

AN ABSTRACT OF THE DISSERTATION OF

Zhiqiang Cui for the degree of Doctor of Philosophy in

Electrical and Computer Engineering presented on September 4, 2007.

Title:

Low-Complexity High-Speed VLSI Design of Low-Density Parity-Check Decoders

Abstract approved:

__

Zhongfeng Wang

Low-Density Parity-check (LDPC) codes have attracted considerable attention due

to their capacity approaching performance over AWGN channel and highly parallelizable

decoding schemes. They have been considered in a variety of industry standards for the

next generation communication systems. In general, LDPC codes achieve outstanding

performance with large codeword lengths (e.g., N>1000 bits), which lead to a linear

increase of the size of memory for storing all the soft messages in LDPC decoding. In the

next generation communication systems, the target data rates range from a few hundred

Mbit/sec to several Gbit/sec. To achieve those very high decoding throughput, a large

amount of computation units are required, which will significantly increase the hardware

cost and power consumption of LDPC decoders. LDPC codes are decoded using iterative

decoding algorithms. The decoding latency and power consumption are linearly

proportional to the number of decoding iterations. A decoding approach with fast

convergence speed is highly desired in practice.

This thesis considers various VLSI design issues of LDPC decoder and develops

efficient approaches for reducing memory requirement, low complexity implementation,

and high speed decoding of LDPC codes. We propose a memory efficient partially parallel

decoder architecture suited for quasi-cyclic LDPC (QC-LDPC) codes using Min-Sum

decoding algorithm. We develop an efficient architecture for general permutation matrix

based LDPC codes. We have explored various approaches to linearly increase the decoding

throughput with a small amount of hardware overhead. We develop a multi-Gbit/sec LDPC

decoder architecture for QC-LDPC codes and prototype an enhanced partially parallel

decoder architecture for a Euclidian geometry based LDPC code on FPGA. We propose an

early stopping scheme and an extended layered decoding method to reduce the number of

decoding iterations for undecodable and decodable sequence received from channel. We

also propose a low-complexity optimized 2-bit decoding approach which requires

comparable implementation complexity to weighted bit flipping based algorithms but has

much better decoding performance and faster convergence speed.

©Copyright by Zhiqiang Cui

September 4, 2007

All Rights Reserved

Low-Complexity High-Speed VLSI Design of

Low-Density Parity-Check Decoders

by

Zhiqiang Cui

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented September 4, 2007

Commencement June 2008

Doctor of Philosophy dissertation of Zhiqiang Cui presented on September 4, 2007.

APPROVED:

__

Major Professor, representing Electrical and Computer Engineering

__

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of

Oregon State University libraries. My signature below authorizes release of my

dissertation to any reader upon request.

Zhiqiang Cui, Author

ACKNOWLEDGEMENTS

 I am grateful to my advisor, Dr. Zhongfeng Wang for providing me an opportunity

to conduct research under his supervision. I would like to express my sincere thanks for his

continuing encouragement, guidance, and support throughout the course of my study at

Oregon State University. Working with him has been an extremely valuable learning

experience. I would like to thank the members of my program committee – Dr. Bella Bose,

Dr. Huaping Liu, Dr. Thinh Nguyen, Dr. David McIntyre, and Dr. David Hackleman for

their effort and time in supporting my work. Their comments and suggestions helped me

improve my thesis.

I would also like to thank the members of our group, particularly, Qingwei Li, Lupin

Chen, and Jinjin He for many useful discussions.

This thesis is dedicated to my wonderful family. I would like to express my deepest

gratitude to my parents, my wife, my brother, and my sisters for their unconditional love,

constant encouragement, and support.

TABLE OF CONTENTS

 Page

1 INTRODUCTION ...1

1.1 OVERVIEW ..1

1.2 SUMMARY OF CONTRIBUTIONS ...2

1.2.1 Memory Efficient Decoder for Quasi-Cyclic LDPC Codes...2

1.2.2 Efficient Design of High Speed LDPC Decoders ..2

1.2.3 Low Complexity Decoding of LDPC Codes ...3

1.2.4 Reducing Iterations for LDPC Codes ..4

2 DECODING OF LDPC CODES ...5

2.1 INTRODUCTION OF LDPC CODES ..5

2.1.1 Representations of LDPC Codes ...5

2.1.2 LDPC Code Construction and Encoding ...7

2.2 BELIEF PROPAGATION DECODING ALGORITHM...7

2.3 MIN-SUM DECODING ALGORITHMS ..10

2.4 BCJR ALGORITHM BASED DECODING APPROACH ..13

2.5 BIT FLIPPING AND WEIGHTED BIT FLIPPING BASED ALGORITHMS..................................15

3 MEMORY-EFFICIENT DECODER ARCHITECTURE ..17

3.1 THE PERFORMANCE OF HIGH RATE QC-LDPC CODE ...17

3.2 THE REARRANGED (MODIFIED) MIN-SUM ALGORITHM ...18

3.3 THE MEMORY EFFICIENT DECODER ARCHITECTURE ..19

3.3.1 Parallel Decoder Architecture for H Matrix Consisting of Weight-1 Circulant and

Possible Zero Submatrices ...20

TABLE OF CONTENTS (Continued)

 Page

3.3.2 Architecture for H Matrices with Weight-1, Weight-2 Circulant Matrices and Zero

Matrices..25

3.4 OPTIMIZATION ON THE PARTIALLY PARALLEL DECODER ARCHITECTURE27

3.4.1 The Optimized CNU..27

3.4.2 The Optimized Data Scheduling Unit..30

3.4.3 The Optimized Data Merge Unit ...32

3.5 SUMMARY ...33

4 EFFICIENT VLSI DESIGN OF HIGH THROUGHPUT LDPC DECODERS34

4.1 EFFICIENT MESSAGE PASSING ARCHITECTURE ...34

4.1.1 Efficient Message Passing Schemes with Min-Sum Algorithm35

4.1.2 Architecture for Permuation Matrices Based LDPC Codes.......................................39

4.1.3 Further Complexity Reduction with Non-uniform Quantization42

4.2 LAYERED DECODING ARCHITECTURE FOR QUASI-CYCLIC CODES..................................44

4.2.1 Row Permutation of Parity Check Matrix of QC-LDPC Codes45

4.2.2 Approximate Layered Decoding Approach ...46

4.2.3 Decoder Architecture with Layered Decoding Approach..49

4.2.4 Hardware Requirement and Throughput Estimation ...54

4.3 AN FPGA IMPLEMENTATION OF QUASI-CYCLIC LDPC DECODER..................................56

4.3.1 The (8176, 7156) EG-based QC LDPC Code..57

4.3.2 Partially Parallel Decoder Architecture ...58

4.3.3 Fixed-point implementation...66

4.3.4 FPGA Implementation...71

TABLE OF CONTENTS (Continued)

 Page

4.4 SUMMARY ...71

5 PRACTICAL LOW COMPLEXITY LDPC DECODERS..73

5.1 THE OPTIMIZED 2-BIT DECODING..73

5.1.1 Decoding Scheme ..73

5.1.2 Decoding Performance Simulation ..75

5.2 LOW COMPLEXITY 2-BIT DECODER DESIGN..78

5.2.1 Memory Reduction Scheme...78

5.2.2 Computation Units Design...80

5.3 SUMMARY ...84

6 REDUCING ITERATIONS FOR LDPC CODES...85

6.1 EXTENDED LAYERED DECODING OF LDPC CODES ...85

6.1.1 The Proposed Layered Decoding Approach ..86

6.1.2 Overlapped Message Passing Decoding ..87

6.1.3 Simulation Results ...89

6.2 AN EFFICIENT EARLY STOPPING SCHEME FOR LDPC DECODING92

6.3 THE FAST DECODING SCHEME FOR WBF-BASED ALGORITHMS95

6.3.1 Multi-threshold Bit Flipping Scheme ..95

6.3.2 Performance Simulation ..96

6.4 SUMMARY ...99

7 CONCLUSIONS AND FUTURE WORKS ..100

7.1 CONCLUSIONS ...100

TABLE OF CONTENTS (Continued)

 Page

7.2 FUTURE WORK..101

8 BIBLIOGRAPH...103

LIST OF FIGURES

Figure Page

2.1 An example of Tanner graph. ...6

2.2 The mesh and contour plot of),(yxg ...12

2.3 The two-state trellies of a SPC code. ..13

3.1 BER/FER performance of the (4608, 4096) QC-LDPC codes.18

3.2 The partially parallel decoder architecture for H matrix containing weight-1 and

possible zero submatrices...21

3.3 The structure of data distributor..24

3.4 The structure of single-port memory supporting simultaneous read and write

operation. ..25

3.5 The decoder architecture for H matrix containing weight-2 circulant matrices27

3.6 The structure of pseudo rank order filter ..28

3.7 The architecture of the optimized CNU..29

3.8 The data scheduling unit. (a) structure (b) data flow...31

3.9 The structure of the merge unit...33

4.1 Computation units using reformulated Min-Sum algorithm.

(a) Variable node unit (b) Check node unit..37

4.2 Computation units using APP-based Min-Sum algorithm.

(a) Variable node unit (b) Check node unit...39

4.3 The structure of 8-input folded check node unit...40

4.4 The H matrix of an LDPC code example. ..41

4.5 Decoder architecture for the example code. ...42

LIST OF FIGURES (Continued)

Figure Page

4.6 BER and FER of various decoding approaches (24 iterations)

for the (2048, 1723) LDPC code...43

4.7 An array of circulant submatrices. ..46

4.8 Permuted matrix..46

4.9 Performance of the approximate layered decoding approach.....................................49

4.10 Decoder architecture (P=2)...50

4.11 The computation path of the proposed architecture (P=2).52

4.12 The optimization of the SM-to-2’S unit and the adder in segment-1.53

4.13 The optimization of the SM-to-2’S unit and two adders in segment-3.....................53

4.14 The structure of a data shifter. ..54

4.15 A 15x15 circulant matrix. ...57

4.16 Check node unit architecture. ...59

4.17 Variable node unit architecture...60

4.18 Enhanced partially parallel decoder architecture for QC-LDPC code......................61

4.19 Memory partitioning and data switching scheme for

even shifting offset case. ..63

4.20 Memory partitioning and data switching scheme

for odd shifting offset case. ..64

4.21 Memory partitioning and data switching scheme for identity matrix.64

4.22 State transition diagram of controller. ..65

4.23 Block diagram of controller..66

LIST OF FIGURES (Continued)

Figure Page

4.24 Decoding performance of fixed-point quantization and double precision................67

4.25 The uniform quantization of)(xΨ . ..68

4.26 Check node unit with non-uniform quantization. ...70

4.27 Variable node unit with non-uniform quantization..70

5.1 Performance of the (2048, 1723) rate-0.84 LDPC codes..76

5.2 Average number of iterations for decoding the

(2048, 1723) rate-0.84 LDPC codes. ..77

5.3 Performance of the (1974, 987) rate-0.5 LDPC codes..77

5.4 Average number of iterations for decoding the

(1974, 987) rate -0.5 LDPC codes. ...78

5.5 Structure of the check node unit for the optimized 2-bit decoding approach.82

5.6 Structure of the variable node unit for

the optimized 2-bit decoding approach. ..82

5.7 The computation core needed in the bit flipping operation for

a WBF-based decoder. ..83

6.1 Serial computation of the smallest and the second smallest magnitude.88

6.2 The data flow of overlapped message passing scheme...89

6.3 Average number of iterations and bit error rate (BER) for the rate-0.84 code with

standard layered decoding, proposed approach, and TPMP SPA decoding.91

6.4 Average number of iterations and BER for the rate-0.5 code with standard layered

decoding, proposed approach, and TPMP SPA decoding..91

LIST OF FIGURES (Continued)

Figure Page

6.5 Performance of the (2048, 1723) rate-0.84 LDPC code. ..97

6.6 Average number of iterations for decoding

the (2048, 1723) rate-0.84 LDPC code. ..97

6.7 Performance of the (1974,987) rate-0.5 LDPC code. ...98

6.8 Average number of iterations for decoding

the (1974,987) rate-0.5 LDPC code. ...98

LIST OF TABLES

Table Page

3.1 Memory needed by the proposed architecture…………………………..………… 24

3.2 Memory needed by the traditional approaches………………………..…………… 24

4.1 3-bit quantization for received symbol………………………………..……………… 44

4.3 Gate count estimation for computing blocks…………………………………..……... 56

4.4 Storage requirement estimate…………………………………………..…………….. 56

4.5. Uniform to non-uniform quantization conversion.. 69

4.6. Xilinx virtexII-6000 FPGA utilization statistics…………………..………………... 71

5.1 Data conversion for the rate-0.84 code……………………………..………………... 75

5.2 Memory requirement of the 2-bit decoder………………………………...…………..80

5.3 Memory requirement of MWBF decoder…………………………………………..… 80

5.4 Complexity of computation units for the optimized 2-bit

and WBF-based decoder…………………………………………………………….. 84

6.1 The value of iδ for the rate-0.84 code and the rate-0.5 code………………..……… 96

1

LOW-COMPLEXITY HIGH-SPEED VLSI DESIGN OF

LOW-DENSITY PARITY-CHECK DECODERS

1 INTRODUCTION

1.1 Overview

Reliable and efficient information transmission and storage has been increasingly

demanded in recently years. Error correcting codes are widely used in digital

communication and storage systems to protect data against transmission error cause by

channel noise. From channel coding theory, for a channel with a capacity C , there exist

codes of rate CR < that have an arbitrarily small decoding error probability with

Maximum Likelihood Decoding (MLD). The arbitrarily small error probabilities are

achievable by increasing the codeword length for block code or the encoder memory order

for convolutional code [17]. Because the implementation complexity of typical decoding

algorithm such as MLD becomes very large as codeword length or encoder memory order

increases, researchers have made significant amount of effort to develop new coding

schemes which can be decoded using simpler approaches and have decoding performance

close to what could be achieved using MLD.

Low-Density Parity-Check (LDPC) codes invented by Gallager in the early 1960s

are a class of near Shannon limit error correcting codes and can be decoded using belief

propagation algorithm. Because of the limitation of the computation capabilities at that

time, they have largely been ignored for more than 30 years. With the innovation of VLSI

and computer technology, the implementation cost of LDPC codec is reduced. Since the

late 1990s, LDPC codes have attracted considerable attention due to their capacity

approaching performance over AWGN channel and highly parallelizable decoding

schemes.

2

This research is devoted to the efficient VLSI architecture design and

implementation for LDPC codes. We have considered various VLSI design issues of

LDPC decoder and developed efficient approaches for reducing memory requirement, low

complexity implementation, and high speed decoding of LDPC codes.

1.2 Summary of Contributions

1.2.1 Memory Efficient Decoder for Quasi-Cyclic LDPC Codes

Quasi-cyclic LDPC (QC-LDPC) codes [4][13][14], being a special class of LDPC

codes, are well suited for hardware implementation. The encoders of QC-LDPC codes can

be built with shift-registers [16]. In addition, QC-LDPC codes also facilitate efficient high-

speed decoding because of the regularity in their parity check matrices. LDPC codes

achieve outstanding performance only with large codeword lengths (e.g., bits1000N ≥),

which lead to a linear increase of memory requirement for storing all the soft messages in

LDPC decoding.

To reduce hardware cost of QC-LDPC decoder, we proposed a memory efficient

partially parallel decoder architecture for high rate QC-LDPC codes, which stores soft

messages in the Min-Sum decoding algorithm in a compressed form. In general, over 30%

memory can be saved. To further reduce the implementation complexity, various

optimization techniques were developed.

1.2.2 Efficient Design of High Speed LDPC Decoders

For high throughput applications, the decoding parallelism is usually very high.

Hence a complex interconnect network is required which consumes a significant amount of

silicon area and power. In a pioneer design of high throughput LDPC decoder [57], the

3

power dissipation of the decoder was largely determined by the switching activity of

interconnect network. The utilization of chip area was only 50%.

To reduce complexity of interconnect network, we propose an efficient message

passing decoder architecture using Min-Sum algorithm for permutation matrices based

LDPC codes. QC-LDPC codes are a sub-class of permutation matrices based LDPC codes.

The regularity in their parity check matrix can be further exploited. We develop a multi-

Gbit/sec low-cost layered decoding architecture for generic QC-LDPC codes. To

demonstrate the design of high speed LDPC decoder, we implement an enhanced partially

parallel decoder architecture with FPGA for a (8176, 7156) Euclidian geometry based QC-

LDPC code. A worst-case source information decoding throughput (at 15 iterations) over

170Mbps is achieved.

1.2.3 Low Complexity Decoding of LDPC Codes

The Sum-Product LDPC decoding algorithm (SPA) (also known Belief-Propagation

algorithm) has the best decoding performance and the highest implementation complexity.

On the other hand, various weighted Bit-Flipping (WBF) based decoding approaches were

proposed in order to seek very low decoding complexity.

We analyzed the decoding complexity of state-of-the-art WBF-based algorithms

from a VLSI implementation point of view. To maintain low decoding complexity while

further narrowing the performance gap from the SPA, we present an optimized 2-bit soft

decoding approach. The implementation complexity of the proposed method is comparable

to WBF-based algorithms. However, the proposed approach achieves much better

decoding performance and faster convergence speed.

4

1.2.4 Reducing Iterations for LDPC Codes

LDPC codes are decoded using iterative decoding algorithms. To increase decoding

speed, it is highly desired to reduce the number of decoding iterations without significant

performance loss. We propose an extended layered decoding approach which can be

applied to any structure of parity check matrix. Simulations on both random and structured

LDPC codes show that the proposed approach achieves faster convergence over

conventional two phase message passing decoding algorithm. On the other hand, it

happens frequently that a valid codeword can not be found even though a large number of

decoding iterations are performed at low to medium signal-to-noise ratios. We propose an

efficient early stopping scheme to detect such undecodable cases as early as possible in

order to avoid unnecessary computation. In addition, we demonstrate that the decoding

convergence of WBF-based algorithm can be significantly speeded up with a multi-

threshold detection scheme.

5

2 DECODING OF LDPC CODES

2.1 Introduction of LDPC Codes

Low-Density Parity-Check (LDPC) codes [1] invented by Gallager are a class of

error correcting codes and can be decoded using belief propagation algorithm. Since the

late 1990s, LDPC codes have attracted considerable attention due to their capacity

approaching performance over AWGN channel and highly parallelizable decoding

schemes. In recent years, LDPC codes have been considered in a variety of industry

standards for the next generation communication systems such as DVB-S2, WLAN

(802.11.n), WiMAX (802.16e) and 10GBaseT (802.3an).

2.1.1 Representations of LDPC Codes

LDPC codes are a class of linear block codes whose parity-check matrices H are

very spare binary matrices. Conventionally, LDPC codes are characterized in matrix

representation and graphical representation [17]. In matrix representation, an LDPC code is

described as a k-dimensional subspace C of the vector space n
2F of all binary n-tuples over

the Galois field GF(2). It is possible to find k linearly independent codewords,

1k10 −ggg ,,, L , such that every codeword C∈c is a linear combination of these k

codewords (i.e., 1k1k1100 uuu −−+++= gggc L). In matrix form, uGc = , where,

][1k10 uuu −= Lu , is the information to be encoded and G is a nk × generator matrix

whose rows, { 1k10 −ggg ,,, L }, span the (n, k) LDPC code. For a generator matrix G, there

exists a kkn ×−)(matrix H such that 0GH =T . Thus for every codeword C∈c , 0cH =T .

In graphical representation, an LDPC code is represented by a bipartite graph (also called

Tanner graph). Fig. 2.1 shows a Tanner graph. Nodes in a Tanner graph are partitioned into

6

two disjoint classes, i.e., variable nodes and check nodes. Variable nodes are associated

with digits of the codeword and check nodes are associated with the set of parity-check

constraints which define the code. The 1-componets in parity-check matrix are associated

to edges in Tanner graph. An edge in Tanner graph may only connect two nodes of

different classes.

