245 research outputs found

    A method based on hierarchical spatiotemporal features for trojan traffic detection

    Full text link
    Trojans are one of the most threatening network attacks currently. HTTP-based Trojan, in particular, accounts for a considerable proportion of them. Moreover, as the network environment becomes more complex, HTTP-based Trojan is more concealed than others. At present, many intrusion detection systems (IDSs) are increasingly difficult to effectively detect such Trojan traffic due to the inherent shortcomings of the methods used and the backwardness of training data. Classical anomaly detection and traditional machine learning-based (TML-based) anomaly detection are highly dependent on expert knowledge to extract features artificially, which is difficult to implement in HTTP-based Trojan traffic detection. Deep learning-based (DL-based) anomaly detection has been locally applied to IDSs, but it cannot be transplanted to HTTP-based Trojan traffic detection directly. To solve this problem, in this paper, we propose a neural network detection model (HSTF-Model) based on hierarchical spatiotemporal features of traffic. Meanwhile, we combine deep learning algorithms with expert knowledge through feature encoders and statistical characteristics to improve the self-learning ability of the model. Experiments indicate that F1 of HSTF-Model can reach 99.4% in real traffic. In addition, we present a dataset BTHT consisting of HTTP-based benign and Trojan traffic to facilitate related research in the field.Comment: 8 pages, 7 figure

    Spatio Temporal with Scalable Automatic Bisecting-Kmeans for Network Security Analysis in Matagaruda Project

    Get PDF
    Internet attacks are a frequent occurrence and the incidence is always increasing every year, therefore Matagaruda project is built to monitor and analyze internet attacks using IDS (Intrusion Detection System). Unfortunately, the Matagaruda project has lacked in the absence of trend analysis and spatiotemporal analysis. It causes difficulties to get information about the usual seasonal attacks, then which sector is the most attacked and also the country or territory where the internet attack originated. Due to the number of unknown clusters, this paper proposes a new method of automatic bisecting K-means with the average of SSE is 93 percents better than K-means and bisecting K-means. The usage of big spark data is highly scalable for processing massive data attack

    ODTC: An online darknet traffic classification model based on multimodal self-attention chaotic mapping features

    Get PDF
    Darknet traffic classification is significantly important to network management and security. To achieve fast and accurate classification performance, this paper proposes an online classification model based on multimodal self-attention chaotic mapping features. On the one hand, the payload content of the packet is input into the network integrating CNN and BiGRU to extract local space-time features. On the other hand, the flow level abstract features processed by the MLP are introduced. To make up for the lack of the indistinct feature learning, a feature amplification module that uses logistic chaotic mapping to amplify fuzzy features is introduced. In addition, a multi-head attention mechanism is used to excavate the hidden relationships between different features. Besides, to better support new traffic classes, a class incremental learning model is developed with the weighted loss function to achieve continuous learning with reduced network parameters. The experimental results on the public CICDarketSec2020 dataset show that the accuracy of the proposed model is improved in multiple categories; however, the time and memory consumption is reduced by about 50. Compared with the existing state-of-the-art traffic classification models, the proposed model has better classification performance

    Deep Learning Based Malware Classification Using Deep Residual Network

    Get PDF
    The traditional malware detection approaches rely heavily on feature extraction procedure, in this paper we proposed a deep learning-based malware classification model by using a 18-layers deep residual network. Our model uses the raw bytecodes data of malware samples, converting the bytecodes to 3-channel RGB images and then applying the deep learning techniques to classify the malwares. Our experiment results show that the deep residual network model achieved an average accuracy of 86.54% by 5-fold cross validation. Comparing to the traditional methods for malware classification, our deep residual network model greatly simplify the malware detection and classification procedures, it achieved a very good classification accuracy as well. The dataset we used in this paper for training and testing is Malimg dataset, one of the biggest malware datasets released by vision research lab of UCSB

