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a b s t r a c t 

There exists a never-ending “arms race” between malware analysts and adversarial malicious code devel- 

opers as malevolent programs evolve and countermeasures are developed to detect and eradicate them. 

Malware has become more complex in its intent and capabilities over time, which has prompted the need 

for constant improvement in detection and defence methods. Of particular concern are the anti-analysis 

obfuscation techniques, such as packing and encryption, that are employed by malware developers to 

evade detection and thwart the analysis process. In such cases, malware is generally impervious to basic 

analysis methods and so analysts must use more invasive techniques to extract signatures for classifica- 

tion, which are inevitably not scalable due to their complexity. In this article, we present a hybrid frame- 

work for malware classification designed to overcome the challenges incurred by current approaches. The 

framework incorporates novel static and dynamic malware analysis methods, where static malware ex- 

ecutables and dynamic process memory dumps are converted to images mapped through space-filling 

curves, from which visual features are extracted for classification. The framework is less invasive than 

traditional analysis methods in that there is no reverse engineering required, nor does it suffer from the 

obfuscation limitations of static analysis. On a dataset of 13,599 obfuscated and non-obfuscated malware 

samples from 23 families, the framework outperformed both static and dynamic standalone methods 

with precision, recall and accuracy scores of 97.6%, 97.6% and 97.6% respectively. 

© 2022 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Incidents of malware attacks are continually rising, with anti- 

virus (AV) vendors, such as Kaspersky, reporting an average of 

360,0 0 0 malware samples received daily ( Kaspersky, 2020 ). Mal- 

ware’s relentless growth can be attributed to the financial rewards 

that can be gained from malware exploits such as crypto-currency 

coin miners, banker Trojans and ransomware. According to AV- 

Test (2020) , approximately 87% of malware processed in 2020 were 

not original programs, but rather variants of existing families. This 

presents a major problem to AV companies in terms of the pro- 

cessing overheads required to analyse every sample. Automated 

tools can help alleviate the burden, but generally are configured for 

detection rather than classification. Analysis is further hampered 

by malware obfuscation. Obfuscation has legitimate uses in com- 

puting to secure applications from copying or to protect intellec- 

tual property, but is also widely adopted by malware developers 
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to evade detection from AV scanners and slow down the analysis 

process. For the most part, static analysis is not robust against ob- 

fuscation, due to the upheaval of the binary structure of the mal- 

ware program caused by these obfuscation methods. Dynamic ap- 

proaches overcome the obfuscation limitations of static analysis, 

since the programs must be de-obfuscated and written to main 

memory prior to execution. However, dynamic analysis can pro- 

duce a considerable number of false positives, due to similarities in 

behaviour to benign programs or other families of malware. Hybrid 

methods, where elements of both static and dynamic approaches 

are combined, have been presented to overcome these limitations 

( Anderson et al., 2012 ). 

In this article, we present a novel malware classification hy- 

brid framework based on computer vision techniques. Computer 

vision has been previously demonstrated as a viable alternative 

to the more typical methods for malware classification, such as 

static frequency and sequence-based approaches ( Khalilian et al., 

2018; Kolter and Maloof, 2004 ) or dynamic API call analysis 

( Fukushima et al., 2010 ). Image-based approaches to malware 

classification involve the conversion of malware binaries to 2- 

dimensional images, such that characteristic properties or features 

https://doi.org/10.1016/j.cose.2022.102660 

0167-4048/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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of the original file are retained ( Vasan et al., 2020; Wagner et al., 

2015; Yajamanam. et al., 2018 ). Computer vision techniques are 

then used to extract discriminant features from the images for 

classification. Malware classification through computer vision can 

be considered less invasive than the analysis approaches men- 

tioned previously, as no reverse-engineering or domain-specific 

knowledge is required, so it is less complex and thus can improve 

scalability for the processing of large malware datasets. 

Our framework combines static and dynamic features gath- 

ered from malware samples converted to 2-dimensional images, 

mapped through space-filling curve (SFC) traversals. In mathe- 

matical analysis, SFCs are curves whose ranges contain the en- 

tire 2-dimensional unit square or more generally, an n-dimensional 

unit hypercube. However, for the purposes of this research, only 

the 2-dimensional space is considered, since the outputs are 2- 

dimensional images. In this case, the 2-dimensional unit square 

represents an image of n × n pixels. SFCs pass through every pixel 

point of a regular spatial region, such that the spatial locality of 

the data is preserved, i.e., closely located points in the binary file 

space will also be closely located when mapped to an SFC image. 

This is of significant importance, as the data structures within the 

original malware binaries can be retained in the resulting SFC im- 

ages and thus used to represent the malware for classification pur- 

poses. Our hybrid method processes non-obfuscated samples stati- 

cally and obfuscated samples dynamically. Non-obfuscated samples 

do not require behavioural dynamic analysis because sufficient fea- 

tures can be captured from the static binary. Dynamic analysis can 

be considered more invasive since malware samples must be ex- 

ecuted in a controlled environment to capture their behavioural 

data and then written to physical memory on the host. Addition- 

ally, the time complexity for a fully dynamic analysis approach 

would make it infeasible for large scale datasets. Adopting this hy- 

brid approach enabled us to optimise the analysis process. Our hy- 

brid framework is discussed in detail in Section 4 . The main con- 

tributions of this research are: 

• Novel image-based malware classification framework that com- 

bines the strengths of static and dynamic analyses to overcome 

the challenges of obfuscated programs; 

• A novel representation of malware behavioural data derived 

from process memory dumps mapped to SFC image format; 

• A study of several feature descriptor and classification ap- 

proaches for image-based malware classification; 

• Three open source malware image datasets in SFC format, made 

available for further research ( ÓShaughnessy, 2019 ). 

2. Related work 

In this section, we review related visualisation-based tech- 

niques applied to malware analysis. Our focus is on binary-based 

approaches where malware binary programs are converted into 

image format and from there, discriminant features are extracted 

for classification. Such approaches do not require any preliminary 

pre-processing of the malware binaries to extract characteristic 

features. 

2.1. Visualisation of binary files 

The first study on the visualisation of binary files as images 

was introduced in the work of Conti et al. (2008) , which presented 

a method of reverse engineering binary files into visual images, 

dubbed byteplots , to enhance the capabilities of text-based hex edi- 

tors. Conti et al. used the byteplot method to create a visual taxon- 

omy of binary file fragments to aid in the identification of common 

file formats. In ( Conti et al., 2010 ), the authors extended their pre- 

vious work using a K-nearest neighbours classifier to classify file 

types by their visual features, trained on a dataset of 14k samples 

comprising 14 file types, including random data, encryption, com- 

pression, machine code, text and bitmap images. The best results 

reported were from un-encoded and base64 encoded files, with 

100% accuracy, with plain text files scoring 98.7%. While the initial 

work presented by Conti et al. was not in the malware domain, it 

demonstrated that the internal static structure of binary files could 

be represented as 2-dimensional images, which paved the way for 

further research efforts and tools that utilised byteplots for mal- 

ware classification. 

