171 research outputs found

    A 2.0 Gb/s Throughput Decoder for QC-LDPC Convolutional Codes

    Full text link
    This paper propose a decoder architecture for low-density parity-check convolutional code (LDPCCC). Specifically, the LDPCCC is derived from a quasi-cyclic (QC) LDPC block code. By making use of the quasi-cyclic structure, the proposed LDPCCC decoder adopts a dynamic message storage in the memory and uses a simple address controller. The decoder efficiently combines the memories in the pipelining processors into a large memory block so as to take advantage of the data-width of the embedded memory in a modern field-programmable gate array (FPGA). A rate-5/6 QC-LDPCCC has been implemented on an Altera Stratix FPGA. It achieves up to 2.0 Gb/s throughput with a clock frequency of 100 MHz. Moreover, the decoder displays an excellent error performance of lower than 101310^{-13} at a bit-energy-to-noise-power-spectral-density ratio (Eb/N0E_b/N_0) of 3.55 dB.Comment: accepted to IEEE Transactions on Circuits and Systems

    Research on energy-efficient VLSI decoder for LDPC code

    Get PDF
    制度:新 ; 報告番号:甲3742号 ; 学位の種類:博士(工学) ; 授与年月日:2012/9/15 ; 早大学位記番号:新6113Waseda Universit

    Hardware Implementations of CCSDS Deep Space LDPC Codes for a Satellite Transponder

    Get PDF
    Error-correction coding is a technique that adds mathematical structure to a message, allowing corruptions to be detected and corrected when the message is received. This is especially important for deep space satellite communications, since the long distances and low signal power levels often cause message corruption. A very strong type of error-correction coding known as LDPC codes was recently standardized for use with space communications. This project implements the encoding and decoding algorithms required for a small satellite radio to be able to use these LDPC codes. Several decoder architectures are implemented and compared by their performance, speed, and complexity. Using these LDPC decoders requires knowledge of the received signal and noise levels, so an appropriate algorithm for estimating these parameters is developed and implemented. The LDPC encoder is implemented using a flexible architecture that allows the entire standardized family of ten LDPC codes to be encoded using the same hardware

    Deriving Good LDPC Convolutional Codes from LDPC Block Codes

    Full text link
    Low-density parity-check (LDPC) convolutional codes are capable of achieving excellent performance with low encoding and decoding complexity. In this paper we discuss several graph-cover-based methods for deriving families of time-invariant and time-varying LDPC convolutional codes from LDPC block codes and show how earlier proposed LDPC convolutional code constructions can be presented within this framework. Some of the constructed convolutional codes significantly outperform the underlying LDPC block codes. We investigate some possible reasons for this "convolutional gain," and we also discuss the --- mostly moderate --- decoder cost increase that is incurred by going from LDPC block to LDPC convolutional codes.Comment: Submitted to IEEE Transactions on Information Theory, April 2010; revised August 2010, revised November 2010 (essentially final version). (Besides many small changes, the first and second revised versions contain corrected entries in Tables I and II.

    A survey of FPGA-based LDPC decoders

    No full text
    Low-Density Parity Check (LDPC) error correction decoders have become popular in communications systems, as a benefit of their strong error correction performance and their suitability to parallel hardware implementation. A great deal of research effort has been invested into LDPC decoder designs that exploit the flexibility, the high processing speed and the parallelism of Field-Programmable Gate Array (FPGA) devices. FPGAs are ideal for design prototyping and for the manufacturing of small-production-run devices, where their in-system programmability makes them far more cost-effective than Application-Specific Integrated Circuits (ASICs). However, the FPGA-based LDPC decoder designs published in the open literature vary greatly in terms of design choices and performance criteria, making them a challenge to compare. This paper explores the key factors involved in FPGA-based LDPC decoder design and presents an extensive review of the current literature. In-depth comparisons are drawn amongst 140 published designs (both academic and industrial) and the associated performance trade-offs are characterised, discussed and illustrated. Seven key performance characteristics are described, namely their processing throughput, latency, hardware resource requirements, error correction capability, processing energy efficiency, bandwidth efficiency and flexibility. We offer recommendations that will facilitate fairer comparisons of future designs, as well as opportunities for improving the design of FPGA-based LDPC decoder

    Design Trade‐Offs for FPGA Implementation of LDPC Decoders

    Get PDF
    Low density parity check (LDPC) decoders represent important throughput bottlenecks, as well as major cost and power-consuming components in today\u27s digital circuits for wireless communication and storage. They present a wide range of architectural choices, with different throughput, cost, and error correction capability trade-offs. In this book chapter, we will present an overview of the main design options in the architecture and implementation of these circuits on field programmable gate array (FPGA) devices. We will present the mapping of the main units within the LDPC decoders on the specific embedded components of FPGA device. We will review architectural trade-offs for both flooded and layered scheduling strategies in their FPGA implementation

    Mixed Precision Multi-frame Parallel Low-Density Parity-Check Code Decoder

    Get PDF
    As the demand for high speed and high quality connectivity is increasing exponentially, channels are getting more and more crowded. The need for a high performance and low error floor channel decoder is apparent. Low-density parity-check code (LDPC) is a linear error correction code that can reach near Shannon limit. In this work, LDPC code construction and decoding algorithms are discussed, the LDPC decoder, in fully parallel and partial parallel, was implemented, and the features and issues related to corresponding architecture are analyzed. Furthermore, a multi-frame processing approach, based on pipelining and out-of-order processing, is proposed. The implemented decoder achieves 12.6 Gbps at 3.0 dB SNR. The mixed precision scheme is explored by adding precision control and alignment units before and after check node units (CNU) to improve performance, as well as error floor. By mixing the 6-bit and 5-bit precision CNUs at 1:1 ratio, the decoder reaches ~0.5 dB lower FER and BER while retaining a low error floor

    A Simplified Min-Sum Decoding Algorithm for Non-Binary LDPC Codes

    Full text link
    Non-binary low-density parity-check codes are robust to various channel impairments. However, based on the existing decoding algorithms, the decoder implementations are expensive because of their excessive computational complexity and memory usage. Based on the combinatorial optimization, we present an approximation method for the check node processing. The simulation results demonstrate that our scheme has small performance loss over the additive white Gaussian noise channel and independent Rayleigh fading channel. Furthermore, the proposed reduced-complexity realization provides significant savings on hardware, so it yields a good performance-complexity tradeoff and can be efficiently implemented.Comment: Partially presented in ICNC 2012, International Conference on Computing, Networking and Communications. Accepted by IEEE Transactions on Communication
    corecore