26,600 research outputs found

    Designing Robust LMCA-based Threshold Secret Sharing Scheme for Digital Images Using Multiple Configurations Assignment

    Get PDF
    In this paper, we present a new (t,n)-threshold secret images sharing scheme based on linear memory cellular automata (LMCA). While all existing LMCA-based sharing scheme are not robust, the proposed one provides full robustness property. Precisely, any subset of t participants can collude to recover the shared secret, in contrast to existing LMCA-based schemes when this is possible only for participants having consecutive shares. To achieve robustness, produced shares are constructed using subsets of different LMCA’s configurations instead of using single ones. The subsets are defined according to an assignments matrix that is generated using a specific heuristic. The proposed scheme is shown to be robust, and its security is experimentally evaluated with respect to the problem of secret color image sharing. Obtained results illustrate the secrecy of the produced shares, while comparison gives an accurate evaluation with respect to existing schemes

    The Visual Secret Sharing Scheme Based on the Rgb Color System

    Full text link
    The visual secret sharing (VSS) scheme is a method to maintain the confidentiality of a se-cret image by sharing it to some number participants. A (k, n) VSS divides the secret images into n parts, that are called shadows ; to recover the secret back, k shadows should be stacked. Some methods have been developed to implement VSS for color images. However, the methods are only suitable for images with limited number of colors. When more colors are used, the resulted stacked shadow image becomes unclear. Besides that, the size of the shadows becomes bigger as more colors are used. We develop a new method implementing the VSS using the RGB color system. Using our method, the problem related to the unclear stacked shadow image can be overcome

    A Randomized Kernel-Based Secret Image Sharing Scheme

    Full text link
    This paper proposes a (k,nk,n)-threshold secret image sharing scheme that offers flexibility in terms of meeting contrasting demands such as information security and storage efficiency with the help of a randomized kernel (binary matrix) operation. A secret image is split into nn shares such that any kk or more shares (k≤nk\leq n) can be used to reconstruct the image. Each share has a size less than or at most equal to the size of the secret image. Security and share sizes are solely determined by the kernel of the scheme. The kernel operation is optimized in terms of the security and computational requirements. The storage overhead of the kernel can further be made independent of its size by efficiently storing it as a sparse matrix. Moreover, the scheme is free from any kind of single point of failure (SPOF).Comment: Accepted in IEEE International Workshop on Information Forensics and Security (WIFS) 201

    PYTHON IMPLEMENTATION OF VISUAL SECRET SHARING SCHEMES

    Get PDF
    Visual secret sharing schemes (VSS) represent an important concept of visual cryptography. They permit the sharing of a secret image between multiple participants so that only authorized groups can recover the secret. This paper considers the software implementation of some black-and-white secret images VSS in Python programming language. PIL (Python Imaging Library) provides strong image processing capabilities, making the library suitable for this kind of implementation. We present samples of the results obtained from the software computation and draw some conclusions.visual secret sharing, visual cryptography, Python, PIL (Python Imaging Library)
    • …
    corecore