2.2. Byteplot malware visualisation 

Nataraj et al. (2011a) first applied byteplots to represent mal- 

ware binaries for classification. Their method visualized static mal- 

ware samples as gray-scale images, with the observation that for 

many malware families, the images belonging to the same fam- 

ily appear very similar in layout and textures. Malware feature 

vectors were derived using GIST, a global feature descriptor first 

presented by Oliva and Torralba (2001) , that breaks images into 

sub-band blocks and computes features based on filters tuned to 

varying scales and orientations. The authors compiled a dataset, 

dubbed Malimg, comprising 9548 samples from 25 malware fam- 

ilies. Using a K-nearest neighbours (KNN) classifier, Nataraj et al. 

reported a classification accuracy of 98%. Nataraj et al. (2011b) fol- 

lowed on from their original research, presenting a comparison of 

the byteplot method with dynamic analysis. They used a combi- 

nation of API hooking and pre-infection and post-infection system 

snapshots to build dynamic feature vectors. Results showed that 

overall, image classification was comparable in terms of classifi- 

cation accuracy with dynamic analysis methods but outperformed 

the latter in terms of reduced time complexity and robustness 

against obfuscated malware samples. While Nataraj et al. report 

the byteplot method as resilient to obfuscation, their solution to 

identifying packed malware was to treat it as a separate class. This 

approach does not solve the packed malware problem as it is iden- 

tifying the packed and unpacked samples from the same families 

as two different species. Furthermore, the authors do not consider 

the effect of encrypted malware samples on their GIST-based clas- 

sification method. 

A number of subsequent research efforts applied the byteplot 

format to malware classification. Luo and Lo (2017) extracted vi- 

sual features for classification using Tensorflow and Local Binary 

Patterns (LBP) feature descriptors on the Malimg dataset. Re- 

sults showed that LBP and Tenserflow convolutional neural net- 

work produced a classification accuracy of 93.17% as opposed 

to 82.83% using the method proposed by Nataraj et al. (2011a) . 

Yajamanam et al. (2018) evaluated the GIST-based byteplot 

method using a subset of features of the original method. Fur- 

ther testing was carried out using deep learning with Ten- 

sorflow. Results were comparable with the original research of 

Nataraj et al. (2011a) , while using a smaller feature set of 60 

features. Le et al. (2018) used convolutional neural networks on 

binary files from the Microsoft Malware Classification Challenge 

dataset ( Ronen et al., 2018 ) converted to byteplot images. Results 

on the data reported 98.8% accuracy on validation data with a fast 

processing time-frame of approximately 20ms per sample. 

Fu et al. (2018) extracted features from both gray-scale and 

colour byteplots using local gray-level co-occurrence matrices and 

global colour moments, which were then passed to Random Forest, 

K-Nearest Neighbour and Support Vector Machine classifiers. The 

experiments were carried out on a dataset comprised of 7087 mal- 

ware samples from 15 distinct malware families showed the com- 

bined feature sets performed better than either local or global fea- 

tures alone, scoring 97% precision, recall, accuracy and f-measure 

with the Random Forest classifier. 
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2.3. Space-filling curve malware visualisation 

In contrast to the byteplot-related works discussed here, lim- 

ited research has been presented on malware classification using 

space-filling curves. Baptista (2018) presented a method of classi- 

fying malware by type using Hilbert curves and a Self-Organizing 

Incremental Neural Network. Experiments were conducted on 180 

samples, 78 of which were benign. The malware was classified 

into four classes: Trojan, ransomware, other and unknown. Al- 

though the author reported classification accuracies of 89%, the 

small sample set of 180 samples is insufficient to provide a clear 

indication of the merits of applying the Hilbert curve to mal- 

ware classification. Smaller datasets tend to produce overfitting, 

which means the model will not generalise well to unseen sam- 

ples. Vu et al. (2019) presented a malware detection scheme which 

consisted of a hybrid of malware statistical and syntactic fea- 

tures translated to an image format using several layout functions, 

including space-filling curves. The scheme, dubbed hybrid image 

transformation (HIT) was tested on a dataset of 16,0 0 0 benign and 

malicious samples. HIT was evaluated using four different layout 

functions, including two SFC implementations, namely Hilbert and 

Hcurve. The authors report the best results of 93% accuracy using 

their hybrid method and Hilbert SFC layout function. The scheme 

presented in this article considers only two classes, benign or mali- 

cious, so does not classify malware into family groups. In terms of 

classification, accuracy was the only performance metric used to 

gauge classification performance. Accuracy alone may not be suf- 

ficient to measure performance; other metrics such as precision, 

recall and F1-score could have been employed to give a better in- 

dication of the scheme’s success. Furthermore no testing was per- 

formed using a holdout dataset to evaluate how well the model’s 

generalised to unseen data. 

2.4. Summary 

A review of the related research discussed in this section iden- 

tifies several limitations. First, previous work focused predomi- 

nantly on the byteplot image format to represent the malware 

data. This format is essentially a static view of the malware bi- 

nary, which is not robust against obfuscation techniques such 

as encryption or packing. Next, the Malimg dataset collected by 

Nataraj et al. (2011a) , was the test dataset chosen by the majority 

of researchers to represent malware in image format. This dataset 

was compiled in 2011 and so could not be considered represen- 

tative of the current malware threat landscape. Other research ef- 

forts utilized the Microsoft Challenge dataset. The file headers have 

been removed from the malware samples in this dataset for steril- 

ity. The incomplete nature of the malware samples in this dataset 

means that it is not possible to extract a full feature set for classi- 

fication. 

The work presented in this article follows on from previous re- 

search in ( O’Shaughnessy, 2019 ), where the efficacy of space-filling 

curves was evaluated as a means of representing malware vari- 

ants for classification. Three SFC image datasets were produced by 

mapping 9235 32-bit executable malware samples from 28 dis- 

tinct families to images using Z-order, Hilbert and Gray-code curve 

traversals. Local Binary Patterns (LBP), Histogram of Oriented Gra- 

dients (HOG) and Gabor filters were chosen as feature extraction 

descriptors, based on their suitability for texture analysis. The fea- 

tures were used to train Random Forest, K-Nearest Neighbour and 

Support Vector Machine classifiers. The best results were obtained 

from the KNN-HOG model trained on the Z-order dataset, with 

precision, recall and accuracy metric scores of 94.5%, 87.1% and 

91.6% respectively. A comparative assessment with the method pre- 

sented by Nataraj et al., showed the KNN-HOG Z-order SFC model 

outperformed the GIST byteplot method against previously unseen 

Fig. 1. Space-filling curve traversals. (a) Z-order, (b) Gray-code and (c) Hilbert. 

samples. This research demonstrated the suitability of SFCs for 

representing malware binaries in image format. However, as im- 

ages were generated from static malware executable binaries, the 

method did not perform optimally against obfuscated samples. 

The framework presented in this article overcomes the limita- 

tions of the previous research discussed, in the following ways: 

• A malware dataset which is representative of current malware 

variants. 

