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ABSTRACT

GEOMETRY CONSIDERATIONS FOR HIGH-ORDER FINITE-VOLUME METHODS ON

STRUCTURED GRIDS WITH ADAPTIVE MESH REFINEMENT

Computational fluid dynamics (CFD) is an invaluable tool for engineering design. Meshing

complex geometries with accuracy and efficiency is vital to a CFD simulation. In particular, using

structured grids with adaptive mesh refinement (AMR) will be invaluable to engineering optimiza-

tion where automation is critical. For high-order (fourth-order and above) finite volume methods

(FVMs), discrete representation of complex geometries adds extra challenges. High-order meth-

ods are not trivially extended to complex geometries of engineering interest. To accommodate

geometric complexity with structured AMR in the context of high-order FVMs, this work aims to

develop three new methods.

First, a robust method is developed for bounding high-order interpolations between grid levels

when using AMR. High-order interpolation is prone to numerical oscillations which can result in

unphysical solutions. To overcome this, localized interpolation bounds are enforced while main-

taining solution conservation. This method provides great flexibility in how refinement may be

used in engineering applications.

Second, a mapped multi-block technique is developed, capable of representing moderately

complex geometries with structured grids. This method works with high-order FVMs while still

enabling AMR and retaining strict solution conservation. This method interfaces with well-es-

tablished engineering work flows for grid generation and interpolates generalized curvilinear co-

ordinate transformations for each block. Solutions between blocks are then communicated by a

generalized interpolation strategy while maintaining a single-valued flux.

Finally, an embedded-boundary technique is developed for high-order FVMs. This method

is particularly attractive since it automates mesh generation of any complex geometry. However,
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the algorithms on the resulting meshes require extra attention to achieve both stable and accurate

results near boundaries. This is achieved by performing solution reconstructions using a weighted

form of high-order interpolation that accounts for boundary geometry.

These methods are verified, validated, and tested by complex configurations such as reacting

flows in a bluff-body combustor and Stokes flows with complicated geometries. Results demon-

strate the new algorithms are effective for solving complex geometries at high-order accuracy with

AMR. This study contributes to advance the geometric capability in CFD for efficient and effective

engineering applications.
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LIST OF NOTATION

The notation is generally explained as it is introduced. Bold type is reserved for vectors depen-

dent on the physical dimension (e.g. 3 dimensional), such as solution variables of a system of the

governing equations. Matrices are named with capital upright letters, such as N, and the entries are

named with subscripts, Ni,j , where i and j are the indices for the row and the column, respectively.

Some symbols are listed here for convenience.

D the spatial dimension

Vi the volume of cell i

∂Vi the surface of cell i

Af the area of face f

n̂f the normal vector to a face f

U solution vector, e.g., [U1, · · · ,UN ]
⊺

~F flux dyad, e.g., [F1, · · · ,FD]
⊺

F flux vector, e.g., [F1, · · · , FN ]
⊺

Fj the jth component of vector F

S source term

I the identity matrix

i grid cell indices, e.g., (i, j, k) in 3D

i grid face indices, e.g., (i, j, k) in 3D

ed unit vector in direction d

ξ computational space, e.g., (ξ, η, ζ) in 3D

ξd the dth component of ξ

x physical space, e.g., (x, y, z) in 3D

h grid spacing

t time
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∆t time step spacing

ℓ grid refinement level

nref grid refinement factor

N⊺ the grid mapping transformation matrix

J the grid metric Jacobian

Q polynomial order

q polynomial multi-index

ρ density

u velocity

p pressure

e internal energy

Operators

O(−) order of accuracy

〈−〉 cell-averaged or face-averaged quantity

−−1 inverse of an operation or matrix

−⊺ matrix transpose

−† matrix pseudoinverse

− · − the matrix inner product

∇x the differential operator in physical space

∆ Laplacian operator

C grid coarsening operator

C−1 grid refinement operator

I(i) a neighborhood or collection of cells about the cell i

ix



Chapter 1

Introduction

1.1 Motivations

Computational fluid dynamics (CFD) has become an invaluable tool for engineering design,

allowing for rapid analysis and design optimization [1]. However, the accuracy of CFD modeling

of practical fluid dynamics is dependent on many factors, such as the physics models employed in

the governing equations, space and time discretization schemes, computational configurations of

initial and boundary conditions, and the representation of complex geometry.

When modeling compressible fluid dynamics, one of the significant challenges is managing

discontinuities and shocks. Finite-volume methods (FVMs) are an especially good fit for solving

flows that experience discontinuities because FVMs are inherently conservative. FVMs have been

well-developed for low-order accuracy [2]. Modern research codes extend FVMs to high-order

accuracy, that is O(hQ) with Q ≥ 3 and h the spatial cell size. High-order FVMs decrease the

numerical errors far more rapidly as the mesh is refined for smooth flows. Despite the improved

accuracy and efficiency of high-order FVMs, they are less prevalent because they require more

effort to understand and develop algorithms that are robust and efficient [3]. High-order FVMs do

require more computation per cell, although they also better utilize modern computer architectures.

Applying a high-order FVM to structured grids greatly facilitates the solution process, due to

the simple data layout, straightforward solution reconstruction, and well-understood error proper-

ties. An additional motivation for using structured grids is to permit efficient adaptive mesh re-

finement (AMR). AMR is a method of allowing refinement to be added in local regions of interest

while the solution is running, which allows for higher solution accuracy with reduced computa-

tional expense. AMR at high-order is viable on structured grids due to a straightforward process

of refining and coarsening [4]. Nevertheless, structured grids do have a significant drawback —

representing complex geometries is difficult, especially at high-order. Therefore, this research
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aims to develop efficient and accurate geometric capabilities to represent complex geometries for

high-order FVMs on structured grids with AMR.

1.2 Objectives

The goal of this work is to enable high-ordered finite-volume methods to operate on structured

grids with AMR for complex geometries of interest to practical engineering. The challenge is —

how to effectively represent complicated geometries using a structured grid with AMR. To over-

come the challenge and achieve this goal, three distinct methods are defined. First, we develop

a strategy for more robust AMR, allowing for use in a larger variety of engineering applications.

Second, we develop the mapped multi-block (MMB) method to represent complex geometries de-

fined by discrete grids. The MMB method supports high-order accurate geometries with AMR

but has geometric limitations, in addition to the fact that creating meshes requires both expertise

and time. Third, the embedded-boundary (EB) method is developed for high-order FVMs as a

promising new approach for highly complex geometry representation where the MMB method

would encounter difficulties. EB methods are less accurate for the same resolution than the MMB

method due to the cut cells on the boundaries. However, the EB method permits complete automa-

tion of the meshing process for any geometry. Development for each of these three methods not

only stem from a common goal but also a shared set of mathematical tools.

Specifically, the primary objectives of this research are:

1. Develop a robust method for high-order AMR. This addresses the stability challenges faced

by high-order interpolation across AMR levels and at multi-block boundaries. This is impor-

tant for applications involving multi-scales and multi-physics such as turbulent combustion.

2. Establish a standard CFD workflow for mapped structured grids that permits high-order ac-

curacy and AMR. This entails the use of grids that are generated by common mesh generation

software where it is standard practice to produce grids defined by discrete points. In order to

effectively apply AMR and high-order features, a mapping function describing the shape of

the structured grid is required to be constructed from a discrete grid.
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3. Enable the MMB method to represent general geometries of moderate complexity. This

method should maintain fourth-order accuracy for smooth flows, strictly maintain conser-

vation, and operate with AMR. The approach taken to achieve this is to extend an existing

conforming mapped multi-block method from operating on smooth analytic geometries to

general geometries coming from external mesh generation software.

4. Extend the EB method at fourth-order accuracy to solve the Stokes equations while accom-

modating highly-complex geometries. In the CFD community, development of EB methods

is an active research area due to their ability to completely automate the mesh generation

process even for challenging geometries.

5. Demonstrate that with the development of the new methods in this dissertation, complex

fluid flows influenced by geometries are possible with the fourth-order FVM on structured

grids with AMR.

