8 research outputs found

    Missing data in multiplex networks: a preliminary study

    Full text link
    A basic problem in the analysis of social networks is missing data. When a network model does not accurately capture all the actors or relationships in the social system under study, measures computed on the network and ultimately the final outcomes of the analysis can be severely distorted. For this reason, researchers in social network analysis have characterised the impact of different types of missing data on existing network measures. Recently a lot of attention has been devoted to the study of multiple-network systems, e.g., multiplex networks. In these systems missing data has an even more significant impact on the outcomes of the analyses. However, to the best of our knowledge, no study has focused on this problem yet. This work is a first step in the direction of understanding the impact of missing data in multiple networks. We first discuss the main reasons for missingness in these systems, then we explore the relation between various types of missing information and their effect on network properties. We provide initial experimental evidence based on both real and synthetic data.Comment: 7 page

    Sampling-based estimation of in-degree distribution in directed networks

    Get PDF
    The focus of this thesis is on the estimation of the in-degree distribution in directed networks from sampling network nodes or edges. A number of sampling schemes are considered, including random sampling with and without replacement, and several approaches based on random walks with possible jumps. When sampling nodes, it is assumed that only the out-edges of that node are visible, that is, the in-degree of that node is not observed. The suggested estimation of the in-degree distribution is based on two approaches. The inversion approach exploits the relation between the original and sample in-degree distributions, and can estimate the bulk of the in-degree distribution, but not the tail of the distribution. The tail of the in-degree distribution is estimated through an asymptotic approach, which itself has two versions: one assuming a power-law tail and the other for a tail of general form. The two estimation approaches are examined on synthetic and real networks, with good performance results, especially striking for the asymptotic approach.Bachelor of Scienc

    Spreading Processes in Multilayer Networks

    Full text link

    A Measurement Framework for Directed Networks

    No full text
    corecore