Figure 2.1 An example of Tanner graph.

An LDPC code is usually characterized by its check node and variable node degree

distribution polynomials. The terminology, node degree, is defined as the number of edges

connected to a node in graph. In LDPC matrix representation, it is equal to the number of

1-components in a row or column of the parity check matirx. The check node and variable

node degree distribution polynomials ususlly denoted by)(xρ and)(xλ , respectively [6].

More specifically,

∑
=

−ρ=ρ
cd

1d

1d
d xx)(and ∑

=

−λ=λ
vd

1d

1d
d xx)(,

where, dρ denotes the fraction of all degrees connected to degree-d check nodes and

cd denotes the maximum check node degree. Similarly, dλ denotes the fraction of all

degrees connected to degree-d variable nodes and vd denotes the maximum variable node

degree.

7

2.1.2 LDPC Code Construction and Encoding

In the literature, various LDPC code construction approaches have been proposed.

Among them, progressive edge-growth graph (PEG) construction [15] [30] and finite field

algebraic construction [18] [19][20] are widely used in practice. All these approach

construct a low-density parity-check matrix H . Although the parity check matrices of

LDPC codes are sparse by code construction, the generator matrices are usually high

density matrices. Therefore, the direct encoding approach, uGc = , has the encoding

complexity of)(2NO , where N is the block length of an LDPC code. To reduce the

encoding complexity, various efficient encoding method has been proposed. Each one is

usually only suitable for a specific class of LDPC codes. The encoding details for general

LDPC codes, QC-LDPC codes and repeat-accumulate LDPC codes can be found in [8]

Error! Reference source not found. [16] [68].

2.2 Belief Propagation Decoding Algorithm

The LDPC decoding algorithm was originally provided by Gallager in 1960s [1].

Since then, the decoding algorithm has been independently rediscovered by other

researchers. Belief propagation algorithm (BPA) is also named as Sum-Product algorithm

(SPA) in the literature. In general, it has the best decoding performance among all LDPC

decoding algorithms. Let C be a binary (n, k) LDPC code specified by a parity-check

matrix H with M rows and N columns. Using a notation similar to that in [4], let

}:{)(1HnmN mn == denote the set of variable nodes that participate in check m. Similarly,

let }:{)(1HmnM mn == denote the set of checks in which variable node n participates. Let

nmN \)(represent the set)(mN with variable node n excluded and mnM \)(represent

8

the set)(nM with check m excluded. Let),,,(N21 ccc L=c and),,,(N21 xxx L=x denotes

coded sequence and the transmitted vector. The received vector and the corresponding

hard-decision vector are denoted by),,,(N21 yyy L=y and),,,(N21 zzz L=z ,

respectively. Let]|Pr[vvv y1cP == be the probability that the transmitted digit in position

v is a 1 conditional on the received digit in position v, and let mnP be the same probability

for the n’th digit in the m’th parity-check set. Let],|Pr[S1cv y= be the probability that the

transmitted digit in position v is a 1 conditional on the set of received vector y and on the

event S that the transmitted digits satisfy all j parity-check equations on digit v. Assume the

digits be statistically independent of each other. Then

],|Pr[
],|Pr[

]|Pr[
]|Pr[

],|Pr[
],|Pr[

y
y

y
y

y
y

1cS
0cS

1c
0c

S1c
S0c

v

v

v

v

v

v
=
=

×
=
=

=
=
= (2.1)

Consider a sequence of cd independent binary digits vc in which]|Pr[vvv y1cP == . Then

the probability that the sequence contains an even number of 1’s and an odd number of 1’s

are expressed in (2.2) and (2.3) respectively.

2

P211
cd

1v
v∏

=
−+)(

 (2.2)

2

P211
cd

1v
v∏

=
−−)(

 (2.3)

Then

∏
∏

∏

∈

∈

∈

−−

−+
−

==
=
=

)(

\)(

\)(

)(

)(

],|Pr[
],|Pr[

vMm

vmNn
mn

vmNn
mn

v

v

v

v

P211

P211

P
P1

S1c
S0c

y
y (2.4)

For the actual computation, it is more convenient to use (2.4) in terms of log-likelihood

ratios (LLR). Let

9

vv
vv

vv
y1c
y0c

βα=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

]|Pr[
]|Pr[

ln ,

where vα is the sign and vβ is the magnitude. Similarly, let

''
],|Pr[
],|Pr[

ln vv
v

v
S1c
S0c

βα=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

y
y .

We can rewrite (2.4) as

∑
∏

∏
∏

∈

∈
β

β
∈

β

β

∈
⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

−
−

+

−
+

×
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
α+βα=βα

)(

\)(

\)(

\)(

''

)(

)(
ln

vMm

vmNn mn

mn
vmNn mn

mn

vmNn
mnvvvv

1e
1e1

1e
1e1

 , (2.5)

 ()∑ ∏
∈ ∈∈ ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑ βΨΨ×

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
α+βα=

)(\)(\)(vMm vmNn
mn

vmNn
mnvv , (2.6)

where () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

+
=βΨ

β

β

1e
1eln .

The standard two phase message passing (TPMP) belief propagation (BP) iterative

decoding approach is formulated as follows. Let ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

=
]|Pr[
]|Pr[

ln
vv

vv
v y1c

y0c
I denote the intrinsic

message. Assuming that 0cv = and 1cv = are equal likely. For binary input, AWGN

channel, mapping the transmitted digit vv c21x −= , the intrinsic message can be obtained

by

2
v

vvvv

vvvv

vv

vv
v

y2
yp1x1xyp
yp1x1xyp

y1c
y0c

I
σ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=−=
+=+=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

=
)(/)Pr()|(
)(/)Pr()|(

ln
]|Pr[
]|Pr[

ln .

Let cvR represent the check-to-variable message conveyed from the check node c to

the variable node v, and cvL represent the variable-to-check message conveyed from the

variable node v to the check node c.

1. Initialization:

10

vcv IL = for N21v ,,, L= and M21c ,,, L= . (2.7)

2. Check-to-variable message passing:

Each check node c computes the check-to-variable message cvR with variable-to-

check message cvL .

{ }∑∏ ∈∈ ΨΨ×= vcNn cnvcNn cncv LLsignR \)(\)(|)(|)(, (2.8)

3. Variable-to-check message passing:

Each variable node v computes the variable-to-check message cvL with check-to-

variable message cvR .

vcvMm mvcv IRL += ∑ ∈ \)((2.9)

4. Tentative decision and parity check:

Each variable node v computes the LLR message vL and makes tentative decision.

vvMm mvv IRL += ∑ ∈)((2.10)

.otherwise,if 1z0L0z vvv =≥= (2.11)

If 0zH =T , a valid codeword is found. The decoding is terminated if a valid

codeword is found or the maximum decoding iteration is reached. Otherwise, go to step 2

for a new decoding iteration. To reduce the computation complexity, the a posteriori

probability based decoding approach can be used by replacing (2.9) with (2.10).

2.3 Min-Sum Decoding Algorithms

In the literature, various approximate LLR belief propagation decoding algorithms

were proposed to simplify the decoding complexity. The general approximate method can

be summarized as follows. Let us rewrite (2.8) in the form of (2.12).

11

⎟⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

−
−

+

−
+

×
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
α=

∏

∏
∏

∈
β

β
∈

β

β

∈

vmNn mn

mn

vmNn mn

mn

vmNn
mnmv

1e

1e1

1e

1e1

R

\)(

\)(

\)()(

)(

ln (2.12)

Let a real number vvvx βα= , where vα and vβ are the sign and the magnitude of vx ,

respectively. Let us define

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α=

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

−
−

+

−
+

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α=

ββ

β+β

=

=
β

β
=

β

β

=
∏

∏

∏
∏

21

212

1v
v2

1v v

v

2

1v v

v

2

1v
v21

ee
e1

1e

1e1

1e

1e1
xxf ln

)(

)(
ln),((2.13)

It can be shown that

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

+
××α=

β−

β+−
−− v1vx1xf

v1vx1xf

1v1vv1v
ee

e1xxfsignxx1xf
|),,(|

|),,(|

, ln)),,((),,(
L

L

LL

)),,,((v1v1 xxxff −= L

Therefore the computation of (2.12) can be recursively performed using the core

computation expressed in (2.13) [2]. Using Jacobian logarithm twice [30], the core

operation),(21 xxf becomes

()|)||,(||)||,min(|)(),(2121
2

1i
i21 xxgxxxsignxxf +×= ∏

=
, (2.14)

where ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+

+
=

−−

+−

yx

yx

e1

e1yxg ln),(, 0x ≥ , and 0y ≥ . It can be seen from Fig. 2.2 that

0yxg ≤),(. Hence, |)||,min(||),(| 2121 xxxxf ≤ and ()|||),,(| min, i

v

1i
v1v1 xxxxf

=
− ≤L . Based on

the observation, two widely used near optimum decoding algorithms, scaled Min-Sum

algorithm (MSA) and offset Min-Sum algorithm [24][25][26], can be obtained. Because

they are approximations of BP algorithm, the overall decoding procedure is similar to the

12

standard BP algorithm except that the check-to-variable message passing is replaced by

(2.15) and (2.16), respectively. The near optimum decoding performance can be obtained

with 750.=α and 150.=β in most cases.

||)sgn(min
\)(\)(

cn
vcNn

cn
vcNn

cv LLR
∈∈

××α= ∏ , (2.15)

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
β−×=

∈∈
∏ 0LLR cn

vcNn
cn

vcNn
cv ,||max)sgn(min

\)(\)(
. (2.16)

0
2

4
6

0
2

4
6

-0.6
-0.4
-0.2

0

Mesh of g(x,y)

g(
x,

y)
=l

n(
ex

p(
-|x

+y
|)/

ex
p(

-|x
-y

|))

-0.6

-0.6

-0.6

-0.6

-0.6-0.5

-0.5

-0.5
-0.5

-0.5

-0.5-0.4

-0.4

-0.4 -0.4

-0.4

-0.4-0.3

-0.3

-0.3 -0.3

-0.3

-0.3
-0.2

-0.2

-0.2

-0.2

-0.2

-0.2

-0.1

-0.1

-0.1 -0.1

-0.1

-0.1

0

0 0 0 0

Contour of g(x,y)

0 1 2 3 4 5 6
0

2

4

6

Figure 2.2 The mesh and contour plot of),(yxg .

13

2.4 BCJR Algorithm Based Decoding Approach

As suggested by Mackay in [5], the check-to-variable message can also be

computed by use the forward-backward algorithm [3]. The detailed computation

approaches using the BCJR algorithm were elaborated by Zhang and Mansour

[46][50][51]. The 1-components of a row in H matrix define a single parity-check (SPC)

code. The LDPC code is defined by the concatenation and intersection of all SPC code. A

two-state trellis can be drawn for a SPC code as shown in Fig. 2.3. The state of the trellis is

the binary summation of corresponding digits. The state of the source at time t is denoted

by tS . The source starts in the initial state 0St = , and produces an output sequence

.,,, T21
T
1 cccc L= ending in the terminal state 0ST = . The received sequence is

.,,, T21
T
1 yyyy L=)(mtα and)(mtβ are forward and backward state metric, respectively.

),'(mmtγ denotes the path metric at time t from 'mS 1t =− to mSt = .

s0 st-1 st+1

c1 ct ct+1

y1 yt yt+1

1λ

1λ

2λ 2λ

11100 λ=γ=γ),(),(

20110 λ=γ=γ),(),(

state=0

state=1

)(0tα
)(0tβ

)(1tα
)(1tβ

Figure 2.3 The two-state trellies of a SPC code.

Following the standard BCJR algorithm, it can be shown that,

∑

∑

∑∈ −

∑∈ −

==

==
=

=

=
=

=

=

1
tmm

T
1t1t

0
tmm

T
1t1t

T
1t

T
1t

T
1t

T
1t

ymSmSp

ymSmSp

y1cp

y0cp

y1c

y0c

),'(

),'(

),,'(

),,'(

],[

],[

]|Pr[

]|Pr[(2.17)

14

where, ∑0
t is the set of all state paris that correspond to the input bit 0ct = at time t.

Similarly, ∑1
t is the set of all state paris that correspond to the input bit 1ct = . The

equation (2.17) can be rewritten as (2.18).

∑

∑

∑∈ −

∑∈ −

βγα

βγα
=

=

=

1
tmm tt1t

0
tmm tt1t

T
1t

T
1t

mmmm

mmmm

y1c

y0c

),'(

),'(

)(),'()'(

)(),'()'(

]|Pr[

]|Pr[, (2.18)

where

∑ γα===α −
'

)),'()'(,()(
m

t1t
t
1tt mmmymSpm (2.19a)

∑ γβ===β ++
'

)',()'()|()(
m

t1tt
T

1tt mmmmSypm (2.19b)

)'|,(),'(mSymSpmm 1tttt ===γ − (2.19c)

The boundary conditions are 100 T0 =β=α)()(and 011 T0 =β=α)()(. For the convenience

of implementation, equations (2.18) and (2.19) can be reformulated in log-domain. After

some mathematical manipulation, equation (2.20) can be obtained.

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

=

=

]|Pr[

]|Pr[
ln

T
1t

T
1t

y1c

y0c

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=
=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=
=

=
∑

∑

∑∈
β+−α

∑∈
β+−α

1
tmm

mtm1t

0
tmm

mtm1t

tt

tt

t

t

e

e

1cyp
0cyp

1c
0c

),'(
)()'(

),'(
)()'(

ln
)|(
)|(

ln
)Pr(
)Pr(

ln (2.20)

The extrinsic information expressed in the last portion of (2.20) is the check-to-

variable information. The variable-to-check information is fed to the check node as the a

priori information for computing the branch metric),'(mmtγ . For VLSI implementation,

the metric differences rather than the absolute metrics are used to reduce the memory

requirement for state metrics and maximize the dynamic range of the metrics. The BCJR

algorithm for check node computation can be viewed as a different data scheduling in

15

belief propagation algorithm. Therefore, the decoding approach discussed in the section is

equivalent to the belief propagation algorithm presented in Section 2.2.

2.5 Bit Flipping and Weighted Bit Flipping Based Algorithms

In the early 1960s, the Bit-Flipping (BF) algorithm [1] was introduced. It has very

low decoding complexity since only simple logical operations are needed. However, it

suffers from significant performance loss from those soft decoding approaches such as the

SPA and various MSAs. To narrow the performance gap, a weighted Bit-Flipping (WBF)

algorithm [21] was proposed, in which reliability information was incorporated.

The decoding procedures of WBF-based algorithms include an initialization and a

number of iteration steps. In the initialization of the original WBF algorithm, the reliability

of each parity check equation is calculated using (2.18) and a binary hard-decision is made

for each bit. In an iteration step, two computation steps, check-sum updating and bit

flipping, are performed. In the check-sum updating step, the check-sum vector is given by

(2.19). If s = 0, the decoding procedure is terminated and z is taken as the estimated

codeword. In the bit-flipping step, a weighted check sum is computed as (2.20) for each bit

position n. The hard-decision bit lz corresponding to the maximum nE is flipped. The

index value l is given by (2.21).

],[|,|min
)(

M1myw i
mNi

m ∈=
∈

 (2.18)

TzHs = (2.19)

],[,)(
)(

N1nw1s2E
nMj

njn ∈−= ∑
∈

 (2.20)

nN1nll Elwhere1zz],[maxarg,, ∈=⊕= (2.21)

To further reduce the performance loss, the modified WBF (MWBF) algorithm [27]

was proposed by incorporating both the check constraint messages and the intrinsic

16

message for each bit. The weighted check sum is computed using (2.22) instead of (2.20)

in the bit-flipping step. The optimal value of α varies for different codes and decreases

slowly as the SNR increases.

],[,||)(
)(

N1nyw1s2E
nMj

nnjn ∈α−−= ∑
∈

 (2.22)

Further improvements were presented in [64] and [65]. The improved modified WBF

(IMWBF) algorithm discussed in [65] has the best decoding performance in general and

largest complexity among these modifications of WBF algorithm. The IMWBF algorithm

adopts (2.23) to calculate the reliability of each parity check equation in the initialization

and (2.24) to compute the weighted check sum for each bit in the bit flipping step.

)(],,[|,|min
\)(

mNnM1myw i
nmNi

nm ∈∈=
∈

 (2.23)

],[,||)(
)(

N1nyw1s2E
nMj

nnjjn ∈α−−= ∑
∈

 (2.24)

17

3 MEMORY-EFFICIENT DECODER ARCHITECTURE

In general, LDPC codes achieve outstanding performance only with large code word

lengths (e.g., bitsN 1000≥). Thus, the memory part normally dominates the overall

hardware of a LDPC codec. A memory efficient serial decoder was presented in [34]. The

decoding throughput of each tile is less than 5.5Mbps. Partially parallel decoder

architectures, which can achieve a good trade-off between hardware complexity and

decoding throughput, are more appropriate for practical applications. This chapter depicts a

memory efficient partially parallel decoder architecture for high rate QC-LDPC codes,

which exploits the data redundancy of soft messages in the Min-Sum decoding algorithm.

In general, over 30% memory can be saved. In addition, the proposed architecture can be

extended to other block-based LDPC codes, e.g., (general) permutation matrix based

LDPC codes.

3.1 The Performance of High Rate QC-LDPC Code

For LDPC codes with the same size of H matrix, the error floor is significantly lower

when the variable node degree is increased. Fig. 3.1 shows the Bit Error Rate (BER) and

Frame Error Rate (FER) of two (4608, 4096) rate-8/9 regular QC-LDPC codes with

variable node degree 3 and 4, respectively. The scaled Min-Sum algorithm with a scaling

factor 0.75 is used in the simulation. It can be seen from Fig. 3.1 that the BER and FER of

the code with variable node degree 4 is more than an order of magnitude lower than that of

the code with variable node degree 3 at SNR=4.5dB. In conventional designs, more

memories are needed to store the extrinsic messages for a code with larger variable and

check degree. We proposed a memory efficient partially parallel architecture that only

causes negligible increase of memory size when the density of 1-entries in the H matrix is

increased.

18

Figure 3.1 BER/FER performance of the (4608, 4096) QC-LDPC codes.

3.2 The Rearranged (Scaled) Min-Sum Algorithm

In the modified Min-Sum decoding algorithm, two classes of computation units, the

variables nodes and the check nodes, iteratively exchange soft messages with each other

through the edges in the Tanner graph. In the check-to-variable message updating phase,

each check node c computes the check-to-variable messages cvR with variable-to-check

messages cvL as (2.15) which is written as (3.1)

|,|)sgn()(

\)(

)(

\)(

)(min 1k
cn

vcNn

1k
cn

vcNn

k
cv LLR −

∈

−

∈
××α= ∏ (3.1)

where α is a scaling factor. The superscript (k) is used to indicate that the data is

generated in the k-th iteration.

In the variable-to-check message updating phase, each variable node v computes the

cvL messages using the cvR messages and the intrinsic messages vI using (2.9). The

equation (2.9) is rewritten in (3.2).

19

.
\)(

)()(
v

cvMm

k
mv

k
cv IRL += ∑

∈
 (3.2)

In the conventional decoding procedure, two classes of extrinsic messages in their

individual form are involved. On the other hand, it can be observed from (3.1) that the

magnitudes of the cvR messages corresponding to one row of H matrix have only two

possible values. By extending the idea presented in [47] and [51], a rearranged decoding

procedure of the Min-Sum algorithm is developed to reduce the memory requirement for

extrinsic messages. The new decoding procedure is expressed as follows.

