123 research outputs found

    A maximal clique based multiobjective evolutionary algorithm for overlapping community detection

    Get PDF
    Detecting community structure has become one im-portant technique for studying complex networks. Although many community detection algorithms have been proposed, most of them focus on separated communities, where each node can be-long to only one community. However, in many real-world net-works, communities are often overlapped with each other. De-veloping overlapping community detection algorithms thus be-comes necessary. Along this avenue, this paper proposes a maxi-mal clique based multiobjective evolutionary algorithm for over-lapping community detection. In this algorithm, a new represen-tation scheme based on the introduced maximal-clique graph is presented. Since the maximal-clique graph is defined by using a set of maximal cliques of original graph as nodes and two maximal cliques are allowed to share the same nodes of the original graph, overlap is an intrinsic property of the maximal-clique graph. Attributing to this property, the new representation scheme al-lows multiobjective evolutionary algorithms to handle the over-lapping community detection problem in a way similar to that of the separated community detection, such that the optimization problems are simplified. As a result, the proposed algorithm could detect overlapping community structure with higher partition accuracy and lower computational cost when compared with the existing ones. The experiments on both synthetic and real-world networks validate the effectiveness and efficiency of the proposed algorithm

    On combinatorial optimisation in analysis of protein-protein interaction and protein folding networks

    Get PDF
    Abstract: Protein-protein interaction networks and protein folding networks represent prominent research topics at the intersection of bioinformatics and network science. In this paper, we present a study of these networks from combinatorial optimisation point of view. Using a combination of classical heuristics and stochastic optimisation techniques, we were able to identify several interesting combinatorial properties of biological networks of the COSIN project. We obtained optimal or near-optimal solutions to maximum clique and chromatic number problems for these networks. We also explore patterns of both non-overlapping and overlapping cliques in these networks. Optimal or near-optimal solutions to partitioning of these networks into non-overlapping cliques and to maximum independent set problem were discovered. Maximal cliques are explored by enumerative techniques. Domination in these networks is briefly studied, too. Applications and extensions of our findings are discussed

    An Enhanced Multi-Objective Biogeography-Based Optimization Algorithm for Automatic Detection of Overlapping Communities in a Social Network with Node Attributes

    Full text link
    Community detection is one of the most important and interesting issues in social network analysis. In recent years, simultaneous considering of nodes' attributes and topological structures of social networks in the process of community detection has attracted the attentions of many scholars, and this consideration has been recently used in some community detection methods to increase their efficiencies and to enhance their performances in finding meaningful and relevant communities. But the problem is that most of these methods tend to find non-overlapping communities, while many real-world networks include communities that often overlap to some extent. In order to solve this problem, an evolutionary algorithm called MOBBO-OCD, which is based on multi-objective biogeography-based optimization (BBO), is proposed in this paper to automatically find overlapping communities in a social network with node attributes with synchronously considering the density of connections and the similarity of nodes' attributes in the network. In MOBBO-OCD, an extended locus-based adjacency representation called OLAR is introduced to encode and decode overlapping communities. Based on OLAR, a rank-based migration operator along with a novel two-phase mutation strategy and a new double-point crossover are used in the evolution process of MOBBO-OCD to effectively lead the population into the evolution path. In order to assess the performance of MOBBO-OCD, a new metric called alpha_SAEM is proposed in this paper, which is able to evaluate the goodness of both overlapping and non-overlapping partitions with considering the two aspects of node attributes and linkage structure. Quantitative evaluations reveal that MOBBO-OCD achieves favorable results which are quite superior to the results of 15 relevant community detection algorithms in the literature

    Deep Learning in Social Networks for Overlappering Community Detection

    Get PDF
    The collection of nodes is termed as community in any network system that are tightly associated to the other nodes. In network investigation, identifying the community structure is crucial task, particularly for exposing connections between certain nodes. For community overlapping, network discovery, there are numerous methodologies described in the literature. Numerous scholars have recently focused on network embedding and feature learning techniques for node clustering. These techniques translate the network into a representation space with fewer dimensions. In this paper, a deep neural network-based model for learning graph representation and stacked auto-encoders are given a nonlinear embedding of the original graph to learn the model. In order to extract overlapping communities, an AEOCDSN algorithm is used. The efficiency of the suggested model is examined through experiments on real-world datasets of various sizes and accepted standards. The method outperforms various well-known community detection techniques, according to empirical findings