• A hybrid approach to feature selection and extraction, combin- 

ing the strengths of static and dynamic analysis, with less over- 

heads and limitations than previous methods discussed. 

• Space-filling curves used to represent the malware for classifi- 

cation. SFCs have previously demonstrated better classification 

performance compared to the predominant byteplot method. 

3. Space-filling curves 

Space filling curves are mathematical constructs, also known as 

continuous fractal curves, the limits of which contain the entire 

2-dimensional unit square. Peano (1890) introduced the first SFC, 

followed by an improved variant by Hilbert (1891) . Other varia- 

tions include Moore ( Moore, 1900 ), Z-order ( Morton, 1966 ) and 

Gray-code ( Gray, 1953 ) curves. The Hilbert, Z-order and Gray-code 

curves were considered for the purposes of this article. The basic 

traversal paths of these curves are shown in Fig. 1 . 

3.1. Suitability of space-filling curves for binary data representation 

The locality preservation properties of SFC’s mean they can 

be utilised in many areas of computing, such as partitioning or 

reordering data and computations ( Moon et al., 2001 ). Practical 

applications of SFC implementations can be found in technolo- 

gies such as database indexing ( Huang, 2013 ), parallel computing 

Nivarti et al. and image retrieval ( Nguyen et al., 2012 ). Google’s S2 

Geometry library uses the Hilbert curve for Geo-spatial indexing 

in the Google Maps application ( S2-Geometry, 2017 ). In the con- 

text of this research, the aim is to capture all relevant characteristic 

features of malware binaries in an image format so that discrim- 

inant features may be extracted for classification purposes. At the 

core of these techniques is a layout function that inputs a set of 

values and outputs a partition of space on the resulting mapped 

image, such that regions represent disjoint data that do not in- 

tersect. Previously, tree-maps, have been presented as a solution 

to the graphical display of data ( Johnson and Shneiderman, 1991 ). 

However, for high dimensional, dense layout tree maps, aspect 

(width-to-height) ratios tend to be extremely high and thus ele- 

ments in the mapped image are difficult to correlate and interpret. 

Wattenberg (2005) defined the notion of a “perfect” layout func- 

tion, i.e., a layout method for a space-filling visualization that sat- 

isfies the following four desirable criteria: 

• Stability : a small change in inputs should produce a subsequent 

small change in outputs; 

3 
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Fig. 2. Mapping data through SFC curve. Points a and b represent data points mapped to the resulting 2-dimensional SFC image. 

• Split neutrality : any structural changes do not affect the struc- 

ture of other regions on the image map; 

• Order adjacency : each similar item should be located adjacent 

to each other; 

• Locality : layout regions should be relatively compact. If layout 

regions are represented loosely, e.g. long and narrow, then the 

visualisation of regions will not be as clear. 

Wattenberg derived a proof that any perfect layout function is 

actually an instance of a jigsaw map, so-called due to its resem- 

blance of a jigsaw puzzle, thus providing a complete characteriza- 

tion of perfect layouts in terms of screen-filling curves. In partic- 

ular, SFCs possess these four essential properties, therefore are a 

practical solution to representing data in a 2-dimensional format. 

3.2. Mapping binary files using space-filling curves 

A SFC traces a continuous curve through every unit square, i.e. 

pixel, in the image. To envision this for the purpose of file map- 

ping, the binary code of a malware file can be thought of as a 

flattened out 1-dimensional line because the code is parsed se- 

quentially, byte-by-byte. The SFC maps each point (bytes) from the 

1-dimensional space to the 2-dimensional space (SFC image map) 

such that closely located points in the binary file space will tend 

to also be closely located when mapped to the SFC. 

Fig. 2 depicts the mapping of a 1-dimensional set of points to a 

2-dimensional curve representation, in this case the Hilbert curve, 

in first and second order iterations. It shows that closely located 

data points (a and b in the example) map to similar positions on 

the SFC map. For the purposes of this research, we used scurve , 
a library written in Python, to convert the malware binaries into 

SFC image format ( Cortesi, 2012 ). 

The scurve library uses a colour-coding scheme, based on data 

type, that maps the malware binary data to the resulting SFC im- 

ages. The colour scheme classifies bytes (0–255 range) into the fol- 

lowing categories: black for 0 × 00 (0), blue for ASCII text (1–126), 

red for high-value bytes (127–254), and white for 0 ×ff (255). 

Fig. 3 shows an example of an SFC image in Z-order generated 

from the Chir family, which is a type of email worm file infec- 

tor. The image was generated using the static PE executable file 

and processed with the scurve library. If the data type from the 

malware binary is distinct, it is displayed as non-overlapping sec- 

tions of a single colour. Fig. 3 ( d) displays a large region of black, 

Fig. 3. SFC image mapped from a sample of the Chir worm. a denotes a mixture of 

data types; b is a region of high value bytes (127–255 range); c is a region of ASCII 

printable characters; d is a region of null bytes (binary zeros). 

indicating large sections of the file contain zeros or null padding, 

which is sometimes used as a simple obfuscation method by mal- 

ware developers. There is also a large region of printable charac- 

ters, shown in blue Fig. 3 ( c), with some small sections of high- 

value bytes, denoted by the red regions Fig. 3 ( b). The rest of the file 

comprises a mixture of multiple data types, which give the result- 

ing image distinct texture regions Fig. 3 ( a ). Distinct features that 

are common to related species of malware can be extracted from 

the textures produced in the SFC images for classification. 

4. Hybrid framework 

This article introduces a novel framework for the classification 

of malware variants into their respective family classes through 

computer vision and machine learning. The framework comprises 

static and dynamic analysis components, i.e. features extracted 

from malware binaries in both static or non-running and dynamic 

or running states. A process workflow of the framework is shown 

in Fig. 4 . This section describes the framework, which comprises 

three main stages: malware conversion, feature extraction and 

classification. Malware sample data gathering and pre-processing 

are first discussed. 

4 
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Fig. 4. Process workflow of the proposed SFC hybrid framework. 

4.1. Data gathering and pre-processing 

A dataset comprising 13,599 32-bit executable portable exe- 

cutable (PE) samples, from 23 distinct malware families was com- 

piled from the VirusTotal Academic share repository. Three image 

datasets were derived from the samples through the Hilbert, Gray- 

code and Z-order curve traversals using the scurve library. Table 1 

shows the structure of the dataset, including the family and count 

for each class. Out of the 23 family classes, 5 were considered 

obfuscated. The dataset contains a more up-to-date set of sam- 

ples than the Malimg and Kaggle datasets, with some of the most 

prevalent and current malware species in circulation today. To test 

the predictive capabilities of the classification models on unseen 

malware, an evaluation set of 1350 samples or approximately 10% 

of the data was held out from the original dataset. Samples were 

chosen using stratified random sampling, which gives a subset 

structure that is representative of the entire dataset. Following the 

removal of the data for the evaluation set, the training dataset con- 

sisted of 12,249 samples. It should be noted that benign files were 

not included in the dataset, as the aim of this research was to clas- 

sify variants into their correct family classes, rather than detect be- 

tween malicious and benign samples. 