,||)sgn(min
\)(\)(

)(
n

vcNn
n

vcNn

1
cv IIR

∈∈
××α= ∏ (3.3)

,||)sgn()()(

\)(\)(

)()()(min 1k
cn

1k
n

vcNmvcNn

1k
cn

1k
n

k
cv RSRSR −−

∈∈

−− −×−×α= ∏ (3.4)

.
)(

)()(∑
∈

+=
vMm

k
mvv

k
v RIS (3.5)

In the)(k
cvR message updating phase, the required inputs cvMnL 1k

cn \)(,)(∈− , are

not directly retrieved from memory. Instead, they are computed using)()(1k
cn

1k
n RS −− − as

shown in (3.4). The regular variable-to-check message updating phase is replaced by the

column sum updating phase. The column sum vS is calculated using (3.5) and stored in

memory. Based on the new decoding procedure, optimized low complexity decoding

architectures are developed.

3.3 The Memory Efficient Decoder Architecture

In the proposed design, the check-to-variable messages cvR and the column sum vS

are stored in separated memories. All the cvR messages corresponding to one row of H

20

matrix are stored in a compressed form to significantly reduce memory requirement. In

general, the parity check matrices H of QC-LDPC codes contain cyclically shifted identity

submatrices, zero sub-matrices and compound circulant submatrices. Each of the

compound matrices consists of 2 superimposed cyclically shifted identity matrices. For

simplicity, the cyclically shifted identity matrix and the compound circulant matrix are

called weight-1 and weight-2 circulant matrix, respectively. We will deal with various

cases in the following.

3.3.1 Parallel Decoder Architecture for H Matrix Consisting of

Weight-1 Circulant and Possible Zero Submatrices

Fig. 3.2 shows the decoder architecture for QC-LDPC codes with H matrix

consisting of weight-1 circulant matrices and possible zero matrices. The R-memory

module is used to store the cvR messages. The messages corresponding to one row of H

matrix are stored into one entry of R-memory in a compressed form with four elements.

1) The smallest magnitude m1.

2) The second smallest magnitude m2.

3) The index of the smallest magnitude index.

4) The signs of all soft messages of the row.

To recover the individual cvR messages from their compressed forms, data

distributor is introduced. Each S-memory and I-memory modules are used to respectively

store the column sum vS and the intrinsic messages vI corresponding to a block column of

the H matrix. The Check-Node Unit (CNU) performs the computation expressed in (3.3)

and (3.4) in the check-to-variable message updating phase. The Variable-Node Unit (VNU)

works in both decoding phases. It performs the computation)()(1k
cn

1k
n RS −− − in the)(k

cvR

message updating phase and performs (3.4) in the column sum)(k
vS updating phase. The

21

column sum vS is accumulated for each column of H matrix. The decision and parity

equation check unit is introduced for tentative decision and parity check computation.

Figure 3.2 The partially parallel decoder architecture for H matrix containing weight-1

and possible zero submatrices.

To facilitate multiple data accesses per clock cycle in a p-parallel (p>1) architecture,

the data in p adjacent rows or columns are stored into one memory entry. In the R-memory,

check-to-variable messages cvR in p adjacent rows are stored in one R-memory entry.

Similarly, in one S-memory (I-memory) entry, column sums vS (intrinsic messages vI) in

p adjacent columns are stored in one memory entry. Because the data stored in the R-

memory are in the row order while the data stored in the S-memory are in the column order,

data scheduling and reverse scheduling units are introduced to resolve the data access

conflicts. In Fig. 3.2, for clarity, we use one symbol (e.g., adder, MUX, and data

distributor) to represent p components for parallel processing case.

22

Assuming that the H matrix is a KJ × block matrix, each submatrix is a tt ×

weight-1 circulant matrix, and p-parallel processing is adopted, the message updating

procedure is as follows. In initialization, the intrinsic messages in I-memory are dumped

into S-memory for iterative decoding. It takes ⎡ ⎤pt / clock cycles. In the thk iteration, 2

phases of decoding are performed.

In check-to-variable message updating phase, for each row c , two kinds of messages

)1(−k
cvR and)1(−k

vS , where)(cNv∈ , are sent to K VNUs via the path indicated by the dashed

line in Fig. 3.2. Then, all of the intermediate results)1(−k
cvL calculated by the K VNUs are

sent to a CNU. Finally, the compressed)(k
cvR messages are generated and stored into one

entry of the R-memory. It takes ⎡ ⎤)/(1ptJ +× clock cycles.

In the column sum updating phase, the summation of vI and)(k
cvR messages for each

column v of H matrix is accumulated. For each row c, the compressed)(k
cvR messages are

read out from R-memory module. Next, the individual)(k
cvR messages recovered by the data

distributor are sent to K VNUs for accumulating)(k
vS messages via the path indicated by

the solid line. If c is in the first block row, vI and cvR are added together and stored in S-

memory. When c is in other block rows, cvR is accumulated to vS . At the end of this

phase, the final column sum)(k
vS corresponding to all columns of the H matrix are

accumulated in the K S-memory modules. ⎡ ⎤)/(1ptJ +× clock cycles are needed for this

phase.

If the maximum iteration number is set to n, totally, it takes

⎡ ⎤ ⎡ ⎤)/(/ 1ptJ2npt +×××+ clock cycles to complete the decoding for one code block.

If H matrix contains zero submatrices, data received by the CNU and VNUs

corresponding to zero submatrices must be filtered out. Therefore, additional data path for

23

zero matrices are introduced as the following. When computing cvR messages, the largest

positive value M determined by the word length of soft message is sent to the CNU from

the inserted MUXs. According to (3.4), the value M has no effect on the computation in the

check-to-variable message updating phase. When accumulating column sum vS , to avoid

adding an undesired data to the summation, the write enable signal w_en for the associated

S-memory must be disabled. Apparently, if the H matrix only consists of weight-1 circulant

matrices, all the MUXs connected to the CNU can be removed.

Fig. 3.3 shows the structure of data distributor which is introduced to convert the cvR

messages corresponding to a row of H matrix into their true values. The data read from an

R-memory entry is composed of four elements as mentioned before. On the output side, the

relative location of m2 is determined by the index decoder. m1 is distributed to other

locations. Because the order of the sign bits in signs part is the same as that of the cvR

messages corresponding to a row of H matrix, the sign bits can be simply distributed. It is

convenient to use two's complement data representation in column sum computation.

Therefore, sign-magnitude to two's-complement conversion unit is needed at input of

VNU.

For a quantitative comparison of the memory size between the proposed architecture

and the conventional approaches [38][43] [53] [55], let us consider a (4608, 4096) (4, 36)

rate 8/9 regular QC-LDPC code designed for read channel. In the traditional approaches,

the two classes of messages in their true values are alternately stored into the common

extrinsic memory modules. Assuming that 6-bit quantization is used, the required

memories are summarized in Table 3.1 and Table 3.2. It can be seen that the total memory

for R-memory, S-memory, I-memory and estimated codeword is 163k bits with the

proposed approach. The total required memory for the extrinsic messages, intrinsic

messages and estimated codeword is 258k bits using conventional approaches. Thus,

24

nearly 37% of memory is reduced in this case. If the code rate is not so high, the memory

savings in percentage would be relatively smaller. In general, for high rate LDPC codes,

e.g., rate > 2/3, more than 30% of memory reduction can be achieved with the proposed

architecture.

Figure 3.3 The structure of data distributor.

 TABLE 3.1 MEMORY NEEDED BY THE PROPOSED ARCHITECTURE

Memory Component Memory Size (bits)
The R-memory modules (DP) 128x4x2x(5*2+36+6)=53,248
The S-memory modules (DP) 128x36x2x(6+2)=73,728
The I-memory modules (SP) 128x36x1x6=27,648

The decoded bits (DP) 128x36x2x1=9,216
 Total=163,840

TABLE 3.2 MEMORY NEEDED BY THE TRADITIONAL APPROACHES

Memory Component Memory Size (bits)
The extrinsic memory modules (DP) 128x36x4x2x6=221,184
The intrinsic memory modules (SP) 128x36x1x1x6=27,648

The decoded bits (DP) 128x36x2x1=9,216
 Total=258,048

In the above discussion, dual-port memories are used to support simultaneous

memory read and write operations for each memory bank. Because adjacent memory

entries are sequentially accessed (for read or write operation), we can also use a single-port

memory and two buffers as shown in Fig. 3.4 to support simultaneous two memory

accesses. The data width of the single-port memory needs to be doubled compared to that

25

of the ReadData port. The memory access data flow is as the follows. At cycle kc , both

port ReadData and buffer D1 get data from the same entry of the single-port memory. In

the same time, data is written from port WriteData to buffer D2. At next cycle 1+kc , port

ReadData gets data from buffer D1. Simultaneously, data from port WriteData and buffer

D2 are written back into the same entry of the single-port memory. This procedure is

repeated in following cycles. In this way, the needed hardware size for a memory bank is

significantly reduced compared to that of using dual-port memories.

Figure 3.4 The structure of single-port memory supporting simultaneous read and write
operation.

3.3.2 Architecture for H Matrices with Weight-1, Weight-2 Circulant

Matrices and Zero Matrices

We next discuss a more general case in which H matrix may also contain a small

portion of weight-2 submatrices. Similar to the method illustrated above, for p-parallel

processing, messages corresponding to p adjacent rows (columns) are stored in one

memory entry. For each weight-2 circulant matrix, 2p messages stored in both S-memory

and R-memory are accessed at each clock cycle in both decoding phases. The tricky issue

of partially parallel processing is how to schedule the data order for the 2p messages. Each

weight-2 circulant matrix can be decomposed into two weight-1 submatrices.

Consequently, the parallel processing techniques discussed before can be utilized.

26

The decoder architecture for LDPC codes with H matrices containing weight-1,

weight-2 circulant matrices and zero matrices is shown in Fig. 3.5. Because the matrix

decomposition method is used, a new block row with zero submatrices and a small portion

of weight-1 circulant submatrices is introduced for each original block row in the H matrix.

Thus, to generate check-to-variable messages cvR from the data corresponding to the two

decomposed rows, an additional processing unit, CNUb, is needed for the new block row.

For the considered H matrix, the number of the block columns containing weight-2

circulant matrices is small. By block column permutation, these block columns can be

arranged together. In this way, the size of CNUb is much smaller than CNUa. The final

compressed cvR messages corresponding to one row of H matrix are assembled by the

merge unit using the outputs from the two CNUs. To facilitate distributing the cvR

messages from the compressed form to two decomposed rows, 6 elements in the

compressed message for one row are needed, i.e., 1) the smallest magnitude m1, 2) the

second smallest magnitudes m2, 3) and 4) the index of the smallest magnitude for the two

decomposed row I_a, and I_b, 5) and 6) the sign bits for the two decomposed row sgn_a

and sgn_b. The second data distributor is introduced to distribute cvR message onto the

shorter decomposed block rows. If the index of the second smallest magnitude for a

decomposed row is set to an invalid value by the merge unit, only the smallest magnitude

can be distributed to that row.

For a block column containing weight-2 circulant matrix, to recover the two

variable-to-check messages cvL at each clock cycle, two VNUs are needed. Similarly, two

message accumulation operations are performed at each clock cycle in the vS message

updating phase. Therefore, for S-memory, either two-port memory with the technique

discussed in Section 3.3.1 or register array is required to support two read and two write

operations in the same clock cycle. On the other hand, if most of block columns of the H

27

matrix containing weight-2 circulant matrices, the presented approach is not suited in the

sense of area-efficiency. Instead, the architecture proposed in [36] can be employed.

Figure 3.5 The decoder architecture for H matrix containing weight-2 circulant matrices

There is a special case for the p-parallel processing. For a weight-2 circulant matrix,

if the difference between the two cyclic shifting offsets is less than p/2, the two cvR

message corresponding to two 1-entries in one column may need to be added together and

accumulated into the summation in one clock cycle. Thus, a multiplex network is needed to

select different structures of VNU.

3.4 Optimization on the Partially Parallel Decoder Architecture

3.4.1 The Optimized CNU

The critical task of CNU is to find the two smallest magnitudes from all input data

and identify the relative position of the input data with the smallest magnitude. In this

28

section, an optimized 22× Pseudo Rank Order Filter (PROF) is proposed. Then, an

efficient CNU based on the PROF is presented to minimize hardware complexity.

The 22× PROF sorts two presorted sequences and decides which sequence

containing the smallest data with respect to their magnitudes. Only the smallest and the

second smallest magnitudes are sent out. Fig. 3.6 shows the architecture of the PROF.

Input [a2 a1] and [b2 b1] are two presorted sequences such that 12 aa ≥ and 12 bb ≥ . All

elements in the two input sequences are non-negative number. On the output side, m1 and

m2 stand for the smallest and the second smallest input data, respectively. index is used to

indicate which group contains the smallest input data. Its value is 0 if the smallest input is

in the group [a2 a1], otherwise, it is 1. It can be observed that the smallest magnitude must

be either a1 or b1. The second smallest magnitude can be selected from a2, b2, and the

intermediate comparison result of a1 and b1. Therefore, only one stage compare-and-swap

unit plus a very simple combinational logic is used to perform the task of the PROF.

Figure 3.6 The structure of pseudo rank order filter.

The architecture of a CNU with eight inputs is shown in Fig. 3.7. Input data are

variable-to check messages and represented in sign-magnitude format. On the output side,

the scaled smallest and second smallest magnitude, the relative position of the second

29

Figure 3.7 The architecture of the optimized CNU.

smallest magnitude, and the signs of all data computed in (3.4) are denoted as m1, m2,

index, and signs, respectively. In Fig. 3.7, the part above the dash-dotted line performs the

data sorting task. The compare-and-swap unit is used to compare two input data. If the

larger magnitude is in the upper position, the comparison result indicated by the dashed

line is 1, otherwise, it is 0. In the same time, the larger magnitude is placed at upper output

position. In the optimized CNU, the bits of index are aggregated stage by stage. To

illustrate the aggregation procedure, let us assume that the input data with the smallest

magnitude has an index of 101. In the first stage, the comparison result of the third

compare-and-swap unit (from top to bottom) is 1. In the second stage, the index bit of the

second PROF is 0. In the same time, it is used to select the index bit generated by the

previous stages. Therefore, the aggregation result after the second stage is “10”. In the

final stage, the index bit of the PROF is 1. This index bit is used to select the “10”

generated from the previous stages. In this way, the final value of index is “101”. The part

below the dash-dotted line is for computing the sign bit of each cvR message as in the

30

conventional approaches. The relative position of each computed sign bit is not changed

when they are grouped together. To reduce the critical path of CNU, pipeline stages are

inserted as indicated by the vertical dashed lines.

3.4.2 The Optimized Data Scheduling Unit

The data scheduling (reverse scheduling) unit plays the key role in the partially

parallel processing architecture. In [47], a component performing a similar task was

implemented with a combination of data concatenation unit and cyclic shifter, which

significantly increases the hardware cost and computation latency. In this chapter, an

efficient data scheduling unit is proposed by exploiting the structure of LDPC codes. For

QC-LDPC codes, the number of non-zero matrices in one block column of H matrix is

very limited, typically around four. It implies that the number of cyclic shift patterns in a

block column is limited. Hence, a very simple switching block can be employed to resolve

the data access conflict for each circulant matrix. If there are W non-zero matrices in a

block column of H matrix, W switching blocks are needed for the block column. Thus, a

W:1 multiplexer is used to select a switching block for a circulant permutation matrix.

To illustrate the design of data scheduling unit, let us use a 1313× circulant matrix

with shift offset 7 without loss of generality. Fig. 3.8(a) shows the structure of data

scheduling unit for 4-parallel processing. It has four inputs indicated by I1…I4 and 4

outputs indicated by O1…O4. The corresponding data flow is shown in Fig. 3.8(b). At

clock cycle 0, 4 messages corresponding to row 0, 1, 2, and 3 are sent to the input of the

switch block. Their column indices are 7, 8, 9, and 10. At cycle 1, messages corresponding

to row 4, 5, 6, and 7 are sent to the input. Their column indices are 11, 12, 0, and 1. The

control signal for MUX array is set to “00”. The messages with column indices 8, 9, 10,

31

and 11 can be outputted. At cycle 2, the outputted message is for the last column 12. The

other three values are discarded. Other entries in the figure can be read in a similar way. It

can be seen that the input messages are from 4 adjacent rows and the output messages are

for 4 adjacent columns. The scheduling unit introduces one clock cycle delay from input to

output. The data reverse scheduling unit can be designed in a similar way. In the proposed

decoder architecture, the two message updating phases are not overlapped. Due to the

similarity in the structure of data scheduling and reverse scheduling units, the two

components can be combined into one unit. It works alternately in the two message

updating phases.

Figure 3.8 The data scheduling unit. (a) structure (b) data flow

It should be mentioned that overlapping the two decoding phases will nearly double

the decoding throughput while introducing some extra hardware. In addition, the proposed

32

architecture can be extended to other block–based LDPC codes such as general

permutation matrix based LDPC codes.

3.4.3 The Optimized Data Merge Unit

Fig. 3.9 shows the architecture of the optimized data merge unit to calculate the

smallest magnitude and the second smallest magnitude from the outputs of the two CNUs.

On the input side, the data set a_m1, a_m2, a_I, a_sgn and a_sgn_prod are the output of

CNUa, which represent the smallest and the second smallest magnitude, the index of the

second smallest magnitude, the sign bits and the product of sign bits. The data set b_m1,

b_m2, b_I, b_sgn and b_sgn_prod are the output of CNUb in the same meaning. On the

output side, the index I_a and I_b are used to control the data distribution for the two

decomposed rows, respectively. If the smallest magnitude needs to be distributed to all the

positions of a decomposed row, the index value for the decomposed row is set to a value z,

where z is larger than the number of submatrices in this decomposed row. Otherwise, the

index value shows the position to which the second smallest magnitude will be distributed.

33

Figure 3.9 The structure of the merge unit.

3.5 Summary

A memory efficient partially parallel decoder architecture suited for (modified) Min-

Sum decoding algorithm for QC-LDPC codes is proposed. By rearranging the decoding

procedure of the Min-Sum algorithm and exploiting the data redundancy of extrinsic

messages, generally over 30% memory reduction can be achieved over traditional designs.

To minimize the computation delay, a low complexity CNU is developed. To facilitate

parallel processing, an efficient data scheduling structure is proposed. The approach

facilitates the applications of high variable degree and/or high rate LDPC codes in

area/power sensitive high speed communication systems.

34

4 EFFICIENT VLSI DESIGN OF HIGH THROUGHPUT LDPC

DECODERS

In the next generation communication systems, the target data rates range from a few

hundred Mbit/sec to several Gbit/sec. To achieve those very high decoding throughput, a

large amount of computation units are required. Because of the very high decoding

parallelism, a complex interconnect network is required which consumes a significant

amount of silicon area and power. In a pioneer design of high throughput LDPC decoder

[57], the power dissipation of the decoder was largely determined by the switching activity

of these wires. The utilization of chip area was only 50%.

In this chapter, design issues for high throughput LDPC decoders are discussed.

Three LDPC decoder architectures which are accommodated to different types of LDPC

codes and implementation technologies are presented. We propose an algorithmic

transformation to facilitate the significant routing complexity reduction for LDPC

decoders. Based on the algorithmic transformation, an efficient message passing decoder

architecture for permutation matrices based LDPC code is proposed. Then, by exploiting

the regularity in parity check matrices of QC-LDPC codes, we develop a high-throughput

low-complexity decoder architecture for generic QC-LDPC codes. Finally, we demonstrate

an FPGA implementation of a low complexity, high speed decoder for Euclidean geometry

(EG) based QC-LDPC codes.

