33,258 research outputs found

    A Bayesian approach for energy-based estimation of acoustic aberrations in high intensity focused ultrasound treatment

    Get PDF
    High intensity focused ultrasound is a non-invasive method for treatment of diseased tissue that uses a beam of ultrasound to generate heat within a small volume. A common challenge in application of this technique is that heterogeneity of the biological medium can defocus the ultrasound beam. Here we reduce the problem of refocusing the beam to the inverse problem of estimating the acoustic aberration due to the biological tissue from acoustic radiative force imaging data. We solve this inverse problem using a Bayesian framework with a hierarchical prior and solve the inverse problem using a Metropolis-within-Gibbs algorithm. The framework is tested using both synthetic and experimental datasets. We demonstrate that our approach has the ability to estimate the aberrations using small datasets, as little as 32 sonication tests, which can lead to significant speedup in the treatment process. Furthermore, our approach is compatible with a wide range of sonication tests and can be applied to other energy-based measurement techniques

    Direct estimation of kinetic parametric images for dynamic PET.

    Get PDF
    Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radiotracer in vivo. The spatiotemporal information can be used to estimate parametric images of radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of parametric images from raw projection data allows accurate noise modeling and has been shown to offer better image quality than conventional indirect methods, which reconstruct a sequence of PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of parametric images has gained increasing interests with the advances in computing hardware. Many direct reconstruction algorithms have been developed for different kinetic models. In this paper we review the recent progress in the development of direct reconstruction algorithms for parametric image estimation. Algorithms for linear and nonlinear kinetic models are described and their properties are discussed

    Using Markov Models and Statistics to Learn, Extract, Fuse, and Detect Patterns in Raw Data

    Full text link
    Many systems are partially stochastic in nature. We have derived data driven approaches for extracting stochastic state machines (Markov models) directly from observed data. This chapter provides an overview of our approach with numerous practical applications. We have used this approach for inferring shipping patterns, exploiting computer system side-channel information, and detecting botnet activities. For contrast, we include a related data-driven statistical inferencing approach that detects and localizes radiation sources.Comment: Accepted by 2017 International Symposium on Sensor Networks, Systems and Securit

    Performance bounds for expander-based compressed sensing in Poisson noise

    Full text link
    This paper provides performance bounds for compressed sensing in the presence of Poisson noise using expander graphs. The Poisson noise model is appropriate for a variety of applications, including low-light imaging and digital streaming, where the signal-independent and/or bounded noise models used in the compressed sensing literature are no longer applicable. In this paper, we develop a novel sensing paradigm based on expander graphs and propose a MAP algorithm for recovering sparse or compressible signals from Poisson observations. The geometry of the expander graphs and the positivity of the corresponding sensing matrices play a crucial role in establishing the bounds on the signal reconstruction error of the proposed algorithm. We support our results with experimental demonstrations of reconstructing average packet arrival rates and instantaneous packet counts at a router in a communication network, where the arrivals of packets in each flow follow a Poisson process.Comment: revised version; accepted to IEEE Transactions on Signal Processin
    • …
    corecore