Prior to conversion of the malware binaries to SFC image for- 

mat, the Shannon entropy for each sample was first calculated 

to determine the level of obfuscation, if any. Shannon entropy 

Table 1 

Malware dataset comprising samples collected from the VirusTotal 

academic share repositories. 

Family Obfuscation Count 

InstallMonster No 575 

Agen Yes 676 

Autoit No 966 

Allaple No 339 

Bitman No 1090 

Vilsel No 752 

Berbew No 1692 

Emotet Yes 492 

Hematite No 562 

Dinwod No 893 

Trojan.Agent.BDMJ No 97 

Picsys No 534 

Shifu No 476 

Viking No 264 

Locky No 648 

Cryptowall Yes 282 

Scar Yes 304 

Dridex No 523 

Salgorea No 607 

Socks No 495 

Sytro No 1140 

Dorkbot No 92 

Chir Yes 306 

Total 13,599 

5 
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( Shannon, 1948 ) measures the degree of randomness for a given 

set of data, ranging from 0 for orderly or non-random data, to 

8 for very random data. For binary files, Shannon entropy can 

be used as an indicator for malware obfuscation since techniques 

such as encryption or packing distort binary data and therefore 

produce a high entropy score. Previous work by Lyda and Ham- 

rock (2007) demonstrated that obfuscation techniques such as en- 

cryption and packing increase the entropy value of the original bi- 

nary file. Using a dataset of 21,576 portable executable malware 

files, the authors produced a table of entropy ranges to identify the 

obfuscation type. The average entropy for packed malware binaries 

was found to be 6.8, whereas the average entropy for encrypted bi- 

naries was 7.1. The average entropy for a native executable file was 

found to be 5.1. For the purposes of this research, we considered 

the value μ as the Shannon entropy threshold of 6.8, to determine 

if samples were obfuscated. 

4.2. Virtual machine introspection 

As stated previously, we optimised the framework by only ex- 

tracting dynamic or behavioural data from the samples consid- 

ered to be obfuscated, above the threshold μ. Dynamic analysis 

can be considered more invasive than static methods since the 

samples must be executed in a controlled environment to cap- 

ture their behavioural data, which is then written to the physi- 

cal host. Consequently, the time complexity to execute every sam- 

ple in this manner would make it infeasible for large datasets. 

Furthermore, to implement this method on non-obfuscated mal- 

ware samples would not yield any greater results, as demon- 

strated by O’Shaughnessy (2019) , where classification performance 

for low entropy malware executables in SFC format was found to 

be high. For dynamic analysis, we implemented Virtual Machine 

Introspection (VMI), a process introduced by Garfinkel and Rosen- 

blum (2003) that refers to the inspection or monitoring of oper- 

ating systems residing inside a virtual machine from the hyper- 

visor level. In this case, malware is passed to a virtual machine, 

is executed and a process memory dump is extracted using the 

Microsoft utility Procdump ( Russinovich and Richards, 2020 ). The 

dump file is then written back to disk on the host machine. To 

optimise the analysis process, mini process dumps containing pro- 

cess thread and handle information, were extracted from each mal- 

ware in execution. While full process dumps contain the full mal- 

ware process data, it was found they ranged on average from 50 

to 70 MB for each dump, which would not scale well for large 

datasets and so were not considered for the purposes of this re- 

search. 

4.2.1. Process dump file analysis 

In this section we analyse the contents of sample process dump 

files in order to demonstrate the advantage of using dynamic data 

over static analysis for obfuscated malware. Static methods are 

limited to the analysis of structure and code of the malware binary. 

However, obfuscation methods such as packing, encryption and en- 

coding alter the binary structure of the code to the extent that 

common salient features cannot be obtained for the purposes of 

classification. By executing malware in a controlled virtual environ- 

ment, the binary must be de-obfuscated and written to memory. 

Thus, we can extract behavioural features characteristic of same- 

family classes. As stated previously, we use the small or mini dump 

format for processing efficiency. Mini dumps contain the following 

data: 

• The Stop message and its parameters and other data 

• A list of loaded drivers 

• The processor context (PRCB) for the processor that stopped 

• The process information and kernel context (EPROCESS) for the 

process that stopped 

• The process information and kernel context (ETHREAD) for the 

thread that stopped 

• The Kernel-mode call stack for the thread that stopped 

To illustrate the suitability of process dumps for representing 

malware behavioural features, we focus here on examining the call 

stack traces taken from two variants of the Chir family. The call 

stack is made up of the chain of function calls that have led to 

the current location of the program counter, where the process 

has been terminated by the Procdump tool. Intuitively, malware bi- 

naries that share similar source code will behave the same when 

executed on the target machine, which results in similar execu- 

tion traces in the same sequence. These similarities can be used 

as signatures to group malware variants into their respective fam- 

ily classes. It is infeasible to show a complete stack trace of each 

program, so we confine our comparison to the process injection 

routine of the Chir samples, shown in Fig. 5 . 

Chir malware implements a process injection routine to ob- 

fuscate its presence on the operating system. During this rou- 

tine, the malware injects a copy of itself, via svchost.exe , into 

WerFault.exe , which is a legitimate Windows program for er- 

ror fault reporting. This specific routine is characteristic of the Chir 

variant, so could be considered as part of the signature for identi- 

fication. From Fig. 5 , the function calls and call sequences are iden- 

tical, which indicates the two samples share the same behavioural 

traits for this code injection routine. The behavioural data captured 

from the running process dumps allowed us to overcome the ob- 

fuscation limitations and improve classification performance over 

the static standalone method, as discussed in Section 5 . 

4.3. Malware conversion 

Once the malware samples have been processed, the next stage 

in the framework is to convert the non-obfuscated malware exe- 

cutable samples and the obfuscated sample process dumps to SFC 

format through the scurve library. This section discusses the im- 

plementation of the mapping procedures using the scurve library 

outlined in Section 3 . The Hilbert implementation differs from the 

Z-order and Gray-code methods, which are inherently similar. The 

Hilbert implementation first determines the dimensions of input 

binary. It then iterates through each coordinate point, which is 

mapped to its data colour class. The implementation of the Z-order 

and Gray code curves are similar, in that the scurve library consid- 

ers the bit range for each distinct chunk of binary data as coor- 

dinates. In other words, the start offset is the first coordinate and 

the end offset is the second coordinate. In the case of the Z-order 

code, the bit interleaving process then takes place. For the Gray 

code, the coordinates are XORed from left to right. The resulting 

codes in each case, represent the cell that the binary chunk will 

occupy, which is mapped to a distinct colour, depending on the 

data colour class. 

Fig. 6 (a − c) illustrates an individual sample taken from the Al- 

laple malware family, transformed into SFC images through the 

Hilbert, Gray-code and Z-order traversals. The areas of blue (ASCII 

printable characters) and the smaller areas of red (high value non- 

printable bytes) are evidently similar across the three SFC images. 

However, the positions of the texture patterns differ, due to the 

different traversal patterns of the space-filling curves. 