4.1 Efficient Message Passing Architecture

Recently, several techniques were introduced to reduce the total amount of

interconnect wires in high throughput LDPC decoders. In [58], message passing of SPA

was rescheduled. A check node only broadcasts a summation message to its neighboring

35

variable nodes. The needed check-to-variable messages for a variable node are recovered

using check node summation messages and variable-to-check messages buffered in the

variable node itself. From the hardware implementation point of view, a lot of wires are

shared for message passing. In [59], SPA was further reformulated such that only

summation messages are passed among check nodes and variable nodes. Separate variable-

to-check messages are buffered in variable nodes. Similarly, separate check-to-variable

messages are buffered in check nodes. This scheme can significantly mitigate the routing

congestion in a high throughput LDPC decoder. However, because both computation units

and memory for soft messages are duplicated, the area and power efficiency are largely

sacrificed.

We propose an efficient message passing decoder architecture using MSA for

permutation matrices based LDPC codes [18]. MSA is reformulated to facilitate significant

reduction of routing complexity and memory usage. A high throughput decoder

architecture for permutation matrices based LDPC code is presented. To further reduce

hardware complexity, an optimized non-uniform quantization scheme using only 3 bit to

represent each soft message is investigated.

4.1.1 Efficient Message Passing Schemes with Min-Sum Algorithm

Reformulated Min-Sum Decoding Algorithm

To reduce the interconnect complexity mentioned before, MSA can be reformulated

for the following message passing scheme. In the variable-to-check message passing phase,

a variable node v does not send separate variable-to-check messages vcL to its neighboring

check nodes. Instead, the column sum, vL , is sent to its neighboring check nodes. In

addition, only vcS (i.e., the sign of vcL) computed in the previous iteration is sent to the

check node c, where,)(vMc∈ .

36

In a check node c, the)1(−k
cvR messages that computed in the th1k)(− iteration are

stored in a compressed format for recovering the needed input)(k
vcL for the thk iteration

using (4.1). The superscript (k) indicates that the data is generated in the thk iteration.

|)|()()()()()(1k
cv

1k
c

1k
vc

k
v

k
vc RSSLL −−− ××−= (4.1)

where,)(1k
cS − is the 1-bit product of vcS . In the check-to-variable message passing phase,

a check node c does not send out separate check-to-variable messages to its neighboring

variable nodes. Instead, all cvR messages are sent out in a compressed format, i.e., the

smallest magnitude, the second smallest magnitude, the index of the smallest magnitude,

and the 1-bit product of all vcS (denoted as cmin1 , cmin2 , cindex , and cS , respectively).

In a variable node v, the sign bits,)1(−k
vcS , are stored for recovering the needed input)1(−k

cvR in

the thk iteration using (4.2) and (4.3).

⎪⎩

⎪
⎨
⎧ == −

−
−

otherwise1min
indexVif2minR 1k

c

c
1k

c1k
cv)(

)(
)(,|| (4.2)

)()()()(1k
vc

1k
c

1k
cv SSRsign −−− ×= (4.3)

where, V is the index of the block column that the variable node v belongs to.

Fig. 4.1(a) illustrates the structure of a variable node unit (VNU). The inputs are

compressed check-to-variable messages from three CNUs. The needed)1(−k
cvR messages are

recovered by equal-and-select (E&S) unit using (4.2). In the output, the sign bit of each

)(1k
vcL − is sent to the check node c where,)(vMc∈ . The magnitude of each)(k

vcL is not

needed. Instead, only the column sum)(k
vL is broadcasted to its neighboring check node

units (CNUs). Fig. 4.1(b) shows the structure of a CNU performing (4.1) and (2.15). The

inputs are)(k
vL and)1(−k

vcS from six VNUs. The needed)(k
vcL messages are recovered using

37

(4.1). The compressed check-to-variable messages are broadcasted to its neighboring

VNUs.

+
-

-

-

MIN

-
-
-
-
-
-

Register

(a) (b)

sum

s

s

s

s,
min1,
min2,
index

E&S

E&S

E&S

Distributor

D

D

D

Figure 4.1 Computation units using reformulated Min-Sum algorithm.
(a) Variable node unit (b) Check node unit

The proposed approach significantly reduces the amount of outgoing wires of a

computation unit. For example, the H matrix of the LDPC code discussed in Section 4.1.2

has row weight 32 and column weight 6. If using 4-bit quantization, the conventional

method [44][56] needs 24 outgoing wires for a VNU and 128 outgoing wires for a CNU.

Using the proposed approach, one VNU needs (5+6)=11 outgoing wires; and one CNU

needs (5+3+3+1)=12 outgoing wires. Hence, 54% outgoing wires of each VNU and 90%

outgoing wires of each CNU are reduced. Thus, significant reduction of routing complexity

and memory usage can be obtained.

Reformulated APP-based Min-Sum Algorithm

To reduce decoding complexity, a posteriori probability (APP) based Min-Sum

algorithm was presented [24]. The variable-to-check and check-to-variable message

passing phases are formulated in (4.4) and (4.5), respectively.

38

mvvMmvvvc RILL ∑ ∈×α+==)((4.4)

||min)(\)(\)(ncvcNnncvcNncv LLsignR ∈∈ ×= ∏ (4.5)

To minimize the interconnect complexity, we can reformulate APP-based MSA for

the following message passing scheme. In the check-to-variable message passing phase, a

check node c only sends the smallest magnitude, the second smallest magnitude, and 1-bit

product of all)(vLsign (denoted as cmin1 , cmin2 , and cS , respectively) to its neighboring

variable nodes. The index of min1 is not needed.

In a variable node v, the)1(−k
vL message that computed in the thk)1(− iteration is

stored for recovering the needed input)1(−k
cvR in the thk iteration using (4.6).

⎪⎩

⎪
⎨
⎧ == −

−−−
− ,||,||)(

)()()(
)(

otherwisemin1
min1Lifmin2R 1k

c

1k
c

1k
v

1k
c1k

cv (4.6)

)()()()()(1k
v

1k
c

1k
cv LsignSRsign −−− ×= (4.7)

Fig. 4.2(a) illustrates the structure of a VNU. The inputs are compressed check-to-

variable messages from three CNUs. The needed)1(−k
cvR messages are recovered by E&S

unit using (4.6). In the output, the column sum)(k
vL is broadcasted to its neighboring

CNUs. Fig. 4.2(b) shows the structure of a CNU performing (4.5). The inputs are)(k
vL from

six VNUs. The outputs, min1, min2, and 1-bit S, are broadcasted to its neighboring VNUs.

39

+
MIN

(a) (b)

sum s
min1,

Register

E&S

E&S

E&S
min2

Figure 4.2 Computation units using APP-based Min-Sum algorithm. (a)
Variable node unit (b) Check node unit

4.1.2 Architecture for Permuation Matrices Based LDPC Codes

We use a (2048, 1723) permutation matrices based LDPC code [12] to illustrate the

efficient message passing architecture for LDPC decoder. The H matrix of the (2048,

1723) LDPC code is composed of 326 × submatrices. Each submatrix is a

6464× permutation matrix. To facilitate high throughput decoder design, we partition the

H matrix into 4 block columns. Each variable node in a block column is mapped to a VNU.

Hence, 4 variable nodes are mapped to one VNU. Each check node is mapped to an 8-input

folded CNU. It takes 4 clock cycles to complete the computation shown in (4.5) for 32

input data. The decoding method discussed in Section 4.1.1 is employed.

The structure of the 8-input folded CNU is shown in Fig. 4.3. Input data are variable-

to-check messages. Output data are min1, min2, and S. Each compare-and-swap unit

compares the magnitude of two input data and swaps the larger magnitude to its upper

output position. Each 22× pseudo rank order filter (PROF) compares 4 data from two

presorted vectors in parallel and outputs the smallest and the second smallest magnitude to

its lower and upper output position, respectively. The design details of PROF is provided

40

in Section 3.4.1. In the thk iteration, the intermediate values of check-to-variable messages

are stored in a scratch register R1. In the beginning of the thk)1(+ iteration, the final check-

to-variable messages given in the end of the thk iteration is stored into register R2. To

increase the clock speed of CNU, pipelining stages can be inserted. The structure of

variable node can be straightforwardly designed with (4.6), (4.7) and (4.4).

compare
& swap

PROF

XOR

compare
& swap

compare
& swap

compare
& swap

PROF

PROF

L0

L1

L7

PROF

S

min1

min2
R1

0 1

R2

D

0

1

D

CNU

 Figure 4.3 The structure of 8-input folded check node unit.

To elaborate the top-level decoder architecture, let us use a very short LDPC code as

an example. Its H matrix is shown in Fig 4.4. It is composed of 42× submatrices. Each

submatrix is a 33× permutation matrix. The H matrix is partitioned into 2 block columns.

41

=

1 1
11 1

1
1 1

1

111

11
1

11

1
1

1

1
1

1

1
H

Figure 4.4 The H matrix of an LDPC code example.

Fig. 4.5 shows the corresponding decoder architecture. The message passing

procedure in the thk iteration is as follows. In the first clock cycle, the 6 column sums of

the first block column are calculated by VNUs. Then, they are sent to 6 2-input folded

CNUs. In the same time, the 6 column sums are stored in L register array for recovering

cvR messages needed in the next iteration. Each CNU processes 2 data for a check node.

The intermediate computation results are stored in R1 register array. In the second clock

cycle, similar computations are performed using the data corresponding to the second

block column. After the thk iteration is completed, the final results of check-to-variable

messages are sent to R2 register array for the next iteration.

It can be observed from Fig. 4.5 that no separate variable-to-check and check-to-

variable messages are transferred. Each VNU sends out only one summation data to

multiple CNUs; and each CNU sends out only one compact data to multiple VNUs.

42

CNU

VNU VNU VNU VNU VNU VNU

CNU

CNU

CNU

CNU

CNU

R2
R1

L L L L L L

R2
R1

R2
R1

R2
R1

R2
R1

R2
R1

Figure 4.5 Decoder architecture for the example code.

4.1.3 Further Complexity Reduction with Non-uniform Quantization

To further reduce routing and computation complexity, we can consider reducing

word length, which will directly lead to linear reduction in routing complexity and memory

usage. However, using less quantization bits usually leads to performance loss. Non-

uniform quantization schemes for SPA were studied [45] [60] to mitigate the performance

loss of finite precision implementation. In this section, an optimized non-uniform

quantization scheme for MSA using only 3 bits to represent each message is investigated.

The simulation result for the (2048, 1723) code is shown in Fig. 4.6. It can be

observed that only 0.25dB performance loss from floating-point SPA is caused when the

target BER is 710− . The maximum iteration number is 24. The details of the non-uniform

quantization scheme using 3 bits for MSA decoding are as follows. 1) Each received soft

message is quantized using non-uniform boundaries optimized for performance. In

practice, the non-uniform quantizing boundaries can be obtained through simulation.

Assuming that the binary bits of an LDPC codeword are transmitted over AWGN channel

43

with BPSK mapping from {0,1} to {1,-1}, the quantizing boundaries for the (2048, 1723)

code are depicted in Table 4.1. It is assumed that each received symbol x from the front

end of receiver is originally quantized using 5:4 quantization scheme [37], in which 5 bits

are used to represent each data. 2) In the check-to-variable message passing phase, data in

the non-uniform format are directly used in (4.5). 3) In the variable-to-check message

passing phase, two kinds of look-up tables are needed. One is for converting 2-bit

magnitude of an input data of (4.4) from non-uniform to two’s complement format. The

other is for converting the magnitude of the column sum from 2’s complement to 2-bit

non-uniform format. Table 4.2 shows the details of the data conversion for the (2048,

1723) code. Please note that sign bit of each data is not changed and all intrinsic and

extrinsic soft messages stored in memory are in 3-bit. The scaling factor α of (4.4) is

chosen to be 0.5.

Figure 4.6 BER and FER of various decoding approaches (24 iterations)
for the (2048, 1723) LDPC code.

44

TABLE 4.1 3-BIT QUANTIZATION FOR RECEIVED SYMBOL

The Range of Received Symbol Quantization Output
8/6≥x 011

8/38/6 ≥> x 010
16/38/3 ≥> x 001
016/3 ≥> x 000
16/30 −≥> x 100

8/316/3 −≥>− x 101
8/68/3 −≥>− x 110

x>− 8/6 111

TABLE 4.2 DATA CONVERSION BETWEEN UNIFORM QUANTIZATION
AND NON-UNIFORM QUANTIZATION.

Non-uniform to uniform Uniform to non-uniform
Input Output Input Output
000 1 02 ≥≥ x 000
001 3 26 >> x 001
010 6 6x10 ≥> 010
011 10 10≥x 011
100 -1 02 <≤− x 100
101 -3 26 −<<− x 101
110 -6 6x10 −≤<− 110
111 -10

10x −≤ 111

4.2 Layered Decoding Architecture for Quasi-Cyclic Codes

In practice, QC-LDPC codes have been considered for many applications. We

present a high-throughput low-cost layered decoding architecture for generic QC-LDPC

codes. In this design, row permutation approach is proposed to significantly reduce the

implementation complexity of interconnect network. An approximate layered decoding

approach is explored to increase clock speed and hence to increase the decoding

throughput. An efficient implementation technique which is based on Min-Sum algorithm

is employed to minimize the hardware complexity. The computation core is further

optimized to reduce the computation delay.

45

4.2.1 Row Permutation of Parity Check Matrix of QC-LDPC Codes

The parity check matrix of a QC-LDPC code is an array of circulant submatrices. To

achieve very high decoding throughput, an array of cyclic shifters are needed to shuffle

soft messages corresponding to multiple submatrices for check nodes and variable nodes.

In order to reduce the VLSI implementation complexity for the shuffle network, the

shifting structure in circulant submatrices is extensively exploited. Suppose the parity

check matrix H of a QC-LDPC code is a CJ × array of pp× circulant submatrices. With

row permutation, it can be converted to a form as shown in (4.8).

 ,

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

σσσσ

σσσσ
=

m
p

Cm
p

3m
p

2m
p

1

C321

C321

P

AAAA

AAAA
AAAA

H

L

MOMMM

L

L

 (4.8)

where σ is a pp × permutation matrix representing a single left or right cyclic shift. The

submatrix j
iAσ can be obtained by cyclically shifting the submatix)1(−j

iAσ for a single

step. iA is a pmJ × matrix determined by the shift offsets of the circulant matrices in block

column i (i=1,2,…C), m is an integer such that p can be divided by m.

For example, the matrix aH shown in Fig. 4.7 is a 32× array of 88 × cyclically

shifted identity submatrices. With the row permutation described bellow, a new matrix bH

shown in Fig. 4.8 can be obtained, which has the form shown in (4.8). First, the first 4 rows

of the first block row of aH are distributed to 4 block rows of bH in a round-robin fashion

(i.e., the row 1, 2, 3, 4 of aH are distributed to row 1, 5, 9, 13 of bH). Then the second 4

rows are distributed in the same way. The permutation can be continued until all rows in

the first block row of matrix aH are moved to matrix bH . Then the second block row of

aH are distributed in the same way. It can be seen from Fig. 8 that bH has the form

shown in (4.8). In the above example, the row distribution is started from the first row of

46

each block row. In general, to distribute a block row to a new matrix, the distribution can

be started from any row of the block row.

For an LDPC decoder which can process all messages corresponding to the 1-

components in an entire block row of matrix PH (e.g. bH in Fig. 4.8), the shuffle network

for LDPC decoding can be implemented with very simple data shifters.

Figure 4.7 An array of circulant submatrices.

Figure 4.8 Permuted matrix.

4.2.2 Approximate Layered Decoding Approach

Recently, layered decoding approach [49] [50] [52] has been found to converge

much faster than conventional TPMP decoding approach. With layered decoding approach,

47

the parity check matrix of an LDPC code is partitioned into L layers: []T
L

TTT HHHH ⋅⋅⋅= 21 .

The layer tH defines a supercode tC and the original LDPC code is the intersection of all

supercodes: LCCCC II ⋅⋅⋅= 21 . The column weight of each layer is at most 1.

In the thk iteration, the log-likelihood ratio (LLR) message from layer t to the next

layer for variable node v is represented by tk
vL , , where t=1,2, …., L . The layered message

passing with Min-Sum algorithm can be formulated as (4.9)-(4.11).

,),()(,, t1k
cv

1tk
v

tk
cv RLL −− −= (4.9)

,||)(,
\)(\)(

,, tk
cn

vcNnvcNn

tk
cn

tk
cv LMinLsignR

∈∈
∏ ××α= (4.10)

.,,, tk
cv

tk
cv

tk
v RLL += (4.11)

In a layered LDPC decoder, the check node unit (CNU) is for the computation shown in

(4.10) and the variable node unit (VNU) performs (4.9) and (4.11). In the case that all soft

messages corresponding to the 1-components in an entire block row of parity check matrix

are processed in a clock period, the computations shown in (4.9)-(4.11) are sequentially

performed. The long computation delay in the CNU inevitably limits the maximum

achievable clock speed. Usually pipelining technique can be utilized to reduce the critical

path in computing units. However, due to the data dependency between two consecutive

layers in layered decoding, pipelining technique can not be applied directly.

For instance, suppose that one stage pipelining latch is introduced into every CNU.

To compute 3k
cvL , messages corresponding to the third block row of bH , 2k

vL , messages are

needed, which can not be determined until 2k
cvR , messages are computed with (4.10). Due

to the one-clock delay caused by the pipelining stage in CNUs, 2k
cvR , messages are not

available in the required clock cycle. The data dependency between layer 3 and layer 2

occurs at column 4, 8, 9, and 13 as marked by bold squares in Fig. 4.8. To enable pipelined

48

decoding, we propose an approximation of layered decoding approach. Let us rewrite

(4.10) as the following:

),,,(

21

321

,,,,

444 3444 21
L

UNNn

tk
cn

tk
cn

tk
cn

tk
cv

i

LLLfR

∈

= ,

where 21 NN U is the variable node set vcN \)(. The data dependency between layer t and

t+1 occurs in the column positions corresponding to the variable node set 1N . For the

variable nodes v belonging to the variable node set 2N , the following equation is satisfied.

 .),()(,),()(,, t1k
cv

2tk
v

t1k
cv

1tk
v

tk
cv RLRLL −−−− −=−=

For 1Nv∈ ,

.

)(
),()(,

),()(,
'

)(),(
'

)(,

),()(,,

t1k
cv

2tk
v

t1k
cv

1tk
vc

1t1k
vc

2tk
v

t1k
cv

1tk
v

tk
cv

RL

RRRL

RLL

−−

−−−−−

−−

−≅

−+−+=

−=

Based on the above consideration, an approximate layered decoding approach is

formulated as (4.12)-(4.14).

 ,),()(,, t1k
cv

P1tk
v

tk
cv RLL −−− −= (4.12)

 ,||)(,
\)(\)(

,, tk
cn

vcNnvcNn

tk
cn

tk
cv LMinLsignR

∈∈
∏ ××α= (4.13)

.),()),(()(,)(, Ptk
cv

Pt1k
cv

P1tk
v

Ptk
v RRLL −−−−−− +−= (4.14)

where, P is a small integer. In order to demonstrate the decoding performance of the

proposed approach, a (3456, 1728), (3, 6) rate-0.5 QC-LDPC code constructed with

progressive edge-growth (PEG) approach [30] is used. Its parity check matrix is permuted

as discussed in Section 4.2.1. The number of rows in each layer is 144. The parameter P in

(4.12) and (4.14) is set to 2 to enable two stage pipelines. The maximum iteration number

is set to 15. It can be observed that the proposed approach has about 0.05 dB performance

degradation compared with the standard layered decoding scheme. The conventional

49

TPMP approach has about 0.2 dB performance loss compared with layered decoding

scheme because of its slow convergence speed. It should be noted that, by increasing the

maximum iteration number, the performance gap among the three decoding schemes

decrease. However, the achievable decoding throughput is reduced.