1.3 Dissertation Organization

This dissertation is structured as follows. The mathematical and numerical framework support-

ing this research is presented in Chapter 2 for completeness and convenience. In Chapter 3, the

new adaptive clipping-and-redistribution method is described and discussed, which improves the

robustness of AMR by providing conservative bounds-preservation for multi-dimensional inter-

polation. When using AMR with a high-order FVM, high-order numerical interpolation between

different levels of refinement is required. However, this interpolation sometimes leads to numerical

issues when physical bounds are violated. The new method overcomes two major challenges of

the high-order interpolation method. First, the new method is bound-preserving near extrema or

discontinuities to prevent the emergence of unphysical oscillations while maintaining the fourth-

order accuracy in smooth flows. Second, the new method satisfies the conservation requirement in

multiple dimensions, particularly in the context of generalized curvilinear coordinate transforma-

tions. Additionally, the new method is designed to be localized and computationally inexpensive.
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Chapter 4 presents the conforming MMB method for handling structured grids that are discretely

defined for general complex geometries. The method effectively represents complex geometries by

connecting multiple structured grids along block boundaries. It is designed for high-order FVMs

with AMR and maintains strict solution conservation over block boundaries by extending the map-

ping into ghost cells and interpolating ghost cells between blocks. This dissertation extends the

existing conforming mapped multi-block method for particular geometries that are analytically

defined, to operate on arbitrary geometries defined by discrete data points. In Chapter 5 the fourth-

order Cartesian EB method is presented. The method employs a weighted least-squares technique

for spatial discretization to mitigate the “small cut cell” problem, without mesh modifications, cell

merging, or redistribution. Finally, Chapter 6 concludes the dissertation by summarizing the orig-

inal contributions and novelty of work, and proposes potential directions for future development.
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Chapter 2

Mathematical and Numerical Frameworks

In this chapter, the mathematical and numerical frameworks supporting this dissertation are

summarized. First, the FVM is described since it is the base CFD method for this dissertation.

Next, discretization schemes for FVMs on structured grids and AMR are detailed, including the

mapped multi-block, and embedded-boundary strategies. Furthermore, high-order solution re-

construction processes are explained. Mathematical models testing the proposed methods are

over-viewed. Finally, the computational framework where this research is implemented, Chord,

is described.

2.1 The Finite-Volume Method

This research employs FVMs to discretize partial differential equations (PDEs) in the spatial

domain [5]. One of the advantages of FVMs is that solution conservation is satisfied naturally

without special consideration of the numerical scheme. This conservative property is valuable for

many applications such as the Navier-Stokes equations where conservation of mass, momentum,

and energy, are fundamental physical constraints.

The divergence form of the conservation law governing fluid dynamics can be written as

∂

∂t
U +∇x · ~F = S , (2.1)

where U is a vector of the solution quantity that is conserved, and varies in space x and time t.

The tensor ~F is the flux of U, and the source term vector S is the production of U per unit time.

To apply the FVM [2], the PDE system is converted to an integral form over finite volumes Vi in

space, and the divergence theorem is applied to the flux term yielding

∂

∂t

∫

Vi

U dx+

∫

∂Vi

~F · n̂ dx =

∫

Vi

S dx . (2.2)
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The flux term may be broken into separate regions over the volume surface ∂Vi as

∫

∂Vi

~F · n̂ dx =
∑

f∈∂Vi

∫

Af

~F · n̂f dx ,

where f indexes a particular face of the cell indexed by i, and n̂f is the corresponding outward

normal vector. We define cell averaged and face averaged quantities as

〈U〉i =
1

Vi

∫

Vi

U dx , 〈~F · n̂〉f =
1

Af

∫

Af

~F · n̂f dx , (2.3)

respectively. Using the averaged notation, the finite volume scheme is expressed in terms of aver-

ages as the semi-discrete form

d

dt
〈U〉i +

∑

f∈∂Vi

Af

Vi

〈~F · n̂〉f = 〈S〉i . (2.4)

This is an exact formulation, since no approximations have been made. In practice, the fluxes and

time derivatives are not known exactly, so numerical approximations of each are required in order

to solve the solution state. The order of the solution accuracy depends upon the methods used

to evaluate fluxes and time derivatives. This dissertation specifically focuses on approximation

methods that are fourth-order in space and time, with approaches further detailed by McCorquodale

et al. [4] and in Section 2.3. The approximations themselves are highly-dependent upon the choice

of discretization in space and time. This dissertation explores space discretization on structured

grids which allow for simplifications for flux reconstruction.

2.2 Structured Grids

Structured grids are defined by a Cartesian space with integer points i ∈ ZD which mark cell

centers, where D is the number of spatial dimensions [4, 6]. The problem domain to operate in

is a subset of the integer lattice Γ ⊂ ZD. Each cell is defined by computational volume Vi =

[(i − 1
2
I)h, (i + 1

2
I)h], where I is the vector with all components equal to one, and h is the cell
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size. The faces of each cell are regularly spaced and aligned with the coordinate system. This

allows faces f to be indexed by i± 1
2
ed where e is a unit vector in direction d. This notation for

indexing structured grids is illustrated in Figure 2.1.

ξ

η

h

h
(i− 1, j) (i, j) (i+ 1, j)

(i, j − 1)

(i, j + 1)

(i+ 1
2
, j)

(i− 1
2
, j)

(i, j + 1
2
)

(i, j − 1
2
)

Figure 2.1: Grid indexing notation for a structured grid in two dimensions, where ξ = (i, j).

When the FVM is restricted to structured grids, the flux terms in Equation 2.4 can be simplified

since faces are oriented with the coordinate system, and cells are regularly sized. Additionally,

because all cells share the same computational volumes and face areas, the
Af

Vi
term reduces to 1

h

for all cells. Accounting for the regularity of structured grids, Equation 2.4 can be simplified to

d

dt
〈U〉i +

1

h

D∑

d=1

(
〈Fd〉i+ 1

2
ed − 〈Fd〉i− 1

2
ed

)
= 〈S〉i . (2.5)

2.2.1 Mapped Grids

One approach to accommodate geometries using a structured grid is by applying a grid map-

ping, as illustrated in Figure 2.2. Geometries are represented by transforming the Cartesian grid in

computational space, indexed by coordinates ξ, into a physical space, denoted by coordinates x.
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The transformation between the two spaces is defined by the forward mapping x = x(ξ) and the

inverse mapping ξ = ξ(x), as illustrated in Figure 2.3. A valid mapping function and its inverse

must both be one-to-one in the domain they are used. The forward mapping function must always

be known and readily evaluated. On the other hand, the inverse mapping is generally not directly

required or known. Throughout this dissertation the mapping function when referred to, and unless

explicitly stated otherwise, indicates the forward mapping x(ξ).

Physical DomainComputational Domain

E

F

E F

A D

Body surface

C

B

D

A

Wake Cut

B C

η
ξ

Outer Boundary

Outflow
Boundary

ξ

η
x

y∆ξ = 1

∆η = 1

Figure 2.2: A representation of an airfoil geometry with a mapped structured grid.

ξ

η

x

y
ηj

ξi

Computational Grid

cellnode face

Physical Grid

ηj

ξi

ξ(x)

x(ξ)

Figure 2.3: A representation of the transformation between computational and physical space.
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This section considers the high-order FVM on single-block analytically-mapped grids. The

effect of the mapping is summarized here, but a more detailed description is available for single-

level mapped in Colella et al. [7] and for adaptively-refined mapped grids in Guzik et al. [6, 8].

On mapped grids, the control volumes in physical space are defined by Vi = x(Vi). The integral

form of the PDE in Equation 2.2 is transformed from physical space into computation space, ξ, by

using grid metric terms such that

∂

∂t

∫

Vi

JU dξ +

∫

Vi

∇ξ · (N⊺~F) dξ =

∫

Vi

JS dξ ,

where the transformation matrix, N⊺ = J∇xξ, describes the grid metrics and the metric Jacobian

J ≡ det(∇ξx). After applying the divergence theorem of Gauss, the integrals can be represented

as cell averaged values on each face, yielding

d

dt
〈JU〉i +

1

h

D∑

d=1

(
〈N⊺

d
~F〉i+ 1

2
ed − 〈N⊺

d
~F〉i− 1

2
ed

)
= 〈JS〉i , (2.6)

where the subscript d denotes the dth row of N⊺. Note that this is an exact formulation.

