5,173 research outputs found

    Conformally Mapped Polynomial Chaos Expansions for Maxwell's Source Problem with Random Input Data

    Full text link
    Generalized Polynomial Chaos (gPC) expansions are well established for forward uncertainty propagation in many application areas. Although the associated computational effort may be reduced in comparison to Monte Carlo techniques, for instance, further convergence acceleration may be important to tackle problems with high parametric sensitivities. In this work, we propose the use of conformal maps to construct a transformed gPC basis, in order to enhance the convergence order. The proposed basis still features orthogonality properties and hence, facilitates the computation of many statistical properties such as sensitivities and moments. The corresponding surrogate models are computed by pseudo-spectral projection using mapped quadrature rules, which leads to an improved cost accuracy ratio. We apply the methodology to Maxwell's source problem with random input data. In particular, numerical results for a parametric finite element model of an optical grating coupler are given

    Geometry considerations for high-order finite-volume methods on structured grids with adaptive mesh refinement

    Get PDF
    2022 Summer.Includes bibliographical references.Computational fluid dynamics (CFD) is an invaluable tool for engineering design. Meshing complex geometries with accuracy and efficiency is vital to a CFD simulation. In particular, using structured grids with adaptive mesh refinement (AMR) will be invaluable to engineering optimization where automation is critical. For high-order (fourth-order and above) finite volume methods (FVMs), discrete representation of complex geometries adds extra challenges. High-order methods are not trivially extended to complex geometries of engineering interest. To accommodate geometric complexity with structured AMR in the context of high-order FVMs, this work aims to develop three new methods. First, a robust method is developed for bounding high-order interpolations between grid levels when using AMR. High-order interpolation is prone to numerical oscillations which can result in unphysical solutions. To overcome this, localized interpolation bounds are enforced while maintaining solution conservation. This method provides great flexibility in how refinement may be used in engineering applications. Second, a mapped multi-block technique is developed, capable of representing moderately complex geometries with structured grids. This method works with high-order FVMs while still enabling AMR and retaining strict solution conservation. This method interfaces with well-established engineering work flows for grid generation and interpolates generalized curvilinear coordinate transformations for each block. Solutions between blocks are then communicated by a generalized interpolation strategy while maintaining a single-valued flux. Finally, an embedded-boundary technique is developed for high-order FVMs. This method is particularly attractive since it automates mesh generation of any complex geometry. However, the algorithms on the resulting meshes require extra attention to achieve both stable and accurate results near boundaries. This is achieved by performing solution reconstructions using a weighted form of high-order interpolation that accounts for boundary geometry. These methods are verified, validated, and tested by complex configurations such as reacting flows in a bluff-body combustor and Stokes flows with complicated geometries. Results demonstrate the new algorithms are effective for solving complex geometries at high-order accuracy with AMR. This study contributes to advance the geometric capability in CFD for efficient and effective engineering applications
    • …
    corecore