1.4 1.6 1.8 2 2.2 2.4

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Eb/No (dB)

B
it

er
ro

r r
at

e.

TPMP
Propose, P=2
Layered decoding

Figure 4.9 Performance of the approximate layered decoding approach.

4.2.3 Decoder Architecture with Layered Decoding Approach

The Overall Decoder Architecture

The proposed decoder computes the check-to-variable messages, variable-to-check

messages, and LLR messages corresponding to an entire block row of PH matrix in one

clock cycle. The decoder architecture is shown in Fig. 4.10. It consists of five portions. 1)

L layer R-register arrays. Each layer is used to store the check-to-variable messages

cvR corresponding to the 1-components in a block row of matrix PH . At each clock cycle,

50

cvR messages in one layer are vertically shifted down to the adjacent layer. 2) A check

node unit (CNU) array for generating the cvR messages for one layer of R-register array in

a clock cycle. The dashed-lines in the CNU array denote 2 pipeline stages. 3) C LLR-

register arrays. Each LLR-register array stores the vL messages corresponding to a block

column of matrix PH . 4) C variable node unit (VNU) arrays. Each VNU array is used for

computing the variable-to-check messages and LLR messages corresponding to a block

column of matrix PH . Each VNU is composed of two adders. 5) C data shifters. The vL

messages corresponding to a block column of matrix PH is shifted one step by a data

shifter array. In Fig. 4.10, each VNU, MUX, and data shifter is used to represent C

computing unit arrays.

tk
cvL ,

)(, Ptk
cvR −

)(),(Pt1k
cvR −−

)(, P1tk
vL −−

)(, P1tk
vL −−t1k

cvR),(−

Figure 4.10 Decoder architecture (P=2).

51

In the decoding initialization, the intrinsic messages are transferred to LLR-register

arrays via the MUX1 arrays. At the first P clock cycles, cvR messages are not available due

to the P pipeline stages in the CNU array. Therefore, the MUX2 arrays are needed to

prevent LLR-registers from being updated. In one clock cycle, only a portion of LLR-

messages are updated. The updated LLR-messages correspond to the 1-component in the

layer of matrix PH are sent to data shifter via computation path. The remained LLR-

messages are directly sent to the data shifter from the LLR-register array.

The Critical Path of the Proposed Architecture

The computation path of the proposed architecture is shown in Fig. 4.11. The

equations shown in (4.12)-(4.14) are sequentially performed. The computation results of

(4.12) are represented in two’s complement format. It is convenient to use the sign-

magnitude representation for the computation expressed in (4.13). Thus, two’s complement

to sign-magnitude data conversion is needed before data are sent to CNU. The cvR

messages from CNU array and R-register arrays are in a compressed form to reduce

memory requirement. More details are explained in the next paragraph. To recover the

individual cvR messages, a data distributor is needed. The cvR messages sent out by the

data distributor are in sign-magnitude representation. Correspondingly, sign-magnitude to

two’s complement conversion is need before data are sent to VNU.

In this design, the computation path can be divided into three segments as shown in

Fig. 4.11. The implementation of the SM-to-2’S unit and the adder in segment-1 can be

optimized by merging the adder into the SM-to-2’S unit to reduce computation delay. The

optimization for segment-1 is shown in Fig. 4.12. With the Min-Sum algorithm, the critical

task of a CNU is to find the two smallest magnitudes from all input data and identify the

relative position of the input data with the smallest magnitude. The implementation of

52

CNU can be found in Section 3.4.1. The dataflow in a CNU is very briefly discussed in this

section. Because the number of input data is six, four computation steps are needed in a

CNU. The first step is compare-and-swap. Then, two pseudo rank order filter (PROF)

stages are needed. In the last step, the two smallest magnitudes are corrected using a

scaling factor α (usually, α is set as 3/4). In this way, the cvR messages output by a CNU

are in a compressed form with four elements, i.e., the smallest magnitude, the second

smallest magnitude, the index of the second smallest magnitude, and the signs of all cvR

messages. The optimized implementation of segment-3 is shown in Fig. 4.13. The adder in

the last stage can be implemented with a [4:2] compressor and a fast adder. The data shifter

can be implemented with one-level multiplexers.

tk
cvL ,

)(, Ptk
cvR −

)(),(Pt1k
cvR −−

)(, P1tk
vL −−

)(, Ptk
vL −

)(, P1tk
vL −−

t1k
cvR),(−

{

Figure 4.11 The computation path of the proposed architecture (P=2).

53

It can be observed that the critical path of segment-1 consists of three adders and

four multiplexers. The longest logic path of segment-2 includes three adders and two

multiplexers. The critical path of segment-3 has two adders and four multiplexers. By

inserting two pipeline stages among the three segments, the critical path of the overall

decoder architecture is reduced to three adders and four multiplexers.

)(, P1tk
vL −−

t1k
cvR),(−−

Figure 4.12 The optimization of the SM-to-2’S unit and the adder in segment-1.

{

{
)(),(Pt1k

cvR −−−

)(, Ptk
cvR −

)(, P1tk
vL −−

Figure 4.13 The optimization of the SM-to-2’S unit and two adders in segment-3.

Data shifter

54

It can be seen from Fig. 4.8 that by a single left cyclic shift, the block i1t
PH),(+ is

identical to it
PH , , for i=1, 2, … C and t=1, 2, … L-1. Therefore, repeated single-step left

cyclic-shift operations can ensure the message alignment for all layers in a decoding

iteration. After the messages corresponding to the last block row are processed, a reverse

cyclic-shift operation is needed for the next decoding iteration. Based on the above

observation, only the edges of the tanner graph for the first layer of matrix PH are mapped

to the fixed hardware interconnection in the proposed decoder. A very simple data shifter

which is composed of one level two-input one-output multiplexers is utilized to perform

the shifting operation for one block column of matrix PH . Fig. 4.14 shows the structure of

a data shifter for the matrix bH . When the value of control signal, S, is 1, the shifting

network performs a single-step left cyclic-shift. If S is set to 0, the reverse cyclic-shift is

performed.

Figure 4.14 The structure of a data shifter.

4.2.4 Hardware Requirement and Throughput Estimation

The hardware requirement of the decoder for the example LDPC code is estimated

except the control block and parity check block. In Table 4.3, the gate count for computing

blocks is provided. Each MUX stands for a 1-bit 2-to-1 multiplexer. Each XOR represents

a 1-bit two-input XOR logic unit. The register requirement is estimated in Table 4.4. In the

55

two tables, RW and LW represent the word length of each cvR message and cvL (or vL)

message, respectively. The critical path of the proposed decoder is three adders and four

multiplexers. In the decoder architecture presented in [63], each soft message is

represented as 4 bits. The critical path consists of an R-select unit, two adders, a CUN, a

shifting unit and a MUX. The computation path of a CNU has a 2’S-SM unit, a two-least-

minimum computation unit, an offset computation unit, an SM-to-2’S unit stage, and an R-

selector unit. The overall critical path is longer than 10 4-bit adders and 7 multiplexers.

The post routing frequency is 100MHz with 0.13u CMOS technology. Because the critical

path of the proposed decoder architecture is about one-third of the architecture presented in

[63], using 4-bit for each soft message, the clock speed for the proposed decoder

architecture is estimated to be 250MHz with the same CMOS technology. In a decoding

iteration, the required number of clock cycles is 12. To finish a decoding process of 15

iterations, we need 18331512 =+× clock cycles. Among them, 1 cycle is needed for

initialization and 2 cycles are for pipeline latency. Thus, the throughput of the layered

decoding architecture is at least 3456× 250 × 910 ÷ 183 ≈ 4.7 Gbit/sec. Because a real

design using the proposed architecture has not been completed, we can only provide a

rough comparison with other designs.

Lin, et al, [61], designed an LDPC decoder for a (1200, 720) code. The decoder

achieves 3.33 Gbit/sec throughput with 8 iterations. Sha, et al, [62] proposed a 1.8Gbps

decoder with 20 iterations. The decoder is targeted for a (8192,7168) LDPC code. The

decoding throughput of the both decoders is less than the proposed architecture with 15

iterations. Gunnam, et al, [63], presented an LDPC decoder architecture for (2082, 1041)

array LDPC codes. With 15 iterations, it can achieve 4.6 Gbit/sec decoding throughput.

The number of CNUs and VNUs are 347 and 2082, respectively. It can be seen from Table

4.3 that much less computing units are needed in our pipelined architecture. The registers

requirement in our design is more than that in [63] because an LDPC code with a larger

56

block length for a better decoding performance is considered in our design. The two

pipeline stages in CNU array also require additional registers. The design in [63] is only

suitable for array LDPC codes. The proposed decoder architecture is for generic QC-LDPC

codes. We would like to mention that the proposed architecture is scalable. For example,

the considered LDPC code can be partitioned into 8, 12, or 18 layers for different trade-

offs between hardware cost and decoding throughput.

TABLE 4.3 GATE COUNT ESTIMATION FOR COMPUTING BLOCKS

Component (Number)
Count

Estimated gate count

CNU 144

 RW1584× 1-bit adder
+ RW2880× MUX
+ 1584 XOR

Data
distributor 259236144 =××)(1W2592 R −× MUX

SM-to-2’S 259236144 =×× RW2592× MUX
VNU 8646144 =× LW3864 ×× 1-bit adder
2’S-to-SM 8646144 =× LW864× MUX
Data shifter 6 LW3456× MUX

TABLE 4.4 STORAGE REQUIREMENT ESTIMATE

Component Estimated register count
R-register array))((1W2631728 R −×++×
LLR-register array LW3456 ×
Pipeline register)]([1W263W6144 LR −×+++××

4.3 An FPGA Implementation of Quasi-Cyclic LDPC Decoder

We implement an enhanced partially parallel LDPC decoder for a (8176, 7156) EG-

based QC-LDPC code on FPGA to demonstrate the design of high throughput LDPC

decoder. A worst-case source information decoding throughput (at 15 iterations) over

57

170Mbps is achieved. Optimizations at various levels are employed to increase the clock

speed. More parallelism is introduced for the traditional partially parallel decoding

architecture with small hardware overhead. An efficient non-uniform quantization scheme

is proposed to reduce the size of soft message memories without sacrificing the decoding

performance. The decoder architecture is suited for other QC LDPC codes as well.

4.3.1 The (8176, 7156) EG-based QC LDPC Code

The EG-based QC LDPC codes are a family of QC LDPC codes, which are

constructed based on the decomposition of finite Euclidean geometries. The (8176, 7156)

code (originally designed for NASA) is a regular QC LDPC code with a column weight of

4 and a row weight of 32 [23]. The parity-check matrix is a 2x16 array of thirty-two

511x511 submatrices as the following.

Each submatrix H ji, is a circulant matrix with both column and row weight of 2. Fig. 4.15

shows a 15x15 matrix in the same form.

Figure 4.15 A 15x15 circulant matrix.

58

4.3.2 Partially Parallel Decoder Architecture

Balanced Computation Scheduling

The conventional SPA algorithm has unbalanced computation complexity between

the variable-to-check and check-to-variable message updating phases. This leads to

unbalanced datapaths between Variable node units (VNUs) and Check node units (CNUs).

To balance the computation load between the two decoding phases, a modified

version based on algorithmic transformation was proposed in [38]. The check-to-variable

and variable-to-check message passing are expressed in (4.15) and (4.16), respectively.

)()(
\)(

\)(LLR cn
vcNn

vcNn cncv sign Ψ−= ∑∏
∈

∈ . (4.15)

∑
σ∈

−Ψ−=
cvMm 2

v
mvmvcv

r2RRL sign
\)(

))()((. (4.16)

where,))
2

log(tanh()(xx =Ψ , Rcv and Lcv stand for the check-to-variable message and the

variable-to-check message, respectively.

The Check Node and Variable node units

Fig. 4.16 shows the architecture of a CNU, which performs check-to-variable

message Rcv computation. Each CNU has 32 inputs and 32 outputs. The LUT-A is

introduced to perform the function))log(tanh()(
2
xx =Ψ . The magnitude of the output is the

sum of 31 out of 32 data values which come from LUT-A. The sign bit of the output is a

product of 31 out of 32 sign bits which come from the inputs. In the last addition stage,

each word of the two addends is separated into higher and lower parts. Two partial

additions are performed in parallel to reduce the addition delay. To reduce the critical path

59

in the CNU, pipeline latches are inserted as indicated by the dashed lines. The data

representations of the inputs of CNU, the outputs of LUT-As, and the final outputs of CNU

are in two’s complement, unsigned, and sign-magnitude, respectively.

Figure 4.16 Check node unit architecture.

The architecture of a VNU is illustrated in Fig. 4.17, which performs variable-to-

check message Lcv computation. Each VNU has 5 inputs and 5 outputs. Z and C stand for

the intrinsic message and the tentative decoding bit, respectively. The LUT-B performs the

function).()(mvmv RRsign Ψ− It is convenient to use the two’s complement format in BPU

computations. Thus, the data format of the intrinsic message Z , the outputs of LUT-Bs,

60

and the outputs of BPU are all in two’s complement format. The inputs of LUT-Bs are in

sign-magnitude format.

Figure 4.17 Variable node unit architecture.

Enhanced Partially Paralle Decoder Architecture

Conventionally, 1 CNU performs check-to-variable messages updating for 1 row of

matrix H per clock cycle and is assigned for each block row of matrix H. Similarly, 1 VNU

performs variable-to-check messages updating for 1 column of matrix H per clock cycle

and is assigned for each block column of matrix H. To increase the parallelism, we propose

an enhanced architecture that enables processing multiple rows/columns corresponding to

each submatrix of H at the same time. In this design, only double parallelism is considered,

though the proposed architecture can be easily extended to higher parallelism cases

[35][36]. The key issue for this enhancement is how to access 4 soft messages

corresponding to each submatrix at each clock cycle. For the considered EG-LDPC code,

each submatrix consists of 2 cyclically shifted identity matrices. Thus, two memory

modules are used for each submatrix. To facilitate 2 data accesses for each cyclically

shifted matrix in both row and column updating phases, each memory module is

partitioned into an even-addressed bank containing soft messages correspond to 1-

components in the even rows of the submatrix and an odd-addressed bank containing data

61

corresponding to the odd rows. This approach works because any two soft messages

corresponding to two adjacent 1-componentss of a cyclically shifted identity matrix must

fall into the even-addressed memory bank and the odd-addressed memory bank,

respectively. In addition, double VNU and CNU are required and data switching networks

are needed to ensure the data is moved correctly between memory banks and CNU (VNU).

It can be observed that the proposed architecture is also suited for the hardware

implementation with Min-Sum algorithm. On the other hand, multiple adjacent soft

messages can be stored at one memory entry to increase the parallelism. In this method,

extra buffers and data switching networks are needed to ensure the correct data accesses in

the variable-to-check messages updating phase [47].

The block diagram of the proposed architecture is shown in Fig. 4.18. Each memory

block M ji, , which consists of two memory modules, corresponds to a circulant matrix

H ji, of the parity check matrix H. They are used to store the extrinsic soft message

conveyed at the both decoding phases. The memory modules iZ and iC and are used to

store the intrinsic soft messages and the estimated codeword bits, respectively. As can be

seen from the figure, the overall architecture has 32216 =× VNUs and 422 =× CNUs.

Figure 4.18 Enhanced partially parallel decoder architecture for QC-LDPC code.

62

To illustrate the details of dataflow, three cases, which correspond to even, odd, and

zero shifting offsets that range from 0 to 510 for a cyclically shifted identity matrix, are

considered in the following analysis.

 Fig. 4.19 shows an example of the memory partitioning and data switching scheme

applied to a 15x15 cyclically shifted identity matrix with an even (excluding 0) shifting

offset of 6. In the check-to-variable message updating phase, the two data located in the

even memory sub-bank MEM_E and the odd memory sub-bank MEM_O with the same

index are sent to CNU_E and CUP_O in parallel, respectively, which are CNU components

for even row and odd row message updating. In the variable-to-check message updating

phase, the two data connected by an arrow are sent to VNU_0 and VNU_1 in the same

clock cycle, respectively. Similarly as above, VNU_0 and VNU_1 are VNU components

for even column and odd column data computation. A soft message),(jip saved in a

memory sub-bank corresponds to a 1-component located at row i and column j of a

cyclically shifted identity matrix. In this example, the data located in the even columns 6,

8, 10, 12, and 14 of the matrix are stored in the even addressed memory sub-bank.

However, the data located in the even columns 0, 2 and 4 are stored in the odd addressed

memory sub-bank. Similar cases exist for the data located in the odd columns. Therefore,

switching units are needed to route data between memories and VNUs in the variable-to-

check message updating phase. Because the size of each circulant matrix associated with

the EG-based QC LDPC code is an odd value, only the data in the last row (or column) of

these matrices are accessed in the last clock cycle of the check-to-variable (or variable-to-

checks) message updating phase. In this figure, symbol Z, C, and I represent an intrinsic

soft message symbol, a decoding bit, and a fixed data value for initialization procedure,

respectively.

A similar example for a cyclically shifted matrix with an odd shifting offset of 5 is

shown in Fig. 4.20. Note that the last data in the even row is stored in the odd memory

63

bank. Without data displacement, data access confliction indicated by the dashed arrow

occurs when the two data from column 4 and 5 are retrieved from the even memory sub-

bank in the same clock cycle. Consequently, a pair of multiplexers is needed to steer the

displaced data between the odd memory sub-bank and the CNU_E.

For the third case, i.e., the shift value is 0, the cyclically shifted identity matrix

becomes an identity matrix. The details of memory partitioning and data switching are

shown in Fig. 4.21. This is in fact the simplest case.

p(0,6)

MEM_E

p(2,8)

p(4,10)

p(6,12)

p(8,14)

p(10,1)

p(12,3)

p(14,5)

p(1,7)

MEM_O

p(3,9)

p(5,11)

p(7,13)

p(9,0)

p(11,2)

p(13,4)

N/A

MEM_E

VPU_1 CPU_E CPU_O

MEM_O

VPU_0

C

Z

I I

Z

C

Figure 4.19 Memory partitioning and data switching scheme for
even shifting offset case.

64

p(0,5)

MEM_E

p(2,7)

p(4,9)

p(6,11)

p(8,13)

p(10,0)

p(12,2)

N/A

p(1,6)

MEM_O

p(3,8)

p(5,10)

p(7,12)

p(9,14)

p(11,1)

p(13,3)

p(14,4)

MEM_E

VPU_1 CPU_E CPU_O

MEM_O

VPU_0

C

Z

I I

Z

C

Figure 4.20 Memory partitioning and data switching scheme for
odd shifting offset case.

Figure 4.21 Memory partitioning and data switching scheme for identity matrix.

65

Architecture of the Controller

The controller, which generates the control signals of the data switch networks and

memory addresses, is composed of a two-level finite state machine. Fig. 4.22 shows the

state transition diagram of the finite state machine. In the initialization state, the intrinsic

soft messages stored in the memory Z are transferred into the memory M. The anti-overlap

state is introduced to avoid the data access confliction between the two decoding phases.

The block diagram of the controller is shown in Fig. 4.23. The memory write

addresses and the data switching control signals for writing are the delayed versions of the

memory read addresses and the control signals for reading, respectively. In order to

increase the speed of the controller, memory addresses are generated such that retiming

technique can be employed to reduce the critical path of the controller. By introducing one

delay unit in the controller datapath, the critical path can be significantly reduced while

introducing one cycle latency.

Figure 4.22 State transition diagram of controller.