The algorithm for arriving at a high-order, free-stream preserving 〈N⊺

d
~F〉 from N

⊺

d
~F is detailed

in work by Guzik et al. [8], which provides the framework for the present study. Solving these

quantities requires the mapping x = x(ξ) and its derivatives on codimension two elements of

the grid (e.g., vertices in 2-D and edges in 3-D). Additionally, this framework is compatible with

adaptive mesh refinement, although the mapping function is required at any potential location

inside the domain.

Grid Metrics

To define the mapping transformation terms J and N⊺, grid metrics are required. The grid

metrics are the set of directional derivatives, which define the grid mapping and are needed for

calculation. The metrics and inverse metrics are defined respectively as
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∇ξx ≡ ∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)
=




∂x1
∂ξ1

∂x1
∂ξ2

∂x1
∂ξ3

∂x2
∂ξ1

∂x2
∂ξ2

∂x2
∂ξ3

∂x3
∂ξ1

∂x3
∂ξ2

∂x3
∂ξ3




, (2.7)

∇xξ ≡ ∂(ξ1, ξ2, ξ3)

∂(x1, x2, x3)
=




∂ξ1
∂x1

∂ξ1
∂x2

∂ξ1
∂x3

∂ξ2
∂x1

∂ξ2
∂x2

∂ξ2
∂x3

∂ξ3
∂x1

∂ξ3
∂x2

∂ξ3
∂x3




. (2.8)

Through definition it is known that ∇xξ = (∇ξx)
−1

.

While these quantities are known at any point, the average 〈N⊺

d〉 on a face, as used in Equa-

tion 2.6, is determined using a more elaborate process to ensure freestream preservation [8]. Ul-

timately, 〈N⊺

d〉 is computed on a face normal to direction d from a line integral of Ns,(d,d′), d
′ 6= d

around the edges of the face. Ns,(d,d′) is defined as

Ns,(d,d′) =
1

D − 1
det((∇ξx)

⊺(d|es)(d′|x)) , (2.9)

where A(p|v) denotes a modification of matrix A by replacing row p with vector v. At interfaces

of mesh resolution, Ns is not continuous across the face and a one-order loss of accuracy can be

observed. For this reason, the metrics computed should be approximated to O(hp+1) accuracy in

order for 〈N⊺

d〉 to be accurate to O(hp) everywhere [8].
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2.2.2 Mapped Multi-Block Grids

Mapped grid approaches are useful to accommodate geometries on structured grids, but have

substantial restrictions in their capabilities. For example, creating a mapped grid with multiple

bodies or holes in the domain is not feasible in general. The mapped grid approach can be ex-

tended to represent a much greater range of geometries using the mapped multi-block, or MMB,

method. In the MMB framework, the global domain is subdivided into a number of regions called

blocks. Each block is defined by a block-domain in computational space, D ⊂ RD, and a block-

range in physical space, R ⊂ RD, as illustrated in Figure 2.4. Each block has a unique block-

domain, block-range, and mapping function. High-order methods with overlapping grids have

shown great success [9], although at the loss of strict conservation at block intersections. This dis-

sertation specifically builds upon the conforming MMB approach of McCorquodale et al [10]. The

conforming multi-block scheme ensures strict conservation, high-order accuracy, and free-stream

preservation.

ξ

η

x

y
DA

DB

Computational Blocks

RA

RB

Physical Blocks

xA(ξ)

xB(ξ)

Figure 2.4: A sample multi-block system with two blocks.

Restriction to conforming mapped multi-blocks requires that the block-ranges connect exactly

at the block-domain boundaries without overlapping. When two blocks are connected, i.e. their

block-ranges intersect at a boundary, an additional restriction is enforced. That is, for connected

blocksA andB it must be that xA
−1(RA∪RB) and xB

−1(RA∪RB), which are subsets of bound-
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aries in DA and DB respectively, are isometries of one another [10]. In effect, this enforces that

every cell has a single neighbor per face and can use a single flux value to maintain conservation.

As an illustration, Figure 2.5 shows a conforming mapped multi-block grid; Figure 2.5a shows

a global physical domain containing 7 blocks (i.e., block-domains) and Figure 2.5b shows the 7

blocks in the computational domain (i.e., block-ranges).

0

1 2

3

4

5 6

(a) A sample mapped multi-block grid in physical space.

0 1 2 3 4 5 6

(b) A sample mapped multi-block grid in computational space.

Figure 2.5: A sample conforming mapped multi-block grid. Seven blocks are shown in this example, each

with a mapping function from its Cartesian computational grid to the curvilinear one in physical space.

For mapped multi-block grids, considerations for flux stencils next to block interfaces must

be made. The present study applies the same centered scheme everywhere in order to avoid in-

appropriate bias at the multi-block boundaries. This is achieved by employing ghost cells, which

are discussed in Chapter 4. Inertial fluxes are made single valued at block interfaces by solving a

Riemann problem. Viscous fluxes are made single valued by averaging.

2.2.3 Embedded-Boundary Grids

Mapped multi-block methods are a powerful method for geometry representation using struc-

tured grid methods, but generating grids requires time and expertise for complex geometries. Ge-

ometries that are porous or have rough surfaces are exceptionally difficult, if feasible at all, to

represent using the MMB method. The embedded-boundary, or EB, method takes a different ap-

12



proach to geometry representation on structured grids. EB grids are created by first generating

a Cartesian grid independent of boundary geometry. Then, the boundary geometry of sufficient

order [11] is overlain on the grid, and cells that intersect the boundaries are cut. The resulting grid

is one that is structured everywhere away from the boundary, while near the boundary the grid is

made up of partial, or “cut” cells. The resulting method retains the advantages of solving on struc-

tured grids on the interior of the domain, while having relatively little restriction in geometries that

may be represented. Additionally, this grid generation process can be automated and performed

quickly. In the EB method, cells fall into one of three categories; regular cells, irregular cells, and

invalid cells. This distinction between cell types is illustrated in Figure 2.6. Regular cells are those

that are full Cartesian cells. Irregular cells, or cut cells, are those which are partial cells because

they intersect with the boundary geometry. Invalid cells, as the name indicates, are cells that fall

outside the domain boundaries and are thus not in the solution domain. To denote the embedded-

boundary regions, let Ω be the irregular domain and Vi be any regular cell, then a particular cell

can be denoted by Vi = Vi ∩ Ω.

Regular
Cell

Irregular
Cell

Invalid
Cell

Vi

A
i−

1

2
e1

Figure 2.6: Illustration of notation used for embedded-boundary methods. The shaded region lies outside

the problem domain of interest.
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The challenge of the EB method comes from the grid being irregular at the boundaries. As

a result, the convenient notation for the FVM as in Equation 2.5 can not be used in the presence

of cut cells. To address this, the present study continues and extends the work by Devendran et

al. [12], and the procedure is briefly summarized in this section. A cell fraction term is introduced

as

κ =
Vi

hD
(2.10)

which varies between 0 for an invalid cell and 1 for a regular cell. When in the presence of cut

cells, the approach for Equation 2.5 can no longer be used. Further, cells can become arbitrarily

small and volume terms Vi can approach zero. To prevent division by zero, a κ-weighted form for

the Equation 2.4 is used as

d

dt
〈κU〉i +

1

hD

∑

f∈∂Vi

Af 〈~F · n̂〉f = 〈κS〉i , (2.11)

to avoid the small cell problem. The faces of each cell, f , consist of up to 2D Cartesian faces on

in interior, and a number of curved faces on the boundaries.

Another, difficulty resulting from the mesh being irregular at the boundaries is that flux terms

〈~F · n̂〉f can no longer be solved using the convenient form available for regular structured grids.

On irregular regions, our approach is to create a weighted least-squares polynomial interpolation

from the cell average values, and use that to evaluate the required flux terms.

2.2.4 Adaptive Mesh Refinement

One of the advantages to operating on structured grids is that refining the grid is straightfor-

ward, and the ability to do so based on solutions is a key feature for the high-order FVM this

dissertation expands on [13]. Adaptive mesh refinement, or AMR, allows for an efficient approach

to solve multi-scale problems. As the name implies, AMR operates by changing the mesh resolu-

tion locally depending upon the solution state. Regions where a solution is under-resolved or are

of particular interest may be solved on finer meshes, while regions that are well resolved and are
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of little interest remain on coarser meshes. When discontinuities appear in a solution, high-order

methods must locally revert to low-order methods around discontinuities. The decrease in order

of the scheme is necessary and adversely impacts the solution accuracy. To remedy this, locally

refining the grid near the discontinuities with AMR is the best option available. Traditionally,

discontinuities are well-embedded inside the fine grid. Layers of buffer cells ensure that interpola-

tions to fill ghost cells and the fine patches are kept away from any discontinuities. In some recent

non-traditional approaches, such as embedded-DNS, discontinuities are allowed to cross AMR

interfaces. The AMR approach used in this work is detailed by McCorquodale and Colella [4]

and Guzik et al. [8], and relevant portions of the AMR algorithm are described here to facilitate

understanding.