Examples of SFC images converted from the process dump files 

are shown in Fig. 7 . Each image represents a variant of the Cryp- 

towall ransomware family. The Cryptowall variant uses encrypted 

sections as a means of obfuscation and so static analysis meth- 

ods produce poor results. This necessitated their execution through 

VMI to gather behavioural data for classification. It can be seen 

from the images that the data texture regions are sparse, with 

large regions of black, which equate to binary zeros. An examina- 
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Fig. 5. Process injection call stack traces from two Chir family variants. 

Fig. 6. SFC images of the same Allaple malware sample. (a) Hilbert, (b) Gray-code 

and (c) Z-order curve implementations. 

Fig. 7. SFC images converted from process dumps of Cryptowall ransomware sam- 

ples. 

tion of the memory dumps confirmed that the majority of the files 

comprised of binary zeros. 

4.4. Feature extraction 

Three feature descriptor algorithms were evaluated, namely 

Local Binary Patterns (LBP) ( Ojala et al., 1996 ), Gabor fil- 

ters ( Gabor, 1946 ) and Histogram of Oriented Gradients (HOG) 

( McConnell, 1986 ). While the HOG descriptor is primarily used for 

object detection in images, it has produced favourable results in 

texture analysis ( Demir, 2018; Harb et al., 2017 ). This section pro- 

vides an overview of how each descriptor was applied in the con- 

text of this work. In the case of each descriptor, a dataset of fea- 

ture vectors was generated for every image, along with a dataset 

of corresponding family class labels. 

LBPs compute a local representation of texture by comparing 

and thresholding each pixel with its surrounding neighbourhood 

of pixels. The original LBP operator forms labels for the image pix- 

els by thresholding the 3 × 3 neighbourhood of each pixel with the 

centre value and considering the result as a binary number. The 

histogram of these 2 8 = 256 different labels are used as a texture 

descriptor, which can represent the grayscale range of 0 − 255 . In 

our framework, we used the circular pixel neighbourhood exten- 

sion to the original LBP operator, proposed by Ojala et al. (20 0 0) . 

The extension operator allows a greater number of neighbourhood 

points to be considered in the calculation, and thus can capture 

textures at varying scales of granularity. The main parameters to 

consider in the LBP descriptor are the radius of the circular neigh- 

borhood and the number of data points on the circle’s circum- 

ference. Values at non-integer pixel coordinates are bi-linearly in- 

terpolated which allows any radius and number of pixels in the 

neighbourhood. 

Fig. 8 (a − d) shows a schematic of the LBP feature extraction 

process used in this research. The SFC image in Fig. 8 (a) is first 

converted to grayscale Fig. 8 (b). Next, the LBP operator is applied 

Fig. 8 (c), which returns a histogram of features that is constructed 

from the LBP number values Fig. 8 (d). Next, each histogram is 

added to an array. As each histogram is calculated, it is concate- 

nated to the array. The result is an array of feature histograms, 

which represent the feature vector for the image. 

Gabor filters The Gabor filter is a sinusoidal signal of a given fre- 

quency and orientation. Since a single filter is spatially localised, 

banks of Gabor filters with varying orientations and frequencies 

are applied to the image as the filter must pass in the same di- 

rection as the target texture to return accurate features. In our de- 

scriptor we used a Gabor bank of 0–180 at intervals of 45 to ensure 
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Fig. 8. LBP feature extraction process. 

Fig. 9. Gabor filter feature extraction process. 

we captured sufficient texture features from varying directions. The 

main Gabor filter parameters considered in this work were: 

• k : is the size in pixels of the Gabor kernel. The value of k is 

preferably odd and the kernel is a square for the sake of uni- 

formity. 

• σ : is the standard deviation of the Gaussian function used in 

the Gabor filter. 

• θ : is the orientation of the normal to the parallel stripes of the 

Gabor function. 

• γ : represents the spatial aspect ratio 

Fig. 9 (a-c) depicts the Gabor filter process used in this research. 

The example image is taken from the Emotet banker Trojan family 

in Hilbert format. The SFC image in 9 (a) is input and a series of 

filters are applied in varying orientations and frequencies 9 (b). The 

resulting filters are then convoluted to produce the final feature 

vector for the image 9 (c), which is appended to the feature array. 

Histogram of oriented gradients The Histogram of Oriented Gra- 

dients (HOG) feature descriptor counts occurrences of gradient ori- 

entation in localized portions of an image. Local object appearance 

and shape within an image can be characterized by the distribu- 

tion of intensity gradients or edge directions. Fig. 10 shows the 

HOG feature extraction process used in our framework. The source 

SFC image is divided into blocks and each block is sub-divided 

into cells. The vertical and horizontal gradients are computed for 

each pixel in a cell. The orientation histogram is then created for 

each cell. Bins represent the different angles of orientation. The fi- 

nal feature descriptor consists of a concatenation of the cell his- 

tograms for each block, which is then flattened into a feature vec- 

tor. The parameters considered when tuning the HOG descriptor 

Fig. 10. HOG feature extraction process. 

were orientation, pixels-per-cell and cells-per-block. The orienta- 

tion parameter represents the number of orientation bins in the 

resulting histograms. Pixels-per-cell determine the size, in pixels, 

of each cell. Similarly, cells-per-block determine the size of each 

block. 

It should be noted here that the optimum parameters for each 

descriptor were determined through an extensive tuning process, 

outlined in Section 4.6 

4.5. Classification of SFC hybrid features 

The next stage in the framework is the classification stage. The 

aim of classification in this context is to order the malware sam- 

ples into their taxonomic groups or family classes, based on the 

textural similarities extracted from the SFC images by the LBP, 

Gabor and HOG descriptors. Supervised learning algorithms were 

used exclusively in this research since the class labels, i.e., the 

malware family names, were already known. The trained classi- 

fication models were then tested on the 10% holdout validation 

set, described in previously in Section 4.1 , to gauge how well they 

generalised to previously unseen data. The following classification 

algorithms were evaluated: Random Forest (RF), Support Vector 

Machine (SVM) and K-nearest Neighbours (KNN). These classifiers 

were chosen as previous research by O’Shaughnessy (2019) demon- 

strated favourable performance results when applied to malware 

SFC feature datasets. Efforts were made during the classification 

training phases to reduce the possibility of underfitting and over- 

fitting in the resulting classification models. Overfitting occurs 

when the model fits the data too well, mainly due to it captur- 

ing noise along with the underlying signatures or patterns in the 

data. A model that is trained to fit slightly inaccurate data can in- 

fect it with substantial errors and reduce its predictive power. To 

reduce the risk of underfitting, a suitably large dataset was com- 

piled. Stratified k-fold cross-validation was used to minimize over- 

fitting. Through experiments, the optimal value for k was found to 

be 5. 