66

State
Machine

Counter
Decision

Logic

D

Memory Read
Address

Data Switching
Control Signals

(for reading)

Data Switching
Control Signals

(for writing)

Memory Write
Address

Figure 4.23 Block diagram of controller.

4.3.3 Fixed-point implementation

The word length of the soft messages determines the memory size, the computation

unit size and the decoding performance of a LDPC codes decoder. The overall hardware of

LDPC decoder is predominantly determined by the size of the memories holding intrinsic

and extrinsic soft messages. Therefore it is very important to find an efficient quantization

scheme for soft messages under the target decoding performance.

Uniform and Non-uniform Quantization Schemes

Using a similar notation as [37], let fq : denote the uniform quantization scheme in

which the finite word length is q bits, of which f bits are used for the fractional part of the

value. If the target bit error rate (BER) is above 910− , 6:3 uniform quantization can be

adopted with negligible performance loss. However, this design is targeted for BER below

1010− considering potential applications of deep-space communications. Simulation results

67

reveal that 7:4 uniform quantization is needed to achieve this goal. Fig. 4.24 shows the

performance comparison for 6:3 and 7:4 fixed-point quantization and double precision

simulations.

A non-uniform quantization scheme which generally out-performs the uniform

quantization under the same word length was proposed [45]. However, in this method, a q-

bit non-uniform quantization scheme generally performs worse than the uniform

quantization case with)(1q + -bit word length since less precision is maintained for large

values. This section presents a new non-uniform quantization scheme that can achieve a

decoding performance almost identical to that of the uniform quantization case with 1-bit

longer word length.

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2
10-10

10-8

10-6

10-4

10-2

100

Eb/No (dB)

B
it/

Fr
am

e
E

rro
r R

at
e

BER, double precision
BER, uniform fixed-point 7:4
BER, non-uniform 6-bit
BER, uniform fixed-point 6:3
FER, double precision
FER, uniform fixed-point 7:4
FER, non-uniform 6-bit
FER, uniform fixed-point 6:3

Figure 4.24 Decoding performance of fixed-point quantization and double precision.

68

In the both decoding phases, the extrinsic soft messages are sent to look-up tables,

which perform the non-linear function))log(tanh()(
2
xx =Ψ . Fig.4.25 shows the 7:4 uniform

quantization of)(xΨ . It can be seen that the quantization result has many duplicated

values. The improved non-uniform quantization scheme employs flexible non-uniform

quantization steps for x to reduce the redundant elements in look-up table other than uses

two fixed quantize steps as shown in [45] for the regions of 1<x and 1≥x , respectively.

The uniform to non-uniform quantization conversion logic can be implemented with

simple combination logic or look-up table, which depends on the complexity of the

conversion mapping. In this method, the quantized value of)(xΨ is presented in uniform

quantization.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

x

qu
an

tiz
ed

 v
al

ue
s

of
 Ψ

(x
)

Figure 4.25 The uniform quantization of)(xΨ .

69

TABLE 4.5. UNIFORM TO NON-UNIFORM QUANTIZATION CONVERSION

 A close study of the 7:4 uniform quantization results of)(xΨ reveals that no

quantized values of)(xΨ are lost if x is non-linearly quantized as shown in the middle

column of Table 4.5. Based on this observation, the new non-uniform quantization scheme

for this specific case is as follows: the soft messages in uniform quantization computed

from equations (1) and (2) are converted into non-uniform quantization as seen in Table

4.5 and are stored into memory blocks M ji, . The input of the look-up table for

))log(tanh()(
2
xx =Ψ is in non-uniform quantization, and the values of)(xΨ , which are

stored in look-up table, are in uniform quantization. Fig. 4.24 shows that using the 6-bit

non-uniform quantization scheme can achieve an almost identical decoding performance to

that using the 7-bit uniform quantization scheme.

Processing Units with Non-uniform Quantization

The new architectures for CNU and VNU with the non-uniform quantization scheme

are shown in Fig. 4.26 and Fig. 4.27, respectively. The uniform to non-uniform

quantization converters, U2NUs, are employed as shown in the two figures. They are

70

implemented with simple combination logic. The look-up tables, LUTs, for both CNU and

VNU are the same.

Figure 4.26 Check node unit with non-uniform quantization.

Figure 4.27 Variable node unit with non-uniform quantization.

71

4.3.4 FPGA Implementation

 Based on the architectures described above, the (8176, 7156) EG-based LDPC code

decoder was modeled in VHDL, simulated and synthesized targeting the Xilinx Virtex II-

6000. Based on the Xilinx TRACE report, the maximum clock frequencies of the uniform

and non-uniform quantization implementation are 193.4MHz and 192.6MHz, respectively.

Table 4.6 shows the FPGA utilization statistics of both implementations.

The maximum iteration number is set to 15. It takes half of an iteration to transfer the

intrinsic soft messages from memory Z into memory M of the decoder. It takes

51752562 =+× clock cycles to perform one iteration in which 5 clock cycles are allotted

to the anti-overlap state. Thus, the non-uniform quantization implementation can achieve a

worst-case information decoding throughput of (7154× 192.6)/[(15+0.5)× 517] ≈ 172

Mbps. The achieved decoding throughput is more than twice faster (in terms of Mbps per

iteration) than other published LDPC codec implementations based on similar platforms

(e.g., [48][44]).

TABLE 4.6. XILINX VIRTEXII-6000 FPGA UTILIZATION STATISTICS

Slices

Slice Flip Flops

4-input LUTs

Block RAMs

Used
Resource

Utilization ratio

23052 68%

26926 39%

28229 41%

128 88%

Used Utilization ratio

27,460 81%

38,266 56%

36848 54%

128 88%

6-bit uniform
quantization

6-bit non-uniform
quantization

4.4 Summary

In this chapter, design issues for high throughput LDPC decoders have been

discussed. We have proposed an algorithmic transformation for significant reduction of

72

routing complexity in LDPC decoders. It has been shown that the proposed approach can

reduce 54% outgoing wires of each VNU and 90% outgoing wires of each CNU if using 4-

bit quantization for decoding a (2048, 1723) (6, 32) LDPC code. The detailed architecture

for permutation matrices based LDPC codes have been illustrated. Furthermore, we have

developed a high-throughput low-complexity decoder architecture for generic QC-LDPC

codes by exploiting the regularity in parity check matrices of QC-LDPC codes. It has been

estimated that 4.7 Gbit/sec decoding throughput for a (3456, 1728) (3, 6) QC-LDPC code

can be achieved. Finally, we have demonstrated an FPGA implementation of a low

complexity, high speed decoder for EG-based QC-LDPC codes. The FPGA

implementation with Xilinx Virtex II 6000 achieves a maximum decoding throughout of

over 170 Mbps at 15 iterations.

73

5 PRACTICAL LOW COMPLEXITY LDPC DECODERS

In this chapter, we briefly analyze the decoding complexity of WBF-based

algorithms from the VLSI implementation point of view. To maintain low decoding

complexity while further narrowing the performance gap from the SPA, we present an

optimized 2-bit decoding approach. It is shown that the hardware implementation

complexity of the proposed method is comparable to that of WBF-based algorithms.

However, it has significantly better decoding performance and faster convergence speed.

5.1 The Optimized 2-bit Decoding

5.1.1 Decoding Scheme

In the optimized 2-bit decoding method, each message stored in the memory is

represented as 2 bits, msbb . Bit sb is the hard-decision of a received soft message. Bit mb

indicates the hard-decision confidence. mb =0 denotes a low confidence instead of a zero

value. Similarly, mb =1 represents a high confidence. The values of the two bits are given

by (5.1) and (5.2), where,
yT represents a threshold. Its optimum value can be obtained

through simulation.

)(ysignbs = (5.1)

⎩
⎨
⎧ >

=
otherwise

Tyif
b y

m ,0
||,1 (5.2)

The a posteriori probability (APP) based Min-Sum algorithm [24] is slightly

modified in this section to maximally exploit the confidence bits in 2-bit intrinsic and

extrinsic messages for a best decoding performance. The check-to-variable and variable-to-

check message updating phases are formulated in (5.3) and (5.4), where)(k
mnR ,)(k

mnL , and nI

stand for the check-to-variable, variable-to-check, and intrinsic messages, respectively.

74

||)()(

\)(

)(

\)(

)(min 1k
mi

nmNi

1k
mi

nmNi

k
mn LLsignR −

∈

−

∈
×= ∏ (5.3)

))()(()(

)(

)()(k
jn

nMj
n

k
n

k
mn RfIfgLL ∑

∈
α+== (5.4)

Function)(⋅f converts a two-bit message to an integer. Correspondingly, function

)(⋅g is for converting an integer to a two-bit message. With regard to the computation of

(5.4), three steps are needed.

1) The input 2-bit data nI or
jnR is converted to an integer number. Because mb =0

indicates a low confidence, the converted integer is set to 1 (i.e., the smallest positive

integer). Similarly, mb =1 represents a high confidence. Therefore, a larger integer W is

assigned for the converted result. The optimum value of W can be determined through

simulation.

2) The summation is performed.

3) The integer summation is converted back to a 2-bit message before storing into

memory. The mnL conversion threshold, LT , is determined through simulation. The sign

bit is never changed in the above data conversion steps.

Next, we use one high rate code and one low rate code mentioned before to further

explain the 2-bit decoding approach and illustrate its decoding performance. For both

codes, α in (5.4) is set to 1/2 in our simulation. For the rate-0.84 code, we choose yT , W,

and LT to be 3/8, 7, and 6, respectively, through simulation. Thus, each intrinsic soft

message is assigned a value using (5.5).

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

,11
,10
,00
,01

msbb

8/3
8/30

08/3
8/3

−<
−≥>
≥≥

>

yif
yif

yif
yif

 (5.5)

For the computation of (5.3), 2-bit messages read from memory are directly used.

Each 2-bit computation output is directly stored back to memory. For the computation

75

expressed in (5.4), each 2-bit message from memory must be converted to an integer

number as shown in the left two columns of Table 5.1. The addition result of (5.4) must be

converted to a 2-bit message as shown in the right two columns of Table 5.1 before storing

back to memory. Similarly, we choose yT , W, and LT to be 1/2, 6, 5, respectively, for the

rate-0.5 code. In general, to determine the values of the three thresholds for a given LDPC

code with simulation, a coarse search precision can be used in the beginning to roughly

identify a small search range. Then simulation can be performed with a fine search

precision in the small search range for a best decoding performance.

TABLE 5.1 DATA CONVERSION FOR THE RATE-0.84 CODE
Message from

memory
integer for addition

in (11)
Addition result

of (11)
Message to

memory
00 1 06 ≥> x 00
01 7 6≥x 01
10 -1 60 −>> x 10
11 -7 6−≤x 11

5.1.2 Decoding Performance Simulation

For a comparison, WBF-based algorithms are simulated using double precision. For

the (2048, 1723) (6,32) rate-0.84 code, the maximum iteration number is set to 48. The

proposed 2-bit decoding method outperforms the IMWBF algorithm by 0.7dB when the

target BER is 710− . For the (1974, 987) (5,10) rate-0.5 code, the maximum iteration

number is set to 120. It can be observed that the 2-bit decoding approach significantly

outperforms WBF-based algorithms. Its decoding performance is 2.4 dB better than that of

IMWBF algorithm when the target BER is 710− . In WBF-based algorithms, the

information delivered from one iteration to the next iteration is only one or a few flipped

decision bits. Soft messages, which require much more memory than decision bits, are not

well exploited. Consequently, it has large performance loss compared to belief propagation

76

decoding algorithm. On the contrary, the optimized 2-bit decoding method maximally

exploits the confidence bits in 2-bit intrinsic and extrinsic messages of APP based Min-

Sum algorithm for best decoding performance. It should be pointed out that both the WBF-

based algorithms and the proposed 2-bit approach are not well suited for decoding LDPC

code with only very low column weights (2 or 3) because of large performance loss from

SPA. On the other hand, the performance gap between SPA and the low complexity

decoding approaches mentioned before decreases as the column weight of LDPC code

increases.

3 3.5 4 4.5 5 5.5 6
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
it/

Fr
am

e
er

ro
r r

at
e.

BER, MWBF
BER, IMWBF
BER, optimized 2-bit
BER, SPA
FER, MWBF
FER, IMWBF
FER, optimized 2-bit
FER, SPA

Figure 5.1 Performance of the (2048, 1723) rate-0.84 LDPC codes.

77

3 3.5 4 4.5 5 5.5 6
0

5

10

15

20

25

30

35

40

45

50

Eb/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns
.

MWBF
IMWBF
Optimized 2-bit
SPA

Figure 5.2 Average number of iterations for decoding the
(2048, 1723) rate-0.84 LDPC codes.

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
it/

Fr
am

e
er

ro
r r

at
e.

BER, MWBF
BER, IMWBF
BER, optimized 2-bit
BER, SPA
FER, MWBF
FER, IMWBF
FER, optimized 2-bit
FER, SPA

Figure 5.3 Performance of the (1974, 987) rate-0.5 LDPC codes

78

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
0

20

40

60

80

100

120

Eb/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns
.

MWBF
IMWBF
Optimized 2-bit
SPA

Figure 5.4 Average number of iterations for decoding the
(1974, 987) rate -0.5 LDPC codes.

5.2 Low complexity 2-bit decoder design

5.2.1 Memory Reduction Scheme

To store the check-to-variable message mnR , one simple method is to store all mnR in

their individual format. With this method, the 2-bit decoder needs much more memory than

WBF-based decoders. One efficient method is to store the mnR messages corresponding to

one row of H matrix in a compressed format, i.e., the smallest magnitude (min1) and its

index, the second smallest magnitude (min2), and all signs of the mnR messages. An even

more efficient method is employed in this design to reduce the memory requirement of the

2-bit decoder. For each row of H matrix, we only store min1, min2, and the product of all

signs of the mnR messages. The needed jnR messages in (5.4) are completely recovered as

(5.6) with the aid of nL .

79

⎪
⎪
⎩

⎪
⎪

⎨

⎧

×=

⎩
⎨
⎧ >

=

−

−

)sgn()sgn(

2
||,

||

)1()()(

)(

)()1()(
)(

k
n

k
j

k
jn

k
j

k
j

k
n

k
jk

jn

LSR

elsemin
min1Lifmin1

R (5.6)

Apparently, the computation in (5.6) increases the complexity of variable node unit.

However, because only two bits are used for each message, the arithmetic computation in

(5.6) and (5.4) are equivalent to very simple combinatorial logic computations. We will

further discuss the hardware complexity of computation units later.

The estimated memory requirement for the proposed 2-bit decoder is shown in Table

5.2. N and M are the column and row dimensions of parity-check matrix of the considered

LDPC code. Dual-port (DP) memory is assumed for appropriate memory modules to

support simultaneous read and write operations. We also assume that the needed hardware

resource of each dual-port memory bit is twice as that of each single-port (SP) memory bit.

For a comparison, the memory requirement of MWBF decoder is estimated and listed in

Table 5.3. We assume that three bits are used to quantize the magnitude of each received

soft message for that method since 2-bit quantization is not acceptable. Our simulation

shows that 2-bit quantization causes more than 0.5 dB performance loss compared to the

floating-point simulation for either considered code. From our detailed analysis, we know

that MWBF decoder requires the minimum hardware resource for both memory and

computation unit among various modified WBF-based decoders. It can be concluded that

the ratio of memory requirement for MWBF decoder and the 2-bit decoder is 1:1.2 for both

of the rate-0.84 code and the rate-0.5 code.

80

TABLE 5.2 MEMORY REQUIREMENT OF THE 2-BIT DECODER

Message Parameterized memory
requirement

Memory for the
rate-0.84 code

Memory for the
rate-0.5 code

nI (SP,2-bit) 2N × 4,096 3,948
min1, min2, and sign

(DP, 3-bit)
2111M ×++×)(2,304 5,922

Hard-decision
(DP, 1-bit) 2N × 4,096 3,948

|| nL (DP, 1-bit) 2N × 4,096 3,948
Total M6N6 + 14,592 17,766

TABLE 5.3 MEMORY REQUIREMENT OF MWBF DECODER

Message Parameterized memory
requirement

Memory for the
rate-0.84 code

Memory for the
rate-0.5 code

|| ny (SP,3-bit) 3N × 6,144 5,922

mnw (SP, 3-bit) 3M × 1152 2961
Hard-decision (DP, 1-bit) 2N × 4,096 3,948

Check-sum (DP, 1-bit) 2M × 768 1,974
nE 0 0

Total M5N5 + 12,160 14,805

5.2.2 Computation Units Design

Bcause only two bits are used for each message in the proposed 2-bit decoder, the

arithmetic computation in (5.3), (5.6) and (5.4) are equivalent to very simple logic

computations. Thus the hardware cost is very small. To illustrate its details, for simplicity

and clarity, let us assume that the degree of variable node is 3 and the degree of check node

is 6.

Fig. 5.5 shows the structure of the check node unit (CNU) for the optimized 2-bit

decoding method. As we explained before, CNU is for calculating min1, min2, and the

product of all signs of the mnR messages. The portion below the dashed line is for

generating the min1 and min2 from 6 1-bit inputs. The computation is performed in two

stages. In the first stage, each M1 unit is used to calculate the smallest and the second

81

smallest values from three 1-bit inputs. The logic function of the M1 unit is shown in (5.7).

In the second stage, an M2 unit is used for generating the values of min1 and min2. The

logic equation of the M2 unit is given in (5.8). The product of all sign bits is calculated

using a XOR-tree. The output of a CNU is composed of 3 bits. The structure can be easily

extended if the number of inputs is more than 6.

⎩
⎨
⎧

++=
=

)(213212

3211

mmmmma
mmma (5.7)

⎩
⎨
⎧

+=
=

)(1122

11

babamin2
bamin1 (5.8)

Fig. 5.6 shows the structure of the variable node unit (VNU). Its task is performed in

4 steps: 1) Recovering three)(k
mnR messages in their individual format as expressed in (5.6).

Each)(k
mnR is recovered by a compare-and-select (C&S) unit. 2) Converting 2-bit data to

integer number. 3) Performing summation as shown in (5.4). 4) Converting the summation

to 2-bit data before storing into memory. A VNU has 5 inputs: one 2-bit intrinsic message,

nI , one 2-bit extrinsic message,)(1k
nL − , and three 3-bit intermediate messages. Each

intermediate message is computed by a CNU. The logic function of C&S unit is given in

(5.9) which is equivalent to (5.6). In (5.9), |x| stands for the 1-bit magnitude of x. Step-2

and step-3 are performed with look-up table (LUT) and adder* unit, respectively. Because

each 4-bit input of an adder* unit has only 4 possible values (see Table 5.1), the hardware

cost of an adder* unit is much less than that of a 4-input 4-bit adder tree. Stpe-4 is

completed by a 6-to-1 combinational logic unit. The sign bit of the output is identical to

that of the summation value given by the adder* unit.

⎪
⎩

⎪
⎨

⎧

⊕=

+=

−

−

)sgn()(

||||

)()()(

)()()()(

1k
n

k
m

k
mn

1k
n

k
m

k
m

k
mn

LSRsign

L2minmin1R
 (5.9)

82

To quantitatively depict the hardware complexity of the discussed computation units,

we used Verilog to model the check node unit and variable node unit addressed above. The

two node units are synthesized using Leonardo Spectrum with TSMC 0.35um technology.

All syntheses are optimized for area. The synthesis results are listed in Table 5.4.

Figure 5.5 Structure of the check node unit for the optimized 2-bit decoding approach.

Figure 5.6 Structure of the variable node unit for
the optimized 2-bit decoding approach.

83

For a comparison, the computing units for a WBF-based decoder are briefly

discussed in the next. The computation core for the bit flipping operation is shown in Fig.