For AMR on structured grids, the idea of a domain on the integer lattice Γ ⊂ ZD is extended to

a hierarchy of grids Γ0. . .Γℓmax , each with a different cell size and nested such that Γℓ = Cnℓ
ref
(Γℓ+1).

Figure 2.7 illustrates a 3-level AMR grid. The integer nℓ
ref is the refinement ratio between level ℓ

and ℓ + 1 so that the Cartesian mesh spacing hℓ = nℓ
refh

ℓ+1. The operator C is a coarsening of

the grid, and the inverse C−1 is the refinement. AMR calculations are performed on a hierarchy

of nested meshes Ωℓ ⊂ Γℓ, with Ωℓ ⊃ Cnℓ
ref
(Ωℓ+1). The grid levels are considered as overlapping

rather than embedded. At level ℓ all cells inside Ωℓ are labeled valid and all cells outside Ωℓ are

labeled invalid. Valid ghost cells are used to communicate data on a single level split over multiple

computational units. Invalid ghost cells are those used to transfer information at the interface

between a coarse and fine level. It is enforced that there are a sufficient number of cells on level ℓ

separating the level ℓ + 1 from the level ℓ− 1 such that interpolations to fill invalid ghost cells on

finer levels can be independently performed.

In addition to the refinement in space, AMR can make use of sub-cycling for refinement in

time, as detailed by McCorquodale and Colella [4]. Briefly, sub-cycling updates each grid level

using a different time step size to reduce computational costs. Solutions on level ℓ + 1 use a time

step sized as ∆tℓ+1 = ∆tℓ/n
ℓ
ref. Levels ℓ + 1 and ℓ are synchronized at the beginning of each

time step on ℓ, and operate independently between these time synchronization points. During this
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Ω0

Ω1

Ω2

ξ

η

(a) Computational Domain

Ω0

Ω1

Ω2

x

y

(b) Physical Domain

Figure 2.7: A three-level grid with nref = 2, with each level shown by a different color. Nesting sufficient

for one cell to separate level ℓ+ 1 from level ℓ− 1 exists. One layer of invalid ghost cells are shown on the

computational domain using the dashed lines for each level.

synchronization, the solution values on level ℓ are updated to match the cell-averages from ℓ + 1,

and fluxes at coarse-fine interfaces are corrected to ensure conservation. Flux correction replaces

the fluxes on the coarse grid with those from the fine grid at the interface between the two levels.

At intermediate steps on the fine level ℓ+ 1, ghost cells are interpolated from the coarse level ℓ in

space and time.

Conservative Interpolation Schemes for AMR

When using explicit time-marching on an AMR grid, each level is separately evolved with

data transfer between levels occurring at only refinement boundaries. From coarse to fine, data is

interpolated. There are two AMR operations where interpolation is used directly. When regridding,

a new level ℓ + 1 is created, and its valid region is interpolated from existing coarse data on

level ℓ. This interpolation must be conservative to maintain the strict conservation property of

finite-volume schemes. At AMR interfaces, a number of operations to communicate between

levels ℓ and ℓ + 1 rely on having invalid ghost cells of level ℓ + 1 interpolated from level ℓ.

An example grid with one layer of invalid ghost cells is show in Figure 2.7. This interpolation

needs not be conservative because invalid ghost cells are only intermediate states used for flux

reconstruction, although enforcing conservation may improve the quality of the solution [8]. These
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two interpolations between levels have slightly different implementations, but both follow this

procedure:

1. For each coarse cell iℓ, determine an interpolation stencil I(iℓ). The stencil must have

sufficient degrees of freedom for the desired order of accuracy.

2. Construct a scheme-order multi-dimensional polynomial using the data in I(iℓ) while main-

taining conservation of 〈U〉iℓ .

3. For each desired fine cell iℓ+1 ∈ C−1(iℓ), evaluate the cell-averaged value using the prior

reconstruction.

The interpolation procedure for both newly refined cells and invalid ghost cells as described by Mc-

Corquodale and Colella [4] is a form of k-exact reconstruction [14]. This particular interpolation

strategy is further detailed in the following Section 2.3.4

2.3 High-Order Reconstruction

One of the fundamental aspects of the FVM used in this dissertation is the high-order approach

used to numerically solve Equation 2.4. Doing so is based upon the idea of interpolating data using

a Taylor series expansion of desired accuracy, and evaluating the resulting function for required

data such as face average values for fluxes. A common framework for this interpolation strategy is

presented, which is later used for a number of specific applications through this dissertation.

2.3.1 Multi-Dimensional Polynomials

When interpolating a solution for operations such as evaluating the fluxes, the approach is to

construct a piecewise interpolant than can be evaluated as required. For a scalar variable φ, the

piecewise interpolation for cell i is defined by the function φi(ξ). To achieve a specified order

of accuracy, Q, a multi-dimensional Taylor expansion about the center of cell i is used. Multi-

dimensional notation is defined using q as an integer vector of size D. Vector powers of q of
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vector quantities ξ are expressed as

(ξ − ξi)
q =

D∏

d=1

(ξd − ξi,d)
qd . (2.12)

A multi-dimensional form of the Taylor series up to order Q, centered about the point ξ̄, is

expressed as

φ(ξ) =
∑

‖q‖1<Q

1

q!
φ(q)(ξ̄)(ξ − ξ̄)q +O(hQ) , (2.13)

where φ(q)(ξ̄) is the qth derivative in multiple dimensions (e.g., ∂(q1+q2+q3)φ

∂ξq1∂ηq2∂ζq3
), and h is the cell

spacing.

The moments, or definite integrals, about the cells of the Taylor polynomial are defined as

mq

i (ξ̄) =

∫

Vi

(ξ − ξ̄)q dξ , (2.14)

for volume moments, or similarly for face moments

mq

f (ξ̄) =

∫

Af

(ξ − ξ̄)q dξ . (2.15)

The moments depend only on the grid, and so may be cached for efficiency. Moments are

computed analytically for structured grids. Near embedded boundaries moments generally can not

be known analytically, so an approximation of required order is computed using the algorithm by

Schwartz et al. [11]. Choosing cq = 1
q!
φ(q)(ξ̄) as the unknowns to be solved, the Taylor polynomial

in Equation 2.13 working with cell-averaged quantities, defined in Equation 2.3, can be written
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compactly as

〈φ(ξ)〉i =
1

Vi

∫

Vi


 ∑

‖q‖1<Q

cq(ξ − ξ̄)q +O(hQ)


 dξ (2.16)

=
∑

‖q‖1<Q

cq〈(ξ − ξ̄)q〉i +O(hQ) (2.17)

=
1

Vi

∑

‖q‖1<Q

cqm
q

i (ξ̄) +O(hQ) . (2.18)

For a unique construction,K =
(
D+Q−1

D

)
terms (binomial coefficients) are needed. Throughout

this dissertation, we primarily target constructions of Q = 4.