    Proceedings, MSVSCC 2019

    Get PDF
    Old Dominion University Department of Modeling, Simulation & Visualization Engineering (MSVE) and the Virginia Modeling, Analysis and Simulation Center (VMASC) held the 13th annual Modeling, Simulation & Visualization (MSV) Student Capstone Conference on April 18, 2019. The Conference featured student research and student projects that are central to MSV. Also participating in the conference were faculty members who volunteered their time to impart direct support to their students’ research, facilitated the various conference tracks, served as judges for each of the tracks, and provided overall assistance to the conference. Appreciating the purpose of the conference and working in a cohesive, collaborative effort, resulted in a successful symposium for everyone involved. These proceedings feature the works that were presented at the conference. Capstone Conference Chair: Dr. Yuzhong Shen Capstone Conference Student Chair: Daniel Pere

    Edge Learning for 6G-enabled Internet of Things: A Comprehensive Survey of Vulnerabilities, Datasets, and Defenses

    Full text link
    The ongoing deployment of the fifth generation (5G) wireless networks constantly reveals limitations concerning its original concept as a key driver of Internet of Everything (IoE) applications. These 5G challenges are behind worldwide efforts to enable future networks, such as sixth generation (6G) networks, to efficiently support sophisticated applications ranging from autonomous driving capabilities to the Metaverse. Edge learning is a new and powerful approach to training models across distributed clients while protecting the privacy of their data. This approach is expected to be embedded within future network infrastructures, including 6G, to solve challenging problems such as resource management and behavior prediction. This survey article provides a holistic review of the most recent research focused on edge learning vulnerabilities and defenses for 6G-enabled IoT. We summarize the existing surveys on machine learning for 6G IoT security and machine learning-associated threats in three different learning modes: centralized, federated, and distributed. Then, we provide an overview of enabling emerging technologies for 6G IoT intelligence. Moreover, we provide a holistic survey of existing research on attacks against machine learning and classify threat models into eight categories, including backdoor attacks, adversarial examples, combined attacks, poisoning attacks, Sybil attacks, byzantine attacks, inference attacks, and dropping attacks. In addition, we provide a comprehensive and detailed taxonomy and a side-by-side comparison of the state-of-the-art defense methods against edge learning vulnerabilities. Finally, as new attacks and defense technologies are realized, new research and future overall prospects for 6G-enabled IoT are discussed

    A Study on Intrusion Detection System in Wireless Sensor Networks

    Get PDF
    The technology of Wireless Sensor Networks (WSNs) has become most significant in present day. WSNs are extensively used in applications like military, industry, health, smart homes and smart cities. All the applications of WSN require secure communication between the sensor nodes and the base station. Adversary compromises at the sensor nodes to introduce different attacks into WSN. Hence, suitable Intrusion Detection System (IDS) is essential in WSN to defend against the security attack. IDS approaches for WSN are classified based on the mechanism used to detect the attacks. In this paper, we present the taxonomy of security attacks, different IDS mechanisms for detecting attacks and performance metrics used to assess the IDS algorithm for WSNs. Future research directions on IDS in WSN are also discussed

    Image-based malware classification hybrid framework based on space-filling curves

    Get PDF
    There exists a never-ending “arms race” between malware analysts and adversarial malicious code developers as malevolent programs evolve and countermeasures are developed to detect and eradicate them. Malware has become more complex in its intent and capabilities over time, which has prompted the need for constant improvement in detection and defence methods. Of particular concern are the anti-analysis obfuscation techniques, such as packing and encryption, that are employed by malware developers to evade detection and thwart the analysis process. In such cases, malware is generally impervious to basic analysis methods and so analysts must use more invasive techniques to extract signatures for classification, which are inevitably not scalable due to their complexity. In this article, we present a hybrid framework for malware classification designed to overcome the challenges incurred by current approaches. The framework incorporates novel static and dynamic malware analysis methods, where static malware executables and dynamic process memory dumps are converted to images mapped through space-filling curves, from which visual features are extracted for classification. The framework is less invasive than traditional analysis methods in that there is no reverse engineering required, nor does it suffer from the obfuscation limitations of static analysis. On a dataset of 13,599 obfuscated and non-obfuscated malware samples from 23 families, the framework outperformed both static and dynamic standalone methods with precision, recall and accuracy scores of 97.6%, 97.6% and 97.6% respectively
    • …
    corecore