7. Block 1 is for (2.22). The maximum value of weighted check sum is computed by block

2. The sm=>2’s unit is for sign-magnitude to 2’complement conversion. To be consistent

with Section 5.2.1, 3-bit quantization is assumed for the magnitude of each soft message.

We make the same assumption as above about node degrees. The hardware cost of the

computing unit for (2.18) in WBF-based decoder is ignored. The synthesis result using the

same technology and optimization constraints is shown in Table 5.4. For a fair comparison,

we assume the same parallelism level is adopted for either decoder. Therefore, we need

only compare the complexity of single copy of those computation units. It can be observed

that CNU and VNU for 2-bit decoder need less logic gates than the computation units for

WBF-based decoder.

sm=>2's

sm=>2's

sm=>2's

scaling

Adder
Tree

w1
s1

w2
s2

w3
s3

|y|
3

3

3

3

3

4

4

4

6 register
6

6

Block 1 Block 2

Figure 5.7 The computation core needed in the bit flipping operation for
a WBF-based decoder.

For the considered two LDPC codes, the check node degree and variable node

degree are respectively larger than those of the above example. Roughly speaking, the

complexity of a computation unit linearly scales up as the number of inputs increases.

Overall, the complexity ratio for computation units of LDPC decoders using different

algorithms remain the same or similar for different rate codes. Therefore, we conclude that

84

the proposed 2-bit decoder has comparable, if not less, hardware in the computation core

with that of WBF-based algorithms.

TABLE 5.4 COMPLEXITY OF COMPUTATION UNITS FOR THE OPTIMIZED 2-BIT
AND WBF-BASED DECODER.

Computation units for the optimized 2-bit decoder Gates
 Check node unit. 19
 Variable node unit. 55

Computation unit for WBF-based decoder Gates
 Computation core needed in the bit flipping operation.
 (Block 1 requires 90 gates and Block 2 requires 67 gates) 157

5.3 Summary

We have studied VLSI implementation issues for WBF-based LDPC decoding

algorithms and presented an optimized 2-bit decoding approach. The proposed decoding

approach significantly outperforms the state-of-the-art WBF-based decoding algorithms for

the considered LDPC codes while maintaining comparable hardware complexity to WBF-

based algorithms. Therefore, the proposed 2-bit decoding approach is more attractive than

WBF-based decoding approaches in practical low complexity VLSI implementation of

LDPC decoders.

85

6 REDUCING ITERATIONS FOR LDPC CODES

LDPC codes are decoded using iterative decoding algorithms. To increase

decoding speed, it is highly desired to reduce the number of decoding iterations without

significant performance loss. In this chapter, the decoding schemes which can reduce the

number of decoding iterations for decodable and undecodable blocks are presented. In

addition, we demonstrate that the decoding convergence of WBF-based algorithm can be

significantly speeded up with a multi-threshold detection scheme.

6.1 Extended Layered Decoding of LDPC Codes

To improve decoding convergence, various rescheduled message passing schemes

are presented. Sharon et al., [52], proposed a message passing scheme based on a serial

update of check nodes’ messages with SPA. In [49], Hocevar developed a low complexity

LDPC decoder using layered decoding approach, where the SPA algorithm is used for the

computation of each layer. Mansour and Shanbhag, [50], proposed a turbo-decoding

message passing (TDMP) decoding algorithm. All these approaches achieve significantly

faster convergence speed and slightly better decoding performance over TPMP SPA.

However, one common constraint in all these approaches is that the column weight of each

layer is at most 1. More related works can be found in [28][66][67].

For many LDPC codes, such as irregular repeat accumulation (IRA) code [9],

Euclidean geometry (EG) based code [23], and progressive edge growth (PEG) code [30],

to satisfy the constraint of the standard layered decoding approach, the number of rows in

each layer of parity check matrices could be very small. Because the computation has to be

performed layer by layer in the layered decoding, the achievable decoding parallelism is

thus limited, which is undesired for high throughput decoding.

86

To tackle the problem, we propose an extended layered decoding approach. Given

any LDPC code, the parity check matrix can be partitioned into any number of horizontal

layers and no constraint in the column weight of each layer is enforced. It enables more

flexibility in high-throughput LDPC decoder design with layered decoding since many

rows can be arranged in one layer and processing more rows per cycle over the standard

approach becomes possible.

6.1.1 The Proposed Layered Decoding Approach

In the standard layered decoding approach, the parity check matrix of LDPC code is

partitioned into L layers: []T
L

T
2

T
1

T HHHH ⋅⋅⋅= . Each layer defines a supercodes lC and

the original LDPC code is the intersection of all supercodes: L21 CCCC II ⋅⋅⋅= . The

column weight of each layer is at most 1.

We propose an extended layered decoding approach which removes the constraint in

column weight of each layer. The reliability message from layer l to l+1 for variable node v

is represented by l
vL . The message passing in the thk iteration is as follows:

For the first layer, i.e., l = 1, the extrinsic messages are updated using (6.1a), (6.2),

and (63a). For other layers, i.e., l = 2, 3, …, L, the updating of extrinsic message is

expressed in (6.1b), (6.2), and (6.3b).

11k
cv

L1k
v

1k
cv RLL),(),(, −− −= , (6.1a)

l1k
cv

1lk
v

lk
cv RLL),()(,, −− −= , (6.11b)

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ΨΨ×= ∑∏
∈∈ vcNn

lk
cn

vcNn

lk
cn

lk
cv LLsignR

\)(

,

\)(

,,)()(, (6.22)

∑∑
∈∈

−− +−=
)(

,

)(

),(),(,

vlMm

1k
mv

vlMm

11k
mv

L1k
v

1k
v RRLL , (6.3a)

87

∑∑
∈∈

−− +−=
)(

,

)(

),()(,,

vlMm

lk
mv

vlMm

l1k
mv

1lk
v

lk
v RRLL , (6.3b)

where,)(vM l denotes the set of check nodes in the thl layer connected to the variable node

v.

It can be observed that if the column weight of each layer is at most 1, the proposed

approach coincides with the standard layered decoding approach with SPA. On the other

hand, if we view the parity check matrix as one layer, the proposed approach becomes

TPMP SPA. The extended layered decoding approach can be easily extended to the

approximations of SPA such as MSA and A-min [32] by replacing (6.2) with the

corresponding formula for check-to-variable message updating. Our simulation results

show that, with the proposed approach, no performance is sacrificed compared to TPMP

SPA. Similar to the standard layered decoding approaches, faster decoding convergence is

achieved as well.

6.1.2 Overlapped Message Passing Decoding

For high–speed applications, it is desired to perform check-to-variable message

updating and reliability message updating in parallel to maximize the decoding throughput.

In this section, we propose a low complexity overlapped message passing scheme for

block-serial decoders [54] [69]. In a block-serial decoder, the data corresponding to a layer

are processed block column by block column in a serial fashion. A block column includes

one or multiple blocks. Each CNU loads one input data per clock cycle and all check node

units (CNUs) associated with a block column work in parallel. After the computation of

check-to-variable messages corresponding to a layer is completed, all reliability messages

are updated. In [54] [69], a mirror memory for storing all the reliability messages is

introduced to enable overlapped message passing. A close study of the data flow in (6.1)-

(6.3) shows that the mirror memory for vL messages can be eliminated without sacrificing

88

the decoding throughput. In the new approach, MSA for check-to-variable message

updating is adopted.

The key computation of a check node unit (CNU) is to generate the smallest

magnitude, min1, and the second smallest magnitude, min2. Fig. 6.1 shows the

computation core of a serial CNU. Before the computation of check-to-variable messages

for one row is completed, the scratch registers, m1_reg and m2_reg, store the temporal

value of min1 and min2. After the last cvL message is delivered to CNU, the final values of

min1 and min2 can be sent out from m1_reg and m2_reg, respectively. The dashed-lines

are for updating enable signals. If x1m > , m1_reg is updated using the value of x

Otherwise, update is disabled. If x2m > , m2_reg is updated using the value of either x or

m1. Otherwise, its content is unchanged.

cvL

Figure 6.1 Serial computation of the smallest and the second smallest magnitude.

To enable overlapped message updating, in the thk iteration, the data flow of a

block-serial decoder is scheduled as shown in Fig. 6.2. In the first stage, (6.3) is

performed. The reliability messages corresponding to layer (l-1) are computed and stored

into memory. Then, the extrinsic messages for layer l are computed. In the last stage, the

check-to-variable message computation is performed. It should be noted that the above

89

computations are performed block column to block column for every layer. In Fig. 6.2,

lk1Min , and lk2Min , are the intermediate computation results. As soon as the data

corresponding to all block columns in layer l are processed, the final values of lk
cvR , are

generated immediately and stored into memory. It can be seen that no mirror memory

vL message is needed in the improved overlapped message passing scheme.

If the column weight of each layer is at most one, the data flow can be further

simplified to avoid the duplicated subtraction occurred in stage 1 and stage 2 by storing

extrinsic variable-to-check messages instead of reliability messages.

∑∑
∈

−

∈

−−−− +−=
)(

)(,

)(

)(),()(,)(,

vMm

1lk
mv

vMm

1l1k
mv

2lk
v

1lk
v

ll
RRLL

l1k
cv

1lk
v

lk
cv RLL),()(,, −− −=

)(, 2lk
vL −

{ })(),(1l1k
cvR −−

{ })(, 1lk
cvR −

)(, 1lk
vL −

lk
cvR ,

lklk 2Min1Min ,, andComputing

{ }l1k
cvR),(−

Figure 6.2 The data flow of overlapped message passing scheme.

6.1.3 Simulation Results

Two LDPC codes are considered in our simulations. One is (2038, 1723) rate-0.84

Reed-Solomon code based (6, 32) regular code [18]. Its parity check matrix is an array of

90

326 × permutation matrices. The other is (1008, 504) rate-0.5 irregular code constructed

with the progressive edge growth method [30]. It has variable and check node degree

distribution as follows:

,...

....)(
15147

5432

x1000x0010x0090

x0970x0350x2810x4770x

+++

+++=λ

....)(997 x010x980x010x ++=ρ

In all simulations, the maximum number of iteration is set as 50. The H matrix of the

rate-0.84 regular code is evenly partitioned into 6 layers, 3 layers, and 2 layers such that

the column weight of each layer is 1, 2, and 3, respectively. For the first partitioning case,

the proposed approach coincides with standard layered decoding approach. Fig. 6.3 shows

the average number of iterations and bit error rate (BER) performance of different

partitioning cases. We can see that the proposed approach converges faster than TPMP

SPA. Meanwhile, it has better decoding performance than TPMP SPA. Without loss of

generality, the H matrix of the rate-0.5 code is evenly partitioned into 504 layers, 6 layers,

3 layers, and 2 layers. Fig. 6.4 shows that the extended layered decoding approach

converges much faster than TPMP SPA for the rate-0.5 PEG LDPC code. It can be

observed that the proposed method outperforms the TPMP SPA in all partitioning cases.

91

2.8 3 3.2 3.4 3.6 3.8 4 4.2
0

5

10

15

20

25

30

35

40

45

Eb/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns
 to

 c
on

ve
rg

e

standard layered decoding
propose, 3 layers
propose, 2 layers
TPMP SPA

2.8 3 3.2 3.4 3.6 3.8 4 4.2

10
-6

10
-4

10
-2

Eb/No (dB)

B
it

E
rro

r R
at

e

Figure 6.3 Average number of iterations and bit error rate (BER) for the rate-0.84 code
with standard layered decoding, proposed approach, and TPMP SPA decoding.

1.2 1.4 1.6 1.8 2 2.2 2.4
0

5

10

15

20

25

30

Eb/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns
 to

 c
on

ve
rg

e

Standard layered decoding
Propose, 6 layers
propose, 3 layers
propose, 2 layers
TPMP SPA

1.2 1.4 1.6 1.8 2 2.2 2.4

10-4

10-2

Eb/No (dB)

B
it

E
rro

r R
at

e

Figure 6.4 Average number of iterations and BER for the rate-0.5 code with standard
layered decoding, proposed approach, and TPMP SPA decoding.

92

6.2 An Efficient Early Stopping Scheme for LDPC Decoding

It happens frequently at low to medium signal to noise ratios (SNRs) that a valid

codeword can not be found even through a large number of decoding iterations are

performed. An efficient scheme to detect such undecodable cases as early as possible and

hence to avoid unnecessary computations is highly desired in practice. In the literature,

various early stopping criteria [22][40][70] for turbo codes decoding have been proposed.

A comprehensive overview is presented in [41]. Because of the similarity between the

turbo decoding and LDPC decoding, some existing early stopping criteria for turbo

decoding can be adapted for LDPC decoding. However, they may cause considerable

performance loss at high SNRs. Recently, a convergence of mean magnitude (CMM) early

stopping criterion [71] optimized for LDPC decoding was presented. This criterion is based

on the evolution of the average magnitude of the log-likelihood ratio (LLR) messages in

the decoding process. This approach can effectively detect undecodable cases. However, it

has very high computation overhead because it involves the accumulation of the absolute

values of all LLR messages and a large bit-width multiplication operation.

By exploring the statistic characteristics of extrinsic and reliability messages

computed during the decoding process, we found that the sign of extrinsic messages and

reliability messages can be utilized to predict whether the received block is decodable or

not. For the convenience, the equations for check-to-variable node message passing of SPA

are rewritten as (6.4) and (6.5).

,)()(∏ ∈= cNn cnc LsignS (6.4)

{ },)()()()(cvcNn cncvccv LLLsignSR Ψ−ΨΨ××= ∑ ∈ (6.5)

The check-sum cP of parity equation TzH corresponding to check node c is computed by
(6.6).

v
cNv

c zP ∑
∈

⊕=
)(

 (6.6)

93

where ∑⊕ represents binary addition and z represents the hard-decision vector.. If

0Pc = for any check node c, a valid code is found and the decoding process can be

terminated. In VLSI design, (6.4) is implemented in the same way as (6.6). Let SS denote

the summation of the binary mapping of every sign product computed in (6.4)

(i.e., ∑ −
== 1M

0c cS SS) and PS as the summation of the check-sum of every parity equation

computed in (6.6) (i.e., ∑ −
== 1M

0c cP PS). In LDPC decoding, the value of PS in the thk

iteration, k
PS , decreases as k increases (even though a certain extent of fluctuation may

occur) if the decoded block is decodable. PS converges to zero when a valid code is found.

It can be observed that the convergence of k
SS is very similar to that of k

PS during the

decoding process. Both k
PS and k

SS can be utilized to detect undecodable blocks. In this

design, k
SS is exploited for the consideration of easy hardware implementation.

For undecodable blocks, usually k
SS keeps a large value and fluctuates in a small

dynamic range of magnitudes. If a received block is decodable, the variation duration of

k
SS generally is short and k

SS goes to zero along a steep slope in most cases. Even if in the

cases that k
SS keeps fluctuating with a long duration, the fluctuant magnitude is much lager

than that of undecodable cases. Therefore, the convergence of k
SS can be exploited to

predict the decoding convergence before the maximum number of iterations is reached or a

valid codeword is found.

It should be pointed out that any individual detection trial may have three possible

outcomes, i.e., hit, miss detection, and false alarm. In LDPC decoding, a false alarm causes

the performance loss. Thus, early stopping schemes should be optimized to minimize the

false alarm rate at all SNRs. However, the block error rate is very small at high SNRs and

94

the computation power for undecodable blocks is very small, the early stopping scheme

can be disenabled at high SNRs to avoid performance loss and save computation overhead.

Based on the above discussion, an early stopping scheme for detecting the undecodable

blocks is developed as follows:

 In the step 2a, THΔ and T are two predetermined thresholds by simulation. k
SS

converges once if 0>Δ is satisfied. Under this condition, THΔ<Δ indicates that a slow

convergence occurs. T is for recording the duration of slow convergence. The proposed

early stopping scheme can be implemented with a M2log -bit accumulator for counting the

Step 1:
Roughly check the SNR in the first iteration.
If it is at low to medium range, step 2a is performed, otherwise
step 2b is performed.

Step 2a:
counter:=0
if (fluctuation occurred) then

k
S

1k
S SS −=Δ −: ;

if (0>Δ) then
if (THΔ<Δ) then

counter:=counter+1;
else

counter:=0;
endif

endif
if (counter>T) then stop decoding
else continue to the next iteration
endif

endif
Step 2b:

Continue to the next iteration.

95

number of 1s from the binary mapping of cS and a few additional logic gates. Therefore,

the hardware overhead is very small. Simulation results have demonstrated that the

proposed scheme can significantly reduce the average number of decoding iterations at low

to medium SNRs. The performance loss is very small at all SNRs. We have published

more details in [42].

6.3 The Fast Decoding Scheme for WBF-based Algorithms

6.3.1 Multi-threshold Bit Flipping Scheme

For long codeword and/or low SNR channel, the hard-decision vector z given in the

initialization step of WBF-based algorithms has a large number of errors. If only one bit is

flipped per iteration, a large number of iterations are required, which leads to very long

decoding latency. For the original bit-flipping algorithm, Gallager suggested to flip a

decision bit which is contained in more than b unsatisfied parity-check equations [1]. The

optimized integer b is a function of decoding iteration, check node degree and variable

node degree. We extend the approach and employ multi-threshold scheme as the following

to speed up the decoding process of WBF-based algorithms.

In WBF-based algorithms, the hard-decision bit lz corresponding to the maximum

value of k
nE in (2.20), (2.22) or (2.24) is flipped. If the decoding process converges, the

maximum value of k
nE usually decreases as k increase. Thus, the condition of 321 δ>δ>δ

if k<4 then flip the bit n if 1
k
nE δ>

else if k<8 then flip the bit n if 2
k
nE δ>

else if k<12 then flip the bit n if 3
k
nE δ>

else flip the bit corresponding the largest k
nE

96

should be satisfied. For a specific LDPC code, the distribution of the maximum value of

k
nE at a given SNR can be easily found through simulation. It facilitates the setting of the

initial values of iδ . With additional performance simulation, the final value of iδ can be

determined. In practice, the values of iδ optimized at a medium SNR value are also

suitable for low and high SNRs. The simulations on two LDPC codes are presented. One is

a (2048, 1723) (6, 32) rate-0.84 permutation matrix based LDPC code. The other is a

(1974, 987) (5, 10) rate-0.5 quasi-cyclic LDPC code. For simplicity, the two codes are

labeled as rate-0.84 code and rate-0.5 code, respectively. Table 6.1 lists the values of

iδ used in our simulations. It is shown that the proposed scheme can significantly speed up

the WBF-based decoding algorithms.

TABLE 6.1 THE VALUE OF iδ FOR THE RATE-0.84 CODE AND THE RATE-0.5 CODE

 1δ 2δ 3δ
Rate-0.84 code 0.8 0.55 0.35
Rate-0.5 code 1.5 1.0 0.6

6.3.2 Performance Simulation

We simulated the IMWBF algorithm using double precision. For the (2048, 1723)

(6,32) rate-0.84 code, the maximum iteration number is set to 48. We can see from Fig.

6.12 and Fig. 6.13 that the average number of iterations of IMWBF algorithm is

significantly reduced by the fast decoding scheme with negligible bit error rate (BER) and

frame error rate (FER) performance loss. The proposed 2-bit decoding method outperforms

the IMWBF algorithm by 0.7dB when the target BER is
710− . For the (1974, 987) (5,10)

rate-0.5 code, the maximum iteration number is set to 120. We can see from Fig. 6.14 and

Fig. 6.15 that the proposed fast decoding scheme can reduce the average number of

97

iterations needed by IMWBF algorithm to one third at the SNR of 5.5 dB. The introduced

performance loss is negligible.

3.5 4 4.5 5 5.5 6
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
it/

Fr
am

e
er

ro
r r

at
e.