2.3.2 Flux Reconstruction

Aside from grid structure, properties of different finite-volume methods generally arise from

the specific algorithm used to evaluate the flux integrals in (2.4). Higher-order algorithms may

use some form of quadrature to evaluate the flux integrals. Various interpolations may be devised

to interpolate properties on the face, including solution-adaptive variants such as ENO [15, 16]

and WENO [17] schemes. This dissertation focuses on fourth-order methods using the approach

detailed by Guzik et al. [6]. The starting point for this approach is to use a Taylor series expansion

as in Section 2.3.1 for the flux (2.4) about face i+ 1
2
ed, resulting in

∫

A
i+1

2ed

Fddx =
∑

0≤|q|<Q

1

q!
~∇qFd|x=x

i+1
2ed

∫

A
i+1

2ed

(x− xi+ 1
2
ed)

q
dx+O(hQ+D−1), (2.19)

When Q = 4, on a regular structured grid we obtain

〈Fd〉i+ 1
2
ed =

1

hD−1

∫

A
i+1

2ed

Fddx = Fd(xi+ 1
2
ed) +

h2

24

∑

d′ 6=d

∂2Fd

∂x2d′
+O(h4). (2.20)

If the derivatives are replaced by approximations of a suitable order (in this case second-order is

sufficient) the resulting approximation of the average of the flux divergence over a cell is O(h4).
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The process of obtaining the values for Fd itself also requires a reconstruction. This involves

constructing point values of Ui from 〈U〉i, converting from the conservative to primitive state

Wi = W(Ui), constructing cell-averages 〈W〉i from Wi, interpolating face averages 〈W〉i+ 1
2
ed ,

constructing point values of Wi+ 1
2
ed from 〈W〉i+ 1

2
ed , and then solving for fluxes Fd(Wi+ 1

2
ed) which

are finally used to solve the fourth-order face average fluxes in Equation 2.20. For full details of

the process, readers are referred to the work by Guzik et al. [6].

The flux reconstruction approach presented here assumes smooth solutions to interpolate from.

When the solution to reconstruct from has discontinuities, the resulting fluxes are prone to oscil-

lations that negatively impact the solution. Traditional CFD approaches for solutions with discon-

tinuities locally revert to low-order methods in their presence [18]. This dissertation specifically

uses the PPM limiter [19], which is well known for its application in high-order schemes. This

method operates by constructing high-order approximations at cell faces, while ensuring these

constructions do not generate new extrema and are monotonic. Furthermore, solution smoothness

is accounted for in order to prevent excessive limiting and reduction in the order of accuracy in

regions of smooth extrema.

2.3.3 Solution Interpolation Using Least Squares Methods

Although there are some cases where the polynomial expansions Section 2.3.1 can be solved

easily, such as in Section 2.3.2 for regular grids, that is often not the case. The general use of

polynomial interpolation in the FVM is to reconstruct a solution quantity to order Q in cell i

that depends on a stencil of neighborhood I(i). For many cases, there is no obvious choice of

stencil neighborhood I(i) that contains exactly the number of known values to uniquely solve the

corresponding polynomial.

As a preferred method, we instead choose a regularly shaped neighborhood of size N > K

so long as i ∈ I(i). This allows a stencil choice that appears more regular and has flexibility

near boundaries [4]. The polynomial required to fit the data in the chosen neighborhood is then fit

approximately using the least squares method. This method of least squares interpolation is said
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to be k-exact [14], that is polynomial solutions up to order Q are interpolated exactly using the

approach. Any least squares remainder is of the desired order for smooth solutions. Using this

approach, fourth-order accurate methods with AMR have been demonstrated [4, 8].

The least squares method [20] solves an over-determined linear system of equations MC = V

for the C in all possible C̃ that minimizes the squared error. This is expressed as

C = argmin
C̃

∥∥V − MC̃
∥∥
2

(2.21)

where C ∈ Rn, V ∈ Rm , M ∈ Rm×n, and n < m. Solving this system is done by using the

pseudo-inverse [20], where the unknown vector in the least squares method is solved for as

C = M†V . (2.22)

This pseudo-inverse may be expanded as

M† = M⊺(MM⊺)−1 . (2.23)

In this dissertation, the primary application of the least squares method is for constructing

interpolation polynomials. With this purpose in mind, the unknown vector C corresponds to the

polynomial coefficients, the vector V the solution state to interpolate from, and M the matrix of

moments.

For example, when D = 2 and Q = 2 the corresponding coefficient vector of length 6 is

C =

[
c(0,0) c(1,0) c(2,0) c(0,1) c(1,1) c(0,2) .

]
⊺

The solution data of component d to interpolate from can be collected into a vector as V =

[〈Ud〉j : j ∈ I(i)]. The moment matrix is expressed using condensed notation where mq

j1
=
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mq

j(xi) for the first j ∈ I(i), resulting in

M =




m
(0,0)
j1

Vj1

m
(1,0)
j1

Vj1

m
(2,0)
j1

Vj1

m
(0,1)
j1

Vj1

m
(1,1)
j1

Vj1

m
(0,2)
j1

Vj1

...
...

m
(0,0)
jk

Vjk

m
(1,0)
jk

Vjk

m
(2,0)
jk

Vjk

m
(0,1)
jk

Vjk

m
(1,1)
jk

Vjk

m
(0,2)
jk

Vjk

...
...

m
(0,0)
jN

VjN

m
(1,0)
jN

VjN

m
(2,0)
jN

VjN

m
(0,1)
jN

VjN

m
(1,1)
jN

VjN

m
(0,2)
jN

VjN




.

2.3.4 Conservative Interpolation for AMR on Mapped Grids

For interpolation between AMR levels, preserving scalar conservation is required. To fulfill

this, a constrained least squares problem of the form

C = argmin
C̃

∥∥V − MC̃
∥∥
2

(2.24)

subjet to BC̃ = D (2.25)

is formulated, where the unknowns C are a vector of the coefficients cq. The conservation constraint

BC = D is enforced using the equation

∑

iℓ+1∈C−1(iℓ)

∑

‖q‖1<Q

cq〈J ξ̂q〉iℓ+1 = 〈JU〉iℓ , (2.26)

while the objectives MC − V to minimize are described by

∑

‖q‖1<Q

cq〈J ξ̂q〉jℓ = 〈JU〉jℓ jℓ ∈ I(iℓ) . (2.27)

Once the interpolating function has been constructed by solving coefficients cq, fine cells are

evaluated as

〈JU〉iℓ+1 =
∑

‖q‖1<Q

cq〈J ξ̂q〉iℓ+1 . (2.28)
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Due to the conservation constraint, it can be shown that

〈JU〉iℓ =
∑

iℓ+1∈C−1(iℓ)

〈JU〉iℓ+1 , (2.29)

using the refinement operator C−1. The values of 〈J ξ̂q〉 are computed using a fourth-order product

formula [8] and the interpolation step is shown to be freestream-preserving [8]. When filling

invalid ghost cells (see Figure 2.7), interpolation of conservative values 〈U〉 is sufficient, which is

solved using constant values of J in space. For regridding operations where valid cells are filled,

conservation of mapped quantities 〈JU〉 is required.

In practice, we use interpolation stencils as shown by McCorquodale et al. [4]. For interior

solutions, this stencil uses a radius of one cell from the interpolation center with an additional cell

in each face-normal direction, resulting in 13 cells in 2D and 33 in 3D. A similar stencil is used

near boundaries, but shifted towards the interior to maintain a sufficient number number of cells.

(See [4] for specific stencil construction details.)

2.3.5 Weighted Least Squares Stencils

One of the difficulties when using the least squares method for high-order interpolation is that

larger interpolation neighborhoods are prone to oscillations that can cause numerical instabilities.

One approach to control interpolation of this nature is discussed in the work by Devendran et

al. [12], where an additional weighting to the least squares method is found to be beneficial. The

least squares formulation in Equation 2.21 is expanded to include weights which tune the impor-

tance of satisfying each of the linear equations. A simple but effective choice of weights, W, takes

the form of a diagonal matrix. Equations with larger weights more heavily influence the solution,

while those with smaller weights carry less influence. The diagonal matrix of weights is included

into the least squares method in the form

WV = WMC . (2.30)
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Using the pseudo-inverse, the polynomial coefficients of the weighted least squares method are

solved for as

C = (WM)†WV . (2.31)

Weights corresponding to (xi − x̄)−(Q+1) are reportedly effective [12] due to the fact that they

offset the polynomial growth with distance. This leads to an interpolation that prioritizes fitting the

data most local to the interpolation center. The k-exact property of the weighted system is the same

as that of the non-weighted system, so long as sufficiently many weights are non-zero to maintain

an over-determined system.

2.4 Time Marching Methods

In addition to discretization in space, solutions must also be discretized in time. When using

a method of lines approach, such as in this dissertation, Equation 2.4 is a semi-discrete system

of ordinary differential equations. Numerical methods for ordinary differential equations are well

established, and in this work we use the four-stage, fourth-order classical Runge-Kutta scheme.

For systems with stiff terms, that arise when solving systems with chemical reaction or in the

embedded-boundary method, the ARK4 time marching method [21] is used.