    A community merger of optimization algorithm to extract overlapping communities in networks

    Full text link
    © 2018 IEEE. A community in networks is a subset of vertices primarily connecting internal components, yet less connecting to the external vertices. The existing algorithms aim to extract communities of the topological features in networks. However, the edges of practical complex networks involving a weight that represents the tightness degree of connection and robustness, which leads a significant influence on the accuracy of community detection. In our study, we propose an overlapping community detection method based on the seed expansion strategy applying to both the unweighted and the weighted networks, called OCSE. First, it redefines the edge weight and the vertex weight depending on the influence of the network topology and the original edge weight, and then selects the seed vertices and updates the edges weight. Comparisons between OCSE approach and existing community detection methods on synthetic and real-world networks, the results of the experiment show that our proposed approach has the significantly better performance in terms of the accuracy

    Proceedings of the XIII Global Optimization Workshop: GOW'16

    Get PDF
    [Excerpt] Preface: Past Global Optimization Workshop shave been held in Sopron (1985 and 1990), Szeged (WGO, 1995), Florence (GO’99, 1999), Hanmer Springs (Let’s GO, 2001), Santorini (Frontiers in GO, 2003), San José (Go’05, 2005), Mykonos (AGO’07, 2007), Skukuza (SAGO’08, 2008), Toulouse (TOGO’10, 2010), Natal (NAGO’12, 2012) and Málaga (MAGO’14, 2014) with the aim of stimulating discussion between senior and junior researchers on the topic of Global Optimization. In 2016, the XIII Global Optimization Workshop (GOW’16) takes place in Braga and is organized by three researchers from the University of Minho. Two of them belong to the Systems Engineering and Operational Research Group from the Algoritmi Research Centre and the other to the Statistics, Applied Probability and Operational Research Group from the Centre of Mathematics. The event received more than 50 submissions from 15 countries from Europe, South America and North America. We want to express our gratitude to the invited speaker Panos Pardalos for accepting the invitation and sharing his expertise, helping us to meet the workshop objectives. GOW’16 would not have been possible without the valuable contribution from the authors and the International Scientific Committee members. We thank you all. This proceedings book intends to present an overview of the topics that will be addressed in the workshop with the goal of contributing to interesting and fruitful discussions between the authors and participants. After the event, high quality papers can be submitted to a special issue of the Journal of Global Optimization dedicated to the workshop. [...

    Community Detection in Networks using Bio-inspired Optimization: Latest Developments, New Results and Perspectives with a Selection of Recent Meta-Heuristics

    Get PDF
    Detecting groups within a set of interconnected nodes is a widely addressed prob- lem that can model a diversity of applications. Unfortunately, detecting the opti- mal partition of a network is a computationally demanding task, usually conducted by means of optimization methods. Among them, randomized search heuristics have been proven to be efficient approaches. This manuscript is devoted to pro- viding an overview of community detection problems from the perspective of bio-inspired computation. To this end, we first review the recent history of this research area, placing emphasis on milestone studies contributed in the last five years. Next, we present an extensive experimental study to assess the performance of a selection of modern heuristics over weighted directed network instances. Specifically, we combine seven global search heuristics based on two different similarity metrics and eight heterogeneous search operators designed ad-hoc. We compare our methods with six different community detection techniques over a benchmark of 17 Lancichinetti-Fortunato-Radicchi network instances. Ranking statistics of the tested algorithms reveal that the proposed methods perform com- petitively, but the high variability of the rankings leads to the main conclusion: no clear winner can be declared. This finding aligns with community detection tools available in the literature that hinge on a sequential application of different algorithms in search for the best performing counterpart. We end our research by sharing our envisioned status of this area, for which we identify challenges and opportunities which should stimulate research efforts in years to come
    corecore