4.6. Parameter tuning 

In order to produce optimal classification performance, a com- 

plex parameter tuning process was necessary, which involved col- 

lectively tuning the feature extraction algorithms with the classi- 

fiers. Determining an optimal set of parameters was therefore not 

a trivial task; there is not a ”one-size-fits-all” default set of pa- 

rameters that will optimise performance of the feature descriptors 

and classifiers combined. A search method was implemented to 

determine the optimal combination of hyper-parameters, namely 

GridSearchCV, which is part of the Python Sci-kit Learn library 

( Sklearn, 2020 ). With GridSearchCV, all the possible combinations 

of parameter values are evaluated, and the best combination is re- 

tained. Initially, default parameter ranges were chosen and then 

tested. It was found in some cases, wider parameter ranges were 

required to produce optimal results. For example, prior research in 

SVM classifiers tended to use a small value for the penalty param- 

eter C, between 0 and 1. However, it was found that the models 
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Table 2 

Evaluation of image size on processing time and classification perfor- 

mance. 

Dims. Precision Recall Accuracy Processing time (ms) 

32 86.2 84.1 84.2 0.5 

64 92.8 92.7 92.6 3.8 

128 96.8 96.8 96.7 2.28 

256 97.7 97.7 97.7 8.1 

512 97.9 97.8 97.9 28.3 

produced in this work performed better with higher values of 500- 

10,0 0 0. 

4.7. Performance metrics 

In order to gauge how robust the frameworks classification 

models were, we tested their performance using precision, recall 

accuracy. Precision is the ratio of correctly predicted positive ob- 

servations to the total predicted positive observations. In this case, 

the ratio of correctly predicted samples for a family to the total 

predicted as that family i.e., ’for all the malware labelled as a par- 

ticular family, how many were correct?’ . Recall is the ratio of cor- 

rectly predicted positive observations to the all observations in ac- 

tual class. In this case, it is the ratio of the correctly predicted 

malware to the total number for that family, i.e., ’for each malware 

family, how many that should have been labelled as that family, were 

labelled correctly?’ . Accuracy is the fraction of correct predictions 

that the model predicted correctly. 

5. Experimental analysis and results 

This section presents the experiments devised to investigate the 

efficacy of the hybrid framework for the classification of malware. 

The influence of image size on classification was first asserted to 

produce the optimal dataset for further analysis. The testing of 

the hybrid framework is discussed next, followed by a compara- 

tive analysis with both static and dynamic standalone methods. In 

the case of standalone static analysis, all samples were converted 

directly to SFC image format prior to the feature extraction stage. 

In standalone dynamic analysis, all samples were executed through 

VMI and their process dumps were converted to SFC image format 

prior to feature extraction. 

5.1. Evaluation of image dimension on classification 

The aim of this evaluation was to investigate the influence of 

varying sizes of SFC images on classification performance and time 

complexity. The objective was to choose an image size that was 

feasible in terms of its conversion and processing times, while re- 

turning optimum classification performance. The dimensions of an 

image can influence the number of features produced, which can 

in turn have an affect on classification performance and process- 

ing speed. Our aim was to build a robust framework that was also 

scalable, so time complexity was an additional consideration. The 

evaluation was conducted on images ranging from 32 × 32 pixels 

to 512 × 512 pixels. Processing times for image sizes above 512 be- 

came infeasible for both conversion and classification and so are 

not considered. Table 2 shows the influence of the varying image 

dimensions on classification performance. From the results, it is 

evident that as image dimension size increases, performance im- 

proves, but at a cost of slower processing times. For the purposes 

of our further analysis, we chose the 256 × 256 dataset, since it 

yielded a high classification performance, 97.7% across all three 

metrics, within a reasonably fast processing time, at 8ms per sam- 

ple. The 512 × 512 dataset yielded marginally better classification 

Table 3 

Sample sizes for each dump interval (15 secs to 60 secs). 

Time interval (secs.) 

Family 15 30 45 60 

Agen 676 630 520 433 

Chir 306 201 132 76 

Cryptowall 282 197 99 67 

Emotet 492 365 229 164 

Scar 304 156 102 83 

results, but processing time was 3.5 times slower. Furthermore, the 

conversion process from binary to 512 × 512 image, took approxi- 

mately 5 seconds per sample, which would not be scalable to large 

datasets. 

5.2. Influence of dynamic runtime on classification performance 

The process dump files extracted through VMI represent the 

behaviour of the malware in execution, i.e., its interaction with 

the operating system. Therefore, the time interval in which the 

samples are allowed to execute before the dump is triggered can 

greatly influence the number of behavioural features returned and 

consequently, can affect the overall classification performance. 

To this end, we determined the optimum running times for 

each family by executing the obfuscated samples in the virtual ma- 

chine at intervals ranging from 15 seconds to 60 seconds. Intervals 

beyond 60 seconds could not be considered scalable to large sam- 

ple sets and so were not investigated here. It was observed during 

execution, that many malware samples terminated at different in- 

tervals. Closer examination of the dynamic execution revealed the 

following: 

• The Chir, Cryptowall and Scar families each performed code in- 

jection as part of their execution routine, which meant the orig- 

inal processes executed by the Procdump tool were terminated. 

This resulted in the dump being triggered for the interval up 

until that point and no further behavioural data could be cap- 

tured. 

• In the case of Emotet, it was found that the malware attempted 

to connect with domains that were no longer in service and 

the failed connection triggered a kill-switch. Similarly to the 

previous samples, when the process terminated no further data 

could be captured. 

This resulted in a reduced number of dump samples for each 

incremented time interval. Table 3 shows the sample size for each 

family at the varying dump intervals. For example, the original 

dataset for the Scar variant contained 304 samples, which reduced 

down to 83 at the 60 second interval. 

Table 4 shows the classification results for each of the fami- 

lies tested. For comparative purposes, the results from the static 

method are also shown. It is evident from Table 4 that, as the sam- 

ple sizes decrease, so too does classification performance. Smaller 

sample sizes generally mean there is a narrow range of features 

for training the classification models. This can negatively influence 

the generalization capabilities of the models on previously unseen 

data, which is the case here. The optimum time interval for Chir, 

Cryptowall, Emotet and Scar was found to be 15 seconds, while 

Agen performed best at the 30 second interval, shown in bold. 

The shorter processing intervals mean our method could poten- 

tially scale well to larger datasets. Overall, the results demonstrate 

that the dynamic method provides an improvement in classifica- 

tion performance over the standalone static method. 

While a full process trace could be implemented to include the 

injected process information, it is beyond the scope of this study. 

For the purposes of further analysis presented in this section, the 
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Table 4 

Influence of process dump time interval on classification performance. 

Static 15 30 45 60 

Family precision recall accuracy precision recall accuracy precision recall accuracy precision recall accuracy precision recall accuracy 

Chir 79.2 56.1 65.6 94.4 92.7 93.6 92.5 88.6 90.5 81.8 80.0 80.9 80.9 76.0 78.4 

Cryptowall 81.6 57.1 67.2 90.1 91.0 90.5 85.5 75.7 80.3 87.5 46.7 60.9 72.7 64.0 68.1 

Emotet 86.9 86.7 85.9 93.8 94.3 94.1 79.1 68.0 73.1 76.2 71.1 73.6 79.1 75.6 77.3 

Scar 86.6 76.4 81.2 93.4 89.5 91.4 92.3 68.6 78.7 88.9 53.3 66.7 87.5 35.0 50.0 

Agen 82.5 79.1 80.8 99.5 92.6 95.9 99.1 97.7 98.4 98.0 95.2 96.6 97.6 97.1 97.4 

Table 5 

Hybrid framework classification performance results (training phase). 