2.5 Model Equations

In this dissertation, the applications of interest are modeling fluid flows in the continuum

regime. Specifically two different realms of flow are considered. The first is that of fully-coupled,

compressible, thermally-perfect, reacting flow governed by the Navier-Stokes equations. A set

of species transport equations is coupled with the Navier-Stokes equations for reaction modeling

when combustion is considered for the MMB method. The second is the incompressible single

species Stokes flow for the EB method. The remainder of this section provides a review of the

important elements for these governing equations.
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2.5.1 Reacting Navier-Stokes Equations

The system of PDEs for a compressible gas consisting of the continuity, momentum, energy,

and a set of species transport equations is given by

∂

∂t
ρ+∇ · (ρu) = 0 , (2.32)

∂

∂t
(ρu) +∇ · (ρuu+ pI) = ∇ · ~~τ + ρ~f , (2.33)

∂

∂t
(ρe) +∇ ·

(
ρu

(
e+

p

ρ

))
= ∇ ·

(
~~τ · u

)
−∇ · ~q , (2.34)

∂

∂t
(ρcn) +∇ · (ρcnu) = −∇ · ~Jn + ρẇn , n = 1, . . . , Ng , (2.35)

where ρ is the density, u is the velocity vector, p is pressure, I is the identity tensor, and e =

|u|2/2 +∑ cnhn − p/ρ is the total specific energy with cn and hn being the mass fraction and the

specific enthalpy of species n, respectively. A total of Ng species comprise the gaseous mixture,

with Ng transport equations. The pressure is given by the ideal gas law p =
∑
ρcnRnT , where

Rn is the universal gas constant of species n and T is the temperature. ~q is the molecular heat flux

vector. The molecular fluid stress tensor, ~~τ , is defined as

~~τ = 2µ

(
~~S − 1

3
I∇ · u

)
, (2.36)

where
~~S is the strain rate tensor and µ is the fluid molecular viscosity. ~Jn and ẇn are the species

diffusive flux and the production/destruction rate of species n, respectively. The thermally-perfect

reactive mixture of gases neglects Dufour, Soret, and radiative heat transfer effects in the present

work. For non-reacting flows, equation Equation 2.35 is omitted.

For reacting flows, the finite-rate chemistry model is used for calculating the reacting source

term, which is described in detail in works by Gao et al. [22–26], Owen et al. [27–29], and

Wang [30]. In this dissertation, the combustion of two fuels — hydrogen (H2) and propane (C3H8)

are considered. The C3H8-air combustion is modeled by the chemical mechanism developed by

Zettervall et al. [31] (“Z66”), including 25 species and 66 reactions.
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2.5.2 Navier-Stokes Equations on Mapped Grids

After applying the mapped grid transformations from Section 2.2.1 to Equations 2.32 – 2.35,

the governing equations on a mapped domain can be written into the vector form, given by

∂

∂t
〈JU〉i +∇ξ ·

(
N⊺〈~F〉 − N⊺~G

)
= 〈JS〉i , (2.37)

where ~F is the advection (hyperbolic) flux vector, ~G is the viscous (elliptic) flux vector, and S is

the reaction source vector. They are defined as

U =




ρ

ρu

ρe

ρcn




, ~F =




ρu

ρuu+ pI

ρu
(
e+ p

ρ

)

ρcnu




, ~G =




0

~~T
~~T · u− ~Q

− ~Jn




, S =




0

0

0

ρẇn




.

(2.38)

The mapped stress tensor,
~~T , is given by

~~T = 2µ

(
~~S − 1

3
J−1

I∇ξ · (N⊺u)

)
, (2.39)

where the mapped strain rate tensor,
~~S , is given by

~~S =
1

2

(
(∇ξu)

(
N⊺

J

)
+

(
N

J

)
⊺

(∇ξu)
⊺

)
. (2.40)

The mapped molecular heat flux, ~Q, is modeled by

~Q = −
(
κ

N

J
∇ξT −

Ng∑

n=1

(
hn ~Jn

))
, (2.41)
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where κ is the thermal conductivity coefficient and ~Jn is the mapped mass diffusion of species n

modeled by the Fourier’s law, given by

~Jn = −ρDn

N

J
∇ξu . (2.42)

In the equation, Dn is defined as the molecular diffusivity for species n.

2.5.3 Stokes Equation

For flows that are dominated by diffusive physics, where the Reynolds number Re ≪ 1, a

subset of the Navier-Stokes equations can be used that assumes the flow is incompressible, of

constant density, and inertial effects can be neglected. The resulting unsteady Stokes equation is

given by a single momentum equation

∂

∂t
u = −∇p+ ν∆u , (2.43)

∇ · u = 0 , (2.44)

where u is the flow velocity, p the pressure, and ν the kinematic viscosity, and ∆ is the Lapla-

cian operator. Boundary conditions for inflows prescribe a velocity u = uin, while outflows are

specified by ∇u · n̂ = 0. At walls, viscous boundary conditions prescribe a boundary velocity

u = uwall. In this work, solid walls are only permitted tangential velocities such that uwall · n̂ = 0

2.5.4 Finite Volume Projected Stokes Equation

A particular challenge for the Stokes equations is that solution methods must satisfy a diver-

gence-free constraint. A Hodge projection operator P has been used in the finite volume litera-
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ture [32, 33] to enforce a divergence-free velocity field. This projection operator is defined by

P(w) = v , (2.45)

∇ · v = 0 , (2.46)

where ,

P(w) ≡
(
I−∇∆−1∇·

)
w . (2.47)

where w is an arbitrary velocity field, and the resulting v is the divergence free component of w.

We choose discretizations for each of the spatial operators in Eqs. (2.43-2.44), and write the

resulting discrete equations at grid locations i as

∂

∂t
ui = −(Gp)i + ν(Lu)i , (2.48)

(Du)i = 0 , (2.49)

where D,G, and L are fourth-order finite volume approximations of divergence, gradient, and

Laplacian terms, respectively. (From this point forward, we will drop the subscript i except for

clarity.) The goal is to discretize these operators so that

Du = ∇ · u+O(h4) , (2.50)

Gu = ∇u+O(h4) , (2.51)

Lu = ∇ · ∇u+O(h4) (2.52)

in the regular interior of the domain, with some potential loss of accuracy near boundaries and in

cut cells.

We use co-located cell-average velocity and pressure, and so we take the approach of an ap-

proximate projection [34]. Instead of a strictly zero discrete divergence, we allow u to have a
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divergence that is at the level of the discretization error. The equivalent discrete projection is

P(w) =
(
I− GL−1D

)
w , (2.53)

which requires the inversion of the Laplacian operator over the whole domain. Using the projection

operator, the incompressible flow equations can be approximated by

∂

∂t
u = P (νLu) , (2.54)

Du = O(h4) . (2.55)

The general procedure for solving this system separates into an intermediate update that evolves

the viscous terms in time, and then projects that update using Equation 2.53, to maintain an

approximately-divergence free solution for each time step. This is essentially a higher-order accu-

rate version of the projection operator described by Trebotich et al. [35]

Projection Formulation for Open Boundaries

Boundary conditions for the projection operator must be modified for open domain boundaries,

so that a given velocity, such as that resulting from the viscous terms, has three separate compo-

nents: w = Gψ + v + Gφ. Here, ψ is the scalar potential flow solution which satisfies only the

boundary conditions, and two parts with homogeneous boundary conditions: a pure gradient, φ,

and v, the divergence-free part. Each of these components must be considered in the projection:

Lψ = DGψ = 0, Gψ · n̂ = u · n̂ (potential flow with BCs), (2.56)

Dv = 0, v · n̂ = 0 (divergence-free), (2.57)

Lφ = DGφ = Dw, Gφ · n̂ = 0 (interior gradient). (2.58)

In the end, our desired divergence-free velocity field, u, that satisfies the correct boundary condi-

tions is just the components u = v + Gψ = w − Gφ.
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When solving for the pure gradient component, φ, boundary conditions for inflow and walls are

defined by ∇φ · n̂ = 0 while outflow boundaries prescribe φ = 0. For the divergence operator on

the right-hand side of Equation 2.58, velocity boundary conditions for w match those of the Stokes

equations for inflow, w = uin. Wall boundary conditions specify no normal-flow, w · n̂ = 0, and

at outflow boundaries the divergence is calculated with no boundary condition.