BER, IMWBF
BER, IMWBF+propose
FER, IMWBF
FER, IMWBF+propose

Figure 6.5 Performance of the (2048, 1723) rate-0.84 LDPC code.

3.5 4 4.5 5 5.5 6
0

5

10

15

20

25

30

35

40

45

50

Eb/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te
ra

tio
ns

.

IMWBF
IMWBF+propose

Figure 6.6 Average number of iterations for decoding
the (2048, 1723) rate-0.84 LDPC code.

98

3.5 4 4.5 5 5.5 6 6.5

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

B
it/

Fr
am

e
er

ro
r r

at
e.

BER, IMWBF
BER, IMWBF+propose
FER, IMWBF
FER, IMWBF+propose

Figure 6.7 Performance of the (1974,987) rate-0.5 LDPC code.

3.5 4 4.5 5 5.5 6 6.5
0

20

40

60

80

100

120

Eb/No (dB)

A
ve

ra
ge

 n
um

be
r o

f i
te
ra

tio
ns

.

IMWBF
IMWBF+propose

Figure 6.8 Average number of iterations for decoding
the (1974,987) rate-0.5 LDPC code.

99

6.4 Summary

We have discussed the approaches to reduce the number of decoding iterations and

hence to increase decoding speed. First, an extended layered decoding approach has been

presented. It has been shown that it converges faster and has better error correction

capability than the conventional TPMP LDPC decoding algorithm. The approach is

suitable for both random and structured LDPC codes. Then, an efficient early stopping

scheme has been proposed to detect undecodable blocks as early as possible in order to

avoid unnecessary computation. The two approaches can be combined with SPA and its

various near optimum approximate algorithms to speed up LDPC decoding. Finally, we

demonstrate that the decoding convergence of WBF-based algorithm can be significantly

speeded up with a multi-threshold detection scheme.

100

7 CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

This research has investigated various VLSI design issues of LDPC decoders and has

proposed low-complexity high-speed decoder architectures to reduce VLSI implementation

complexity and improve decoding throughput.

To reduce hardware implementation complexity of LDPC decoder, we have

proposed a memory efficient partially parallel decoder architecture, which stores soft

messages in the Min-Sum decoding algorithm in a compressed form. In general, over 30%

memory can be saved. Various optimization methods have been presented to further reduce

the implementation complexity and minimize the critical path.

We have investigated various design approaches for high throughput LDPC

decoders. We have proposed an efficient message passing decoder architecture to reduce

interconnect complexity. If using 4-bit quantization for decoding a (2048, 1723) (6, 32)

LDPC code, the approach can reduce 54% outgoing wires per variable node unit and 90%

outgoing wires per check node unit. Then, by exploiting the regularity in parity check

matrices of QC-LDPC codes, we have developed a high throughput decoder architecture

for QC-LDPC codes. It has been estimated that 4.7Gbit/sec decoding throughput for a

(3456, 1728) (3, 6) QC-LDPC code can be achieved. In addition, we have also

implemented an enhanced partially parallel decoder architecture with FPGA for a (8176,

7156) Euclidian geometry based QC-LDPC code. A worst-case source information

decoding throughput (at 15 iterations) over 170Mbps is achieved.

For cost sensitive applications, we have proposed an optimized 2-bit soft decoding

approach. The implementation complexity of the proposed method is comparable to WBF-

101

based algorithms. However, the proposed approach achieves much better decoding

performance and faster convergence speed.

LDPC codes are decoded using iterative decoding algorithms. We have discussed the

approaches to reduce the number of decoding iterations and hence to increase the decoding

speed. First, we have proposed an extended layered decoding approach. Simulations on

both random and structured LDPC codes have shown that the proposed approach

converges faster than conventional TPMP decoding algorithm. Second, it happens

frequently that a valid codeword can not be found even though a large number of decoding

iterations are performed at low to medium signal-to-noise ratios. We have proposed an

efficient early stopping scheme to detect such undecodable cases as early as possible in

order to avoid unnecessary computation. Finally, we have demonstrated that the decoding

convergence of WBF-based algorithm can be significantly speeded up with a multi-

threshold detection scheme.

7.2 Future Work

This research has assumed that a binary codeword is BPSK modulated and

transmitted through an AWGN channel. It has been found that non-binary LDPC codes

have better performance than binary LDPC codes if the block length in binary bits are the

same [6][32]. Unfortunately, the message passing decoding algorithm for non-binary

LDPC code is more complex than that for binary LDPC codes. Recently, a few researchers

have explored reduced complexity decoding algorithms for non-binary LDPC codes

[29][72]. However, little effort has been made for investigating the VLSI implementation

issues. To facilitate the applications of LDPC codes designed in high order Galois fields,

the decoding complexity has to be significantly reduced. Our research work can be

102

extended to low complexity decoding of non-binary LDPC codes in both algorithm and

architecture level. Extensive efforts are needed in efficient VLSI design for non-binary

LDPC decoders.

103

8 BIBLIOGRAPH

[1] R. G. Gallager, “Low-density parity-check codes,” IRE Transactions on Information
Theory, vol. IT-8, pp. 21-28, Jan. 1962.

[2] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and

convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 429-445, Mar. 1996.

[3] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate”, IEEE Trans. Inform. Theory, vol. IT-20, pp. 284–287,
March 1974.

[4] R. M. Tanner, D. Sridhara, A. Sridharan, T.E. Fuja, and D. J. Costello, “LDPC block

and convolutional codes based on circulant matrices”, IEEE Trans. Inform. Theory,
vol. 50, pp. 2966-2984, Dec. 2004.

[5] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE

Trans. Inform. Theory, vol. 45, pp. 399-431, Mar. 1999.

[6] M. Davey and D. J. C. MacKay, “Low Density Parity Check Codes over GF(q),” IEEE

Commun. Lett., vol. 2, pp. 165-167, June 1998.

[7] M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, and V. Stemann,

“Practical loss-resilient codes,” in Proc. 29th Annu. Symp. Theory of Computing,
1997, pp. 150–159.

[8] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity-check

codes”, IEEE Trans. on Inform. Theory, vol 47, pp. 638–656, Feb. 2001.

[9] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-accumulate codes,”, Int.

Confe. on Turbo codes, Sept. 2000.

[10] Y. Zhang, W. E. Ryan, and Y. Li, “Structured eIRA codes with low floors,” in Proc.

International Symposium on Information Theory, 2005. pp. 174-178, Sept. 2005.

[11] M. Yang, W. E. Ryan and Y. Li, “Design of efficiently encodable moderate-length

high-rate irregular LDPC codes,” IEEE Trans. on Communications, vol. 52, pp. 564-
571, April 2004.

104

[12] Djurdjevic, Jun Xu, K. Abdel-Ghaffar, Shu Lin, “A class of low-density parity-check
codes constructed based on Reed-Solomon codes with two information symbols,”
IEEE Communications Letters, vol 7, pp. 317-319, July 2003.

[13] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant

permutation matrices,” IEEE Trans. on Info. Theory, vol. 50, pp. 1788-1793, Aug.
2004.

[14] J. L. Fan, “Array codes as low-density parity-check codes,” in Proc. 2nd Int. Symp.

Turbo Codes, Brest, France, Sept. 2000, pp. 545–546.

[15] Z. Li and B. V. K. V. Kumar, “A class of good quasi-cyclic low-density parity check

codes based on progressive edge growth graph,” Thirty-Eighth Asilomar Conference
on Signals, Systems and Computers, vol. 2, pp. 1990-1994, 2004.

[16] Z. Li, L. Chen, S. Lin, W. Fong and P. Yeh, “Efficient encoding of quasi-cyclic low-

density parity-check codes”, to appear in IEEE trans. on communications.

[17] S, Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications,2nd

edition, Prentice Hall, 2004.

[18] I. Djurdjevic, J. Xu, K. Abdel-Ghaffar, and S. Lin, “A class of low-density parity-

check codes constructed based on Reed-Solomon codes with two information
symbols,” IEEE Commun. Lett., vol. 7, pp. 317–319, July 2003.

[19] L. Chen, I. Djurdjevic, X. Jun,S. Lin and K. Abdel-Ghaffar, “Construction of quasi-

cyclic LDPC codes based on the minimum weight codewords of reed-solomon
codes,” in proc. ISIT’04, pp. 239, June 2004.

[20] S. Song, L. Lan, S. Lin, and K. Abdel-Ghaffar, “Construction of Quasi-Cyclic LDPC

Codes Based on the Primitive Elements of Finite Fields,” in proc. CISS’06, pp. 835-
838, March 2006.

[21] Y. Kou, S. Lin, and M. Fossorier, “Low density parity check codes based on finite

geometries: a rediscovery and more,” IEEE Trans. Inform.Theory, vol. 47, pp. 2711–
2736, Nov. 2001.

[22] R. Y. Shao, S. Lin, and M.P.C.Fossorier, “Two simple stopping criteria for turbo

decoding,” IEEE Trans. Comm., vol. 47, no. 8, pp. 1117 – 1120, Aug. 1999.

105

[23] L. Chen, J. Xu, I. Djurdjevic and S. Lin, “Near-Shannon-Limit Quasi-Cyclic Low-
Density Parity-Check Codes,” IEEE Transactions on Communications, vol. 52, pp.
1038-1042, Jul. 2004.

[24] J. Chen and M. P. C. Fossorier, “Decoding low-density parity check codes with

normalized APP-based algorithm,” GLOBECOM '01, vol. 2, pp.1026 – 1030, Nov.
2001.

[25] J. Chen and M. Fossorier, “Near optimum universal belief propagation based

decoding of low-density parity check codes,” IEEE Trans. Commun., vol. 50, pp.
406-414, Mar. 2002.

[26] J. Chen, A. Dholakia, E. Eleftheriou, M. P. C. Fossorier, X. Hu, “Reduced-

Complexity Decoding of LDPC Codes,” IEEE Trans. on Commun., vol 53, pp. 1288-
1299, Aug. 2005.

[27] J. Zhang and M. Fossorier, “A modified weighted bit-flipping decoding of low

density parity-check codes,” IEEE Commun. Lett., vol. 8, pp. 165–167, Mar. 2004.

[28] J. Zhang and M. Fossorier, “Shuffled belief propagation decoding,” IEEE Asilomar

Conf. on Signals, Sys. And Computers, pp. 8-15, Nov. 2002.

[29] D. Declercq and M. Fossorier, “Decoding Algorithms for Nonbinary LDPC Codes

over GF(q)”, IEEE Trans. on Commun., vol. 55(4), pp. 633-643, April 2007.

[30] Xiao-Yu Hu, E. Eleftheriou, D.-M. Arnold, and A. Dholakia, “Efficient

implementation of the sum-product algorithm for decoding LDPC codes,” in Proc.
IEEE Globecom, San Antonio, TX, Nov. 2001, pp. 1036–1036E.

[31] Xiao-Yu Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular progressive

edge-growth tanner graphs,” IEEE Transactions on Information Theory, vol. 51,
issue 1, pp. 386-398, Jan. 2005.

[32] Xiao.-Yu. Hu and E. Eleftheriou, “Binary Representation of Cycle Tanner-Graph

GF(b2) Codes,” The Proc. IEEE Intern. Conf. on Commun., Paris, France, pp. 528-
532, June 2004.

[33] E. Jones, M. Valles, M. Smith, and J. Villasenor, “Approximate Min* constraint node

updating for LDPC code decoding,” IEEE MILCOM conference, Oct. 2003.

106

[34] M. Cocco, J. Dielissen, M. Heijligers, A. Hekstra, J. Huisken, “A scalable architecture
for LDPC decoding,” Automation and Test in Europe Conference and Exhibition,
vol. 3, pp. 88-93, Feb. 2004.

[35] Z. Wang, Y. Tan, and Y. Wang, “Low Hardware Complexity Parallel Turbo Decoder

Architecture”, in proc. of IEEE ISCAS’03, pp: II-53-56. May 2003.

[36] Z. Wang and Q. Jia, “Low complexity, high speed decoder architecture for quasi-

cyclic LDPC codes,” in proc. of IEEE ISCAS’05, Japan, May, 2005.

[37] Z. Wang, H. Suzuki and K. Parhi, “VLSI Implementation Issues of Turbo Decoder

Design for Wireless Applications,” SiPS 1999, pp. 503-512, Oct. 1999.

[38] Z. Wang, Y Chen and K Parhi, “Area-efficient decoding of quasi-cyclic low density

parity check codes”, ICASSP 2004, vol. 5, pp.49-52, May 2004.

[39] Z. Wang and Q. Jia, “Low complexity, high speed decoder architecture for quasi-cyclic

LDPC codes,” to apprear in 2005 IEEE International Symposium on Circuits and
Systems, Japan, May, 2005.

[40] Z.Wang and K. K. Parhi, “Decoding metrics and their applications in VLSI turbo

decoders,” in Proc. ICASSP, 2000, pp. 3370– 3373.

[41] Z. Wang, Y. Zhang, and K. K. Parhi, “Study of early stopping criteria for Turbo

decoding and their applications in WCDMA systems,” in Proc of ICASSP’06, pp. III-
1016-1019, May 2006.

[42] Z. Cui, L. Chen, and Z. Wang, “An efficient early stopping scheme for LDPC

decoding,” in proc 13th NASA Symposium on VLSI design.

[43] T. Zhang and K. K. Parhi, “An FPGA implementation of (3,6)-regular low-density

parity-check code decoder,” EURASIP Journal on Applied Signal Processing, special
issue on Rapid Prototyping of DSP Systems vol. 2003, no. 6, pp. 530-542, May, 2003.

[44] T. Zhang and K. K. Parhi, “A 54 Mbps (3,6)-regular FPGA LDPC decoder,” in Proc.

IEEE SiPS’2002, pp 127-132, 2002.

[45] T. Zhang, Z. Wang, and K. K. Parhi, “On finite precision implementation of low

density parity check codes decoder,” ISCAS 2001, vol.4, pp. 202-205, May 2001.

107

[46] T. Zhang and K. K. Parhi, “High-performance, low-complexity decoding of
generalized low-density parity-check codes,” IEEE GLOBECOM '01, vol. 1, pp. 181-
185, Nov. 2001.

[47] D. E. Hocevar, “LDPC code construction with flexible hardware implementation”,

IEEE ICC '03, vol. 4, pp. 2708 – 2712.

[48] Y. Chen and D. E. Hocevar, “A FPGA and ASIC implementation of rate-1/2, 8088-b

irregular low density parity check decoder,” IEEE GLOBECOM '03, vol. 1, pp. 113-
117, Dec. 2003.

[49] D. E. Hocevar, “A reduced complexity decoder architecture via layered decoding of

LDPC codes,” IEEE Workshop on Signal Processing Systems, pp. 107 - 112 , 2004.

[50] M. M. Mansour and N. R. Shanbhag, “Turbo decoder architectures for low-density

parity-check codes,” IEEE Global Telecommunications Conference, vol. 2, pp.1383-
1388, Nov., 2002.

[51] M. M. Mansour, N. R. Shanbhag, “High-throughput LDPC decoders,” IEEE Trans. on

Very Large Scale Integration (VLSI) Systems, vol. 11, pp. 976-996, Dec. 2003.

[52] E. Sharon, S. Litsyn, and J. Goldberger, “An efficient message-passing schedule for

LDPC decoding,” in Proc. the 23rd IEEE Convention of Electrical and Electronics
Engineers in Israel, pp. 223-226, Sept., 2004.

[53] M. Karkooti and J. R. Cavallaro, “Semi-parallel reconfigurable architectures for real-

time LDPC decoding,” ITCC’2004, vol. 1, pp. 579-585, Apr. 2004.

[54] P. Radosavljevic, A. de Baynast, M. Karkooti, and J. R. Cavallaro, , “Multi-Rate

High-Throughput LDPC Decoder: Tradeoff Analysis Between Decoding Throughput
and Area,” IEEE PIMRC’06, Sept. 2006.

[55] Y. Li, M. Elassal, M. Bayoumi, “Power efficient architecture for (3,6)-regular low-

density parity-check code decoder,” in proc. ISCAS '04, vol. 4, pp. 81-84, May
2004.

[56] F. Kienle, T. Brack, and N. Wehn, “A synthesizable IP core for DVB-S2 LDPC code

decoding,” in proc. Design, Automation and Test in Europe, 2005, vol. 3, pp. 100 –
105, 2005.

108

[57] J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density
parity check code decoder,” IEEE Journal of Solid-State Circuits, vol. 37, pp. 404-
412, March 2002.

[58] Darabiha, A. C. Carusone, F. R. Kschischang, “Multi-Gbit/sec low density parity

check decoders with reduced interconnect complexity,” ISCAS 2005, vol. 5, pp.
5194-5197, May 2005.

[59] Se-Hyeon Kang and In-Cheol Park, “Loosely coupled memory-based decoding

architecture for low density parity check codes,” IEEE Trans. on Circuits and Systems
I, vol. 53, pp. 1045 – 1056, May 2006.

[60] J. K. –S. Lee, J. Thorpe, “Memory-efficient decoding of LDPC codes,” ISIT’05, pp.

456-463, Sept. 2005.

[61] Lin, K. Lin, H. Chang; and C. Lee, “A 3.33Gb/s (1200,720) low-density parity check

code decoder,” in Proc. of ESSCIRC’05, pp. 211-214, Sept. 2005.

[62] J. Sha, M. Gao, Z. Zhang, L. Li, and Z. Wang, “Efficient Decoder Implementation

for QC-LDPC Codes,” ICCCAS’06, vol. 4, pp. 2498-2502, June 2006.

[63] K. K. Gunnam, G. S. Choi, and M. B. Yeary, “A Parallel VLSI Architecture for

Layered Decoding for Array LDPC Codes,” VLSID’07, pp. 738-73, Jan. 2007.

[64] Guo, L. Hanzo, “Reliability ratio based weighted bit-flipping decoding for low-

density parity-check codes,” Electronics Letters, vol 40, pp. 1356-1358, Oct. 2004.

[65] M. Jiang, C. Zhao, Z. Shi, Yu Chen, “An improvement on the modified weighted bit

flipping decoding algorithm for LDPC codes,” IEEE Communications Letters, vol. 9,
pp. 814-816, Sep. 2005.

[66] H. Sankar and K. R. Narayanan, “Memory-efficient sum-product decoding of LDPC

codes,” IEEE Transactions on Communications, vol. 52, issue 8, pp. 1225-1230,
Aug. 2004.

[67] Y. Dai, Z. Yan, and N. Chen, “High-Throughput Turbo-Sum-Product Decoding of

QC LDPC Codes,” in Proc. Confe. on Information Sciences and Systems, pp. 839-
844, March, 2006.

[68] D. –U. Lee, W. Luk, C. Wang, C. Jones, “A flexible hardware encoder for low-density

parity-check codes”, IEEE Symp. on FCCM’04, pp. 101-111.

109

[69] T. Bhatt., V. Sundaramurthy, V. Stolpman, and D. McCain, “Pipelined Block-Serial
Decoder Architecture for Structured LDPC Codes,” IEEE International Conference on
Acoustics, Speech and Signal Processing, vol. 4, pp. IV-225 - IV-228, 2006.

[70] A. Matache, S. Dolinar, and F. Pollara, “Stopping rules for turbo decoders,” Tech.

Rep., Jet Propulsion Laboratory, Pasadena, California, Aug. 2000.

[71] J. Li, X. H. You and J. Li, “Early stopping for LDPC secoding: convergence of mean

magnitude (CMM),” IEEE Comm. Letters, vol. 10, no. 9, Sept. 2006.

[72] H. Song and J.R. Cruz, “Reduced-Complexity Decoding of Q-ary LDPC Codes for

Magnetic Recording,” IEEE Trans.Magn., vol. 39, pp. 1081-1087, Mar. 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

