71 research outputs found

    A three-level distributed architecture for the real-time monitoring of modern power systems

    Get PDF
    To monitor network operation in real-time, power system operators have developed wide-area monitoring systems (WAMS). However, the centralized communication and information processing architecture of WAMS cannot be extended easily to distribution networks. In this aspect, a three-level distributed network monitoring architecture is proposed in this paper, concerning the dynamic analysis of transmission, primary and secondary distribution networks by exploiting measurements of ambient data and transient responses. In the proposed architecture, operators are responsible for the operation and analysis of their own grid but also can share an overview of the system performance to facilitate their operational coordination. Different online and offline applications are supported within the architecture, including small-signal, transient and frequency stability analysis as well as dynamic equivalencing and real-time inertia estimation. Measurement-based algorithms and models are proposed for each case. Finally, the performance of the developed algorithms has been tested by using a combined transmission and distribution power system model

    Model Development and Validation for Wind Generation Transmission Systems

    Get PDF
    In this research a new benchmark system is proposed for wind energy transmission systems. New model development, validation, and calibration methods for power transmission systems are proposed and implemented as well. First, a model reduction criteria is chosen based on electrical interconnection and geographical information. Model development is then done using reduction techniques on an operation model provided by a transmission operator based on the chosen criteria. Then model validation is performed using actual PMU synchrophasor measurements provided by a utility company. The model development and validation process ensures the accuracy of the developed model and makes for a realistic benchmark system for wind generation transmission systems. The new proposed model development and validation methods are generic and can be used to model any power transmission system for various simulation needs. Nevertheless, the accuracy of the benchmark model is constrained by the accuracy of the initial operational model. In this research, a new parameter estimation technique for determining the bus admittance matrix (Ybus) is also proposed to further calibrate power system models. Ybus estimation is done using recorded PMU synchrophasor measurements. The approach proposed in this research is based on recognizing that bus injection currents Ibus can be viewed as signals produced by a random process. In this manner, the corresponding bus voltages Vbus are also stochastic signals that are related through a cross-covariance matrix to the vector Ibus. Using estimation techniques developed for statistical signal processing, the cross-covariance matrix is shown to be Zbus

    Applying a formula for generator redispatch to damp interarea oscillations using synchrophasors

    Get PDF
    If an interarea oscillatory mode has insufficient damping, generator redispatch can be used to improve its damping. We explain and apply a new analytic formula for the modal sensitivity to rank the best pairs of generators to redispatch. The formula requires some dynamic power system data and we show how to obtain that data from synchrophasor measurements. The application of the formula to damp interarea modes is explained and illustrated with interarea modes of the New England 10-machine power system.Comment: To appear in IEEE Transactions on Power Systems, accepted September 201
    corecore