2.6 Computational Framework

The numerical frameworks utilized in this dissertation are Chord [8, 13, 26, 27, 29, 36–38] and

the Chombo library for parallel AMR [39,40]. Chombo provides a set of tools for solving PDEs on

block-structured adaptively refined grids on parallel platforms. Chord is a FVM that is fourth-order

accurate in space and time for smooth flows, and solves the compressible Navier-Stokes equations

with and without chemical reaction. It features AMR in space and time, and has been shown to

scale to at least 1 · 105 cores with flat MPI. For non-smooth flow features (e.g. shocks or detonation

waves), Chord uses the PPM [4, 19] limiter for stability. Mapped multi-block grids are used for

the construction of complex geometry. Solution adaptivity is achieved by refining grids based

on physics of interest, such as solution discontinuities, regions of high vorticity, or combustion

flame fronts. Chord is particularly powerful in solving high-speed flows with turbulence, chemical

reactions, and shocks present. Reynolds-averaged Navier-Stokes (RANS) and state-of-the-art large

eddy simulation (LES) turbulence models are available in Chord [41–43]. Additionally, a range of

fuels and their chemical kinetics are available for combustion, including H2, CH4, C3H8, and NH3.

Embedded-boundary methods are also supported by Chombo [40], while still allowing for

AMR and a high degree of parallelism. Existing work for lower-order methods solving the Navier-

Stokes equations with this framework have been shown [35, 44]. Effort towards extending this

framework to high-order has been made, with work towards geometry representations [45] and

solvers for Poisson’s equation from Devendran et al. [12].
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Chapter 3

Adaptive Clipping-and-Redistribution for Bounded

High-Order Interpolation

In this chapter, we devise a new high-order bound-preserving interpolation scheme, which

improves the robustness of AMR for high-order FVMs when modeling combusting flows. The

motivations for developing this method are first explained, and existing methods that have similar

objectives discussed. Next, details of the newly developed HO-ACR algorithm are presented, in-

cluding the solution procedures and simple verification tests. The new method is implemented in

Chord, and the HO-ACR algorithm is verified by advection physics. Finally, results and discus-

sions are provided, which demonstrate the effectiveness of the method for complex flows.

3.1 Motivations

The purpose of AMR (Section 2.2.4) is to better resolve regions of interest in a solution in

order to reduce the discretization error. AMR requires interpolation in both space and time at

the boundaries of grid refinements, to enable local time stepping at each resolution. When the

underlying finite-volume method is high-order accurate for smooth flows, as in the present study,

oscillations can appear near extrema or discontinuities due to the use of a high-order conservative

interpolation scheme, as described in Section 2.3.4. These overshoots are particularly troublesome

when they become unphysical, and ideally AMR would tag (mark locations for refinement) dis-

continuous features before they form. When solving compressible reactive flows, shock waves and

flame fronts are features of interest. A high-order interpolant near or crossing these features often

brings about oscillations, resulting in undesirable characteristics such as negative mass fractions,

or such that the sum of all species’ mass fractions are greater than unity in some localized region.

Eventually, these unphysical phenomena can destroy the solution.
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Two types of interpolation are required for the finite-volume AMR strategy discussed herein.

Interpolation is used to fill ghost cells surrounding a patch of fine grid cells, and interpolation is

used to define new fine grids as the solution evolves. For both cases, standard practice is to adjust

the fine grids so that discontinuities always remain well away from refinement boundaries, and the

interpolations are of smooth solution profiles. Having a discontinuous feature encroach on a grid

refinement boundary is avoided. However, for reasons of computational cost, this is not always

practical. In many simulation strategies, regions are refined based on criteria other than following

a discontinuity. For example, if reproducing an experiment, one may add fixed levels of refinement

that match a physical observation window to focus computational effort, and minimize error, in

that window. Strategies such as embedded-LES and embedded-DNS (to be discussed shortly)

have similar requirements. For some problems, such as combustion described by highly sensitive

reaction mechanisms in Section 2.5.1, tiny overshoots and undershoots in bounded species mass

fractions may be enough to corrupt the solution, in regions well away from the identified flame

discontinuity. Although it is not the preferred way to apply AMR, there are strong motivations

for robustly and accurately interpolating in the vicinity of discontinuities. The goal of the work

in this chapter is to create high-order accurate AMR methods that are more robust to tagging and

refinement variability, especially when AMR interfaces are near regions with strong gradients.

To demonstrate the problem specifically, an example of high-order interpolation is shown in

Figure 3.1 where significant erroneous features appear due to mesh refinement in patches high-

lighted by violet bubbles. The figure shows the distribution of CH2O species mass fraction from

combustion of a C3H8-air mixture. Further details for this case are explained in Section 3.4.2, but

here we mainly point out the oscillations produced by the high-order interpolation. These seem-

ingly small noises, resulting from mesh refinement, have been shown to grow and interact with

the flow dynamics, eventually leading to numerical instability. This is observed to be especially

problematic for chemically reacting flows where small differences in mass factions are able to push

the chemical reaction to unphysical states that lead to solution failure due to the stiff nature of the

reactions. Therefore, for combustion with stiff chemistry, this necessitates a high-order interpola-

32



tion approach that is not only bound-preserving but also maintains conservation while providing

a high-order accurate solution in smooth regions. By contrast, for calorically perfect gases, even

at high Mach numbers, it is the authors’ experience that bounded interpolation is not necessary as

long as discontinuities are contained in fine grids.

(a) Before AMR regrid (b) After AMR regrid

Figure 3.1: Flame front in the bluff-body combustion case, shown by mass fractions of species CH2O. The

grid is adaptively refined to capture the flame front, and regridded between the left and right images. The

addition of new fine grid cells introduces overshoots which significantly disrupt the flow. The regions with

overshoot are indicated by violet bubbles.

Another example is controlling oscillations that may appear from high-order interpolation

when studying turbulent flow applications utilizing embedded-large-eddy-simulation (embedded-

LES) and embedded-direct-numerical-simulation (embedded-DNS) methods [46]. In these ap-

proaches, only a small subset of the domain has sufficient resolution for a detailed query of the

physics of interest using LES or DNS modeling of turbulence. Elsewhere, the domain can be con-

sidered as approximating the influence of realistic geometries and boundary conditions using far

more affordable methods. With additional control of error, e.g., via data assimilation, it is a way

forward when full LES or DNS is otherwise completely infeasible due to the computational ex-

pense. Since embedded-DNS and embedded-LES cases can only afford limited amounts of mesh

refinement, discontinuous flow features often must span AMR interfaces. This is illustrated by

Figure 3.2, where only a small window of a flame front is resolved using DNS. In this example,
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the discontinuous flame front must cross multiple different levels of grid refinement. To reduce

computational time, there is also interest in allowing the flame to only develop on the coarse level

for an amount of time before refining and using it as an initial condition for the embedded-DNS

region. For these applications, it is important to have an algorithm which is able to mitigate the

oscillations present in high-order interpolation to prevent unwanted numerical instabilities due to

abrupt AMR-driven changes in grid resolution.

Coarse-grid
LES

Fine-grid
LES

DNS

Figure 3.2: Illustration of embedded-DNS. Due to computational limitations, only a small window of DNS

spanning a flame front is affordable. In order to develop the large scale flow features of a flame, multiple

levels of grid refinement must be used. This results in discontinuous features spanning different refinement

levels, which can destabilize the solution.

3.1.1 Existing Methods to Cope with Unphysical Numerical Solutions

Common methods for bounds preservation in CFD schemes exist in the form of limiters. The

PPM limiter [19] is well known for its application in high-order schemes, and relative simplicity.

This method operates by constructing high-order approximations at cell faces, while ensuring these

constructions do not generate new extrema and are monotonic. Furthermore, solution smoothness

is accounted for in order to prevent excessive limiting and reduction in the order of accuracy in

regions of smooth extrema. Although well-developed, in general limiters are only designed for

face reconstructions and most often applied in one dimension at a time. Approaches for limiters in

multiple dimensions do exist [47], but are not easily modified to achieve strict bound-preserving

cell-based interpolation.
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In a similar spirit to limiters, the flux corrected transport (FCT) methods utilize low-order so-

lutions to provide bounds for high-ordered flux reconstructions. Unlike limiters, FCT methods

have been extended to operate in multiple dimensions. The FCT-like maximum preserving princi-

ple (MMP) in the work by Anderson et al. [48] enforces the flux correction by instead adjusting

Discontinuous Galerkin elements. This adjustment requires satisfying flux constructions, while re-

distributing and preserving element mass. Despite the approach having many valuable properties,

the aims are subtly different from ours and can not be directly translated into a FVM scheme.

