocating the tasks to the virtual machines. This task scheduling approach ensures flexibility among virtual machines, preventing them from overloading or underloading. Also, using this technique, more tasks is efficiently completed within the deadline. The efficacy of the offered arrangement is ensured with the conventional heuristic-based task scheduling approaches in accordance with various evaluation measures

    An Adaptive Task Scheduling in Fog Computing

    Get PDF
    Internet applications generate massive amount of data. For processing the data, it is transmitted to cloud. Time-sensitive applications require faster access. However, the limitation with the cloud is the connectivity with the end devices. Fog was developed by Cisco to overcome this limitation. Fog has better connectivity with the end devices, with some limitations. Fog works as intermediate layer between the end devices and the cloud. When providing the quality of service to end users, scheduling plays an important role. Scheduling a task based on the end users requirement is a tedious thing. In this paper, we proposed a cloud-fog task scheduling model, which provides quality of service to end devices with proper security

    A Method Based on the Combination of Laxity and Ant Colony System for Cloud-Fog Task Scheduling

    No full text

    Feature extraction and selection algorithm based on self adaptive ant colony system for sky image classification

    Get PDF
    Sky image classification is crucial in meteorology to forecast weather and climatic conditions. The fine-grained cloud detection and recognition (FGCDR) algorithm is use to extract colour, inside texture and neighbour texture features from multiview of superpixels sky images. However, the FGCDR produced a substantial amount of redundant and insignificant features. The ant colony optimisation (ACO) algorithm have been used to select feature subset. However, the ACO suffers from premature convergence which leads to poor feature subset. Therefore, an improved feature extraction and selection for sky image classification (FESSIC) algorithm is proposed. This algorithm consists of (i) Gaussian smoothness standard deviation method that formulates informative features within sky images; (ii) nearest-threshold based technique that converts feature map into a weighted directed graph to represent relationship between features; and (iii) an ant colony system with self-adaptive parameter technique for local pheromone update. The performance of FESSIC was evaluated against ten benchmark image classification algorithms and six classifiers on four ground-based sky image datasets. The Friedman test result is presented for the performance rank of six benchmark feature selection algorithms and FESSIC algorithm. The Man-Whitney U test is then performed to statistically evaluate the significance difference of the second rank and FESSIC algorithms. The experimental results for the proposed algorithm are superior to the benchmark image classification algorithms in terms of similarity value on Kiel, SWIMCAT and MGCD datasets. FESSIC outperforms other algorithms for average classification accuracy for the KSVM, MLP, RF and DT classifiers. The Friedman test has shown that the FESSIC has the first rank for all classifiers. Furthermore, the result of Man-Whitney U test indicates that FESSIC is significantly better than the second rank benchmark algorithm for all classifiers. In conclusion, the FESSIC can be utilised for image classification in various applications such as disaster management, medical diagnosis, industrial inspection, sports management, and content-based image retrieval
    corecore