212,114 research outputs found

    A Predictive Approach to Semantic Change Modelling

    Get PDF
    International audienceAlthough it is well known that word meaning evolves over time, the cause and the pace of change is still largely unknown. In this context, computational modelling can shed new light on the problem by considering at the same time a large number of variables that are supposed to interact in the process. This field has already given birth to a large number of publications ranging from early work involving statistical and mathematical formalism (Bailey, 1973 ; Kroch, 1989) to more recent work involving robotics and large-scale simulations (Steels, 2011). We consider that semantic change includes all kinds of change in the meanings of lexical items happening over the years. In this work, we address the question of semantic change from a computational point of view. Our aim is to capture the systemic change of words meanings in an empirical model that is also predictive, contrary to most previous approaches that try to model and account for past data

    From Frequency to Meaning: Vector Space Models of Semantics

    Full text link
    Computers understand very little of the meaning of human language. This profoundly limits our ability to give instructions to computers, the ability of computers to explain their actions to us, and the ability of computers to analyse and process text. Vector space models (VSMs) of semantics are beginning to address these limits. This paper surveys the use of VSMs for semantic processing of text. We organize the literature on VSMs according to the structure of the matrix in a VSM. There are currently three broad classes of VSMs, based on term-document, word-context, and pair-pattern matrices, yielding three classes of applications. We survey a broad range of applications in these three categories and we take a detailed look at a specific open source project in each category. Our goal in this survey is to show the breadth of applications of VSMs for semantics, to provide a new perspective on VSMs for those who are already familiar with the area, and to provide pointers into the literature for those who are less familiar with the field

    Mathematical Foundations for a Compositional Distributional Model of Meaning

    Full text link
    We propose a mathematical framework for a unification of the distributional theory of meaning in terms of vector space models, and a compositional theory for grammatical types, for which we rely on the algebra of Pregroups, introduced by Lambek. This mathematical framework enables us to compute the meaning of a well-typed sentence from the meanings of its constituents. Concretely, the type reductions of Pregroups are `lifted' to morphisms in a category, a procedure that transforms meanings of constituents into a meaning of the (well-typed) whole. Importantly, meanings of whole sentences live in a single space, independent of the grammatical structure of the sentence. Hence the inner-product can be used to compare meanings of arbitrary sentences, as it is for comparing the meanings of words in the distributional model. The mathematical structure we employ admits a purely diagrammatic calculus which exposes how the information flows between the words in a sentence in order to make up the meaning of the whole sentence. A variation of our `categorical model' which involves constraining the scalars of the vector spaces to the semiring of Booleans results in a Montague-style Boolean-valued semantics.Comment: to appea

    A Context-theoretic Framework for Compositionality in Distributional Semantics

    Full text link
    Techniques in which words are represented as vectors have proved useful in many applications in computational linguistics, however there is currently no general semantic formalism for representing meaning in terms of vectors. We present a framework for natural language semantics in which words, phrases and sentences are all represented as vectors, based on a theoretical analysis which assumes that meaning is determined by context. In the theoretical analysis, we define a corpus model as a mathematical abstraction of a text corpus. The meaning of a string of words is assumed to be a vector representing the contexts in which it occurs in the corpus model. Based on this assumption, we can show that the vector representations of words can be considered as elements of an algebra over a field. We note that in applications of vector spaces to representing meanings of words there is an underlying lattice structure; we interpret the partial ordering of the lattice as describing entailment between meanings. We also define the context-theoretic probability of a string, and, based on this and the lattice structure, a degree of entailment between strings. We relate the framework to existing methods of composing vector-based representations of meaning, and show that our approach generalises many of these, including vector addition, component-wise multiplication, and the tensor product.Comment: Submitted to Computational Linguistics on 20th January 2010 for revie
    • …
    corecore