One approach that is multi-dimensional, conservative, and solves the spatial interpolation prob-

lem we face is the CENO method described by Ivan et al. [49]. This approach formulates a smooth-

ness measure to identify regions which are non-smooth. In non-smooth regions a low-order inter-

polation is used, while a high-order interpolation is employed elsewhere. Although it is an effective

approach, it requires a tuned coefficient for smoothness detection. Additionally, large stencils of

data can be required which necessitate expensive data communication, but further developments of

this approach are able to reduce stencil sizes by more frequently moving smaller amounts of infor-

mation [50]. Implementing this interpolation approach other than within the CENO scheme would

be non-trivial since it requires careful consideration of limiter choice and significant changes to

communication patterns.

Another approach for the multi-dimensional, conservative interpolation problem is the clip-

ping-and-redistribution algorithm described by Hilditch et al. [51]. After a high-order interpola-

tion, any solution outside physically imposed bounds is clipped off. The sum of clipped quantities

is tracked and redistributed elsewhere inside the domain to maintain conservation. This approach

is developed to prevent physically constrained overshoots based upon predetermined bounds. Ad-

ditionally, the redistribution happens globally and thus requires solving an implicit system which

is potentially expensive. Nevertheless, this dissertation is the inspiration for the algorithm that we

present. We seek to adaptively enforce bounds near discontinuities and reduce the cost of redistri-

bution. In addition, the present algorithm operates on mapped quantities since the underlying CFD

infrastructure uses mapped structured grids to accommodate complex geometries.
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None of the above approaches fully match our required criteria for refining complex combust-

ing flows. Although the interpolation method in the CENO scheme is the nearest to our goals, it

is not straightforward to incorporate into our existing code. In the present work, we develop the

high-order adaptive clipping-and-redistribution (HO-ACR) method and successfully demonstrate

the design properties of the interpolation: conservative, solution-dependent bounds-preservation,

efficiency, interpolation without compromising accuracy in smooth regions. Additionally, the HO-

ACR algorithm is designed to operate as a correction to a high-order interpolation. This makes it

non-invasive and relatively simple to implement independent of the scheme it is used in.

3.2 Technical Approach

The adaptive clipping-and-redistribution, or ACR, method is designed as a post-processing

operation independent of the high-order interpolation. This simplifies implementation since it

requires no fundamental changes to the existing high-order interpolation algorithm, and can be

adaptively enabled. The method maintains conservation, avoids significant data exchange, and

does not require predetermined bounds. The procedure for ACR is outlined by the following steps:

1. Interpolate the fine data from the coarse data using a high-order conservative scheme as

described in Section 2.2.4.

2. Establish minimum and maximum bounds for interpolation values of each fine cell. These

bounds are created using local coarse cell information.

3. Clip each fine cell to fall within the established bounds and track the solution quantity

change.

4. Redistribute the clipped excess to local regions that can accept it while remaining inside their

bounds.

A few main features deserve emphasis and clarification. The primary objective of the ACR

method is to prevent new extrema while maintaining solution conservation. Notably, this does not
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strictly enforce monotonicity of the solution. It is important to properly establish the local clipping

bounds since their selection directly impacts the resulting solution. Furthermore, the extension of

the ACR to high-order is desirable for maximum accuracy. At the end of the section, we provide

verification of the new method.

3.2.1 Establishing Local Clipping Bounds

Local clipping bounds provide a feasible range that the interpolation of each fine cell must

lie within to prevent generation of new extrema. For each fine cell i on AMR level ℓ + 1, an

interval βiℓ+1 containing the valid interpolated solution is determined. Bounds are created from

the minimum and maximum values of a neighborhood I(C(iℓ+1)) of coarse data on level ℓ about

the fine cell iℓ+1. In this work, the neighborhood I(C(iℓ+1)) is chosen to be the same as the

neighborhood from the interpolation stencils. However, it need not be identical. Clipping bounds

are determined as

βiℓ+1 =

[
min

(
〈U〉jℓ , jℓ ∈ I(C(iℓ+1))

)
, max

(
〈U〉jℓ , jℓ ∈ I(C(iℓ+1))

)]
. (3.1)

The ACR method will ensure the interpolated fine level respects the bounds from the existing

coarse level. As a result, the ACR method does not require explicit bounds to maintain physically

realizable solutions, so long as the coarse solution itself is physically realizable.

The only requirement on local neighborhood choice I(C(iℓ+1)) is that it must contain the

coarse cell C(iℓ+1); however other choices do impact the behavior of the ACR method. For exam-

ple, the smallest clipping neighborhood may be set to include only the coarse cell C(iℓ+1). This

removes any flexibility in the interpolation, and reverts to a piecewise constant interpolation. In the

other extreme, the clipping neighborhood is expanded to the entire domain, and the ACR method

will only restrict the creation of new global extrema. Our compromise is that clipping stencils

should have the same locality as interpolation stencils; smaller neighborhoods are overly restric-

tive, while larger neighborhoods are not restrictive enough and are computationally impractical.
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3.2.2 High-Order Extension

In regions where data is smooth and in state variables with no strict physical bounds (such as

velocity), high-order interpolation is expected to perform well without assistance from the ACR

method. Reducing the interpolation order in these smooth regions can compromise physics that

are correctly captured by the high-order scheme [19]. In such cases, interpolation of smooth data

is expected to accurately generate subtle new extrema. This is illustrated in Figure 3.3 where

high-order interpolation correctly captures a Gaussian profile, and enforcing bounds via the ACR

method results in a poor quality result. For this purpose the ACR method is extended to high-order,

hereafter called the HO-ACR method. The HO-ACR method is adaptive in that the operation is not

engaged in smooth regions, while being engaged elsewhere. Regions are determined as smooth if

all second derivative constructions share the same sign. For each direction of the computational

domain, the second derivatives are computed for each coarse cell iℓ, and compared to each of

the directly adjacent neighbors. If the entire set share the same sign, the region is determined as

smooth and the HO-ACR for fine cells iℓ+1 ∈ C−1(iℓ) is disabled. It is at the discretion of the

researcher whether high-order detection is used for any of the state variables. HO-ACR is used for

all results presented herein except for the bluff-body combustor in Section 3.4.2.

0.5

1

x

〈U
〉

Coarse

High-order

Bounded

Figure 3.3: An example of the high-order interpolation correctly creating new extrema of a smooth Gaussian

profile.

38



Computing the curvature using a 1st-order accurate method is sufficient. Specifically, curvature

is evaluated using a 2nd-order centered scheme as given by

∂2Ui

∂ξ2d
=

〈U〉i−ed − 2〈U〉i + 〈U〉i+ed

h2
+O(h2) , (3.2)

where h is the cell spacing. For locations near the physical boundaries, 1st-order one-sided formu-

lations such as

∂2Ui

∂ξ2d
=

〈U〉i − 2〈U〉i+ed + 〈U〉i+2ed

h2
+O(h) , (3.3)

are used as required.

3.2.3 Local Linear Redistribution

Once clipping is completed, properly redistributing the clipped quantities is necessary to main-

tain conservation. One of our design goals for the redistribution scheme is to be computationally

inexpensive by avoiding data exchange. A redistribution region is chosen such that the redistri-

bution can be solved explicitly without additional data exchange by choosing non-overlapping

redistribution regions R. The natural choice for such regions is the coarse cells where data is being

interpolated from, such that R = C(iℓ+1).

Many CFD algorithms use a mapped grid technique to accommodate moderately complex ge-

ometries, meaning that a general curvilinear coordinate transformation is used to map the physical

domain to the computational domain. Operations on the mapped quantities 〈JU〉 require additional

care to enforce bounds on the physical solution 〈U〉. Bounds can only be enforced on conservative

quantities 〈U〉 because gradients in 〈JU〉 may appear solely as the result of grid mapping. How-

ever, regridding requires conservation of the mapped variables as in Equation 2.26. The mapped

HO-ACR algorithm must first solve for a 2nd-order conservative variable

〈U〉i =
〈JU〉i
〈J〉i

+O(h2) . (3.4)
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On