Hilbert Z-order Graycode 

Model precision recall accuracy precision recall accuracy precision recall accuracy 

KNN-LBP 91.9 91.9 91.9 91.2 91.2 91.1 91.2 91.2 91.2 

RF-LBP 90.4 90.4 90.3 90.5 90.5 90.4 90.2 90.2 90.2 

DT-LBP 86.2 86.2 86.2 85.9 85.9 85.9 85.5 85.5 85.5 

KNN-Gabor 92.1 91.4 92.1 92.5 92.5 92.5 93.5 93.2 93.5 

RF-Gabor 92.4 92.4 92.3 92.2 88.5 92.2 93.1 93.1 93.0 

DT-Gabor 89.0 89.0 88.9 88.0 88.0 88.0 88.3 88.3 88.3 

KNN-HOG 94.9 94.9 94.0 97.6 97.6 97.6 93.8 93.2 93.9 

RF-HOG 92.0 92.0 92.0 91.5 91.5 91.4 92.0 92.0 92.0 

DT-HOG 82.8 82.8 82.7 80.7 80.7 80.7 81.0 81.0 81.0 

15 second interval dumps were chosen for Chir, Cryptowall, Emotet 

and Scar and the 30 second interval dumps for Agen. 

5.3. Framework classification training 

Experimental analysis was carried out using the Hilbert, Gray- 

code and Z-order image datasets. Each classification model was 

trained following the same procedure: 

• Calculate the Shannon entropy for each executable: 

• If μ ≥ 6 . 8 , extract process dump using VMI 

• Convert each sample/ process dump to SFC image format. 

• Compute the feature vector and label for each image sample. 

• Train the classifier on the feature set (perform k-fold cross- 

validation). 

• Compute the average precision, recall and accuracy. 

For each of the Hilbert, Graycode and Z-order SFC image 

datasets, features were extracted using LBP, Gabor and HOG fea- 

ture descriptors and each feature set was then passed to the SVM, 

RF and KNN classifiers. In total, 27 classification models were pro- 

duced, 9 for each SFC dataset. Table 5 shows the training classifi- 

cation performance results for each model. The KNN-HOG model 

yielded the best training results for all three SFC datasets, with 

precision, recall and accuracy of 97.6% for each metric. The confu- 

sion matrix for the KNN-HOG Z-order model is shown in Fig. 11 . 

It is evident from the confusion matrix that the model yielded 

favourable results overall on the training data, with true positive 

rates of 90% or above for 22 out of the 23 classes, including 100% 

true positive scores in 9 classes. The lowest true positive rate was 

returned for Locky at 89%. 

5.4. Hybrid classification model evaluation 

In order to build robust classification models, it is crucial to 

evaluate how well they generalise to new data. Poor models may 

perform well in the training phase, but when presented with pre- 

viously unseen data, performance can decrease considerably. As 

stated previously, 10% of the original data was held for evaluation 

purposes. As in the training phase, the KNN-HOG Z-order model 

performed best on the unseen data, with precision, recall and ac- 

curacy scores of 97.1%, 96.6% and 97.0% respectively. The perfor- 

mance metrics indicate that the KNN-Model model trained on the 

Z-order data generalises best to new data, as it can identify vari- 

ants it has not seen previously with a high degree of classification 

performance. 

5.5. Comparison with static and dynamic standalone approaches 

We performed a comparative analysis of the framework against 

static and dynamic standalone methods to demonstrate the per- 

formance advantages of incorporating a hybrid approach. In the 

case of the static approach, all samples were mapped from non- 

running executable binaries to SFC image format. For the dynamic 

method, all samples were executed in a virtual machine and pro- 

cess dumps were collected, which in turn were converted to SFC 

format. Classification models were trained as before in the case 

of the hybrid framework. Table 6 shows the results for each ap- 

proach. For brevity, we only show the best performing models 

for each of the static, dynamic and hybrid approaches. The KNN- 

HOG-Graycode model proved to be the best classifier on the train- 

ing data for the static analysis method. The KNN-HOG-Z-order 

model performed the best in both dynamic and hybrid methods. 

Although each of the models performed well in the training phase 

using cross-validation, the hybrid model outperformed both static 

and dynamic models, with precision, recall and accuracy scores of 

95.1% in each case. 

The three models were tested on the 10% holdout evaluation 

dataset. The KNN-HOG model performed best across all analysis 

methods. The hybrid model again outperformed both the static 

and dynamic models, with precision, recall and accuracy scores of 

97.1%, 96.6% and 97.0% respectively. In terms of time complexity, 

the static method provided the fastest processing time, with an av- 

erage of 7.88ms per sample. The processing overheads are low for 

the static method, since there is no need to execute the malware 

in a virtual machine. As expected, the dynamic standalone method 

was slowest, at an average of 33 seconds per sample, since each 

malware sample was executed for 30s in the virtual machine to 

capture sufficient behavioural data in the process dump. The hy- 
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Fig. 11. Confusion matrix for KNN-HOG trained on the Z-order SFC dataset. 

Table 6 

Classification performance and time complexity comparison of the proposed hybrid method against static and dynamic stan- 

dalone approaches (evaluation phase). 

Training Evaluation Time 

Method Model SFC precision recall accuracy precision recall accuracy Average (ms) 

Static KNN-HOG Gray-code 94.5 87.1 91.5 82.3 80.3 83.1 7.88 

Dynamic KNN-HOG Z-order 92.2 90.5 93.2 93.8 92.7 92.2 33 × 10 3 

Hybrid KNN-HOG Z-order 95.1 95.1 95.1 97.6 97.6 97.6 12 . 5 × 10 3 

brid model averaged 12.5 seconds per sample. The time complex- 

ity of the hybrid model is affected by the number of obfuscated or 

high entropy samples encountered in the dataset. 

5.5.1. Resilience to obfuscation 

In this section we demonstrate the superiority of the hybrid 

method against obfuscation by focusing on the performance of 

the static, dynamic and hybrid analysis on the obfuscated fami- 

lies within the evaluation set. The obfuscated set comprises 205 

samples from the Agen (6 8), Emotet (4 9), Cryptowall (28), Scar 

(30) and Chir (30) families. Table 7 shows the results for the three 

methods against the obfuscated data. It should be noted that these 

results were based on the performances from the full evaluation 

set. It is evident that the hybrid model proved to provide the best 

resilience to the obfuscated samples, outperforming both static 

and dynamic methods across all families. Although the dynamic 

method performed comparatively well, the time complexity of the 

process dump approach makes it infeasible at scale. 

5.6. Comparative analysis with benchmark method 

It is important to test the efficacy of our method against previ- 

ous image-based malware classification approaches. The approach 

chosen for comparative analysis was the KNN-GIST method pre- 

sented by Nataraj et al. (2011a) , described previously in 2.2 . This 

method can be considered a benchmark as it was the first to apply 

11 



S. O’Shaughnessy and S. Sheridan Computers & Security 116 (2022) 102660 

Table 7 

Static, dynamic and hybrid models resilience to obfuscation. 

Static Hybrid Dynamic 

Family precision recall accuracy precision recall accuracy precision recall accuracy 

Chir 79.2 56.1 65.6 94.4 92.7 93.6 92.5 88.6 90.5 

Cryptowall 81.6 57.1 67.2 90.1 91.0 90.5 89.5 88.7 89.3 

Emotet 86.9 86.7 85.9 93.8 94.3 94.1 92.3 92.2 93.1 

Scar 86.6 76.4 81.2 93.4 89.5 91.4 92.3 88.6 90.7 

Agen 82.5 79.1 80.8 99.1 97.7 98.4 93.1 92.7 94.4 

Table 8 

Classification performance of SFC KNN-HOG vs. byteplot KNN-GIST models. 

Method Prec. Recall Acc. 

KNN-HOG (train) 97.6 97.6 97.6 

KNN-GIST (train) 97.6 97.6 97.5 

KNN-HOG (test) 97.1 96.6 97.0 

KNN-GIST (test) 96.9 95.9 96.4 

the byteplot representation to the classification of malware. Fur- 

thermore, several research efforts have based and compared their 

work with that of Nataraj et al. ( Fu et al., 2018; Le et al., 2018; Luo 

and Lo, 2017; Ronen et al., 2018 ). 

The byteplot and SFC conversion processes differ greatly in their 

representation of the binary file. The byteplot uses a byte-to-pixel 

mapping, where each byte value (0–255) is mapped to the equiv- 

alent grayscale intensity value (0–255). SFC images are mapped 

to images through a traversal curve, where data type rather than 

byte value, determines the mapping. As described previously in 

Section 3.2 , the scurve library uses a colour-coding scheme that 

classifies bytes (0–255 range) into black for 0 × 00 (0), blue for 

ASCII text (1–126), red for high-value bytes (127–254), and white 

for 0 ×ff (255). 

The code for the byteplot KNN-GIST algorithm was obtained 

from ( Nataraj, 2022 ), which allowed us to reproduce the original 

method. The VirusTotal dataset was first converted into byteplot 

representation. Next, GIST features were calculated from the im- 

ages. Finally, the feature set and labels were passed to a K-nearest 

neighbor classifier. 

Table 8 compares the performance metrics obtained for the 

KNN-GIST method against our best-performing KNN-HOG method 

from Section 5.4 . The byteplot KNN-GIST model returned training 

performance scores of 97.6%, 97.6% and 97.5% for precision, recall 

and accuracy, which is almost identical to our KNN-HOG model’s 

performance. In the testing phase, our KNN-HOG model performed 

marginally better, with precision, recall and accuracy scores of 

97.1%, 96.6% and 97.0% against 96.9%, 95.9% and 96.4% for KNN- 

GIST. In terms of processing times, the KNN-GIST method produced 

an average of 6.3ms per sample, which is marginally faster than 

our KNN-HOG method, which averaged 8.1ms for the 256 × 256 

SFC dataset. 

5.7. Discussion of results 

By varying the image size produced by the scurve library, it was 

observed that as image size increased, so too did classification per- 

formance. However, for the purposes of scalability, which is a re- 

quirement of our framework, we chose the 256 × 256 SFC dataset 

as it provided near optimum classification performance, while be- 

ing 3.5 times faster than the 512 × 512 samples. Testing the influ- 

ence of process dump time intervals on classification performance 

proved the optimum time varied across each family. Process in- 

jection and legacy issues with the code prove that the dynamic 

generation of SFC images has its limitations. Further, more invasive 

process tracing could be performed, but this would be at the cost 

of both time and computation complexity. 

The results on the evaluation of the static, dynamic and hybrid 

approaches show that the static method was considerably faster 

than the dynamic or hybrid methods, yet yielded the poorest clas- 

sification performance. It was observed that the static model re- 

turned lowest prediction results for Cryptowall (61%), Chir (58%) 

Scar (76%), Emotet (87%) and Agen (87%), which were all obfus- 

cated. The results demonstrate that the static method is not robust 

against obfuscation. Classification rates were generally higher with 

the dynamic method, but the slow processing times of 33s per 

sample make this method infeasible to work at large scale. The hy- 

brid approach processes non-obfuscated samples statically and ob- 

fuscated samples dynamically, achieving a per-sample average pro- 

cessing time of 12.5s. Since there is no need to endure the pro- 

cessing burden of executing low entropy samples through VMI, the 

hybrid framework allows for a considerable decrease in processing 

time over the dynamic approach alone. For obfuscated samples, the 

hybrid approach solves the limitation of the static method, increas- 

ing classification model performance by approximately 15%. The 

hybrid framework has shown to be the best solution by combin- 

ing the strengths of static and dynamic approaches. 

In a comparative analysis on the VirusTotal dataset, our SFC 

KNN-HOG model performed comparably well against the byteplot 

KNN-GIST model in terms of classification performance and pro- 

cessing time complexity. The results demonstrate our method pro- 

vides an accurate representation of malware binaries in image for- 

mat that is comparable to current approaches. 

6. Conclusions and future work 

In this article, we presented a novel hybrid framework for mal- 

ware classification, based on computer vision and machine learn- 

ing, designed to improve the current limitations experienced in 

static and dynamic malware variant classification methods. The 

framework is designed to be less invasive than traditional analy- 

sis methods in that there is no reverse engineering required, nor 

does it suffer from the obfuscation limitations of static analysis. 

The framework incorporates classification of discriminant features 

extracted from malware binaries in image format, mapped through 

space-filling curves. Previous research has shown that space-filling 

curves provide sufficient features to be used for image-based mal- 

ware classification. Through experimental analysis, using an up-to- 

date malware sample dataset, it was demonstrated that the hybrid 

framework outperformed the static and dynamic analyses stan- 

dalone methods. The methods produced by this research could be 

used to augment the performance of automated malware analysis 

tools by increasing the classification rates of variants and thereby 

reducing the possibility of ambiguity in malware labelling. 

Our current research is focused on implementing image seg- 

mentation for classification at a more granular level. Segmentation 

can be used to partition the images into distinct regions contain- 

ing groups of pixels with similar textures, in this case regions of 

similar binary. Regions of interest in an executable binary could be 

extracted in this way, disregarding irrelevant data such as padding 
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(regions of binary zeros) or obfuscated sections, where the entropy 

would otherwise adversely affect the classification algorithms. Ad- 

ditionally we intend to investigate the efficacy of other SFCs, such 

as the H-curve ( Niedermeier et al., 2002 ), applied to the malware 

domain. Finally, deep learning models, such as convolutional neural 

networks, could be utilised to improve performance. Such models 

do not require feature extraction and so would simplify the pro- 

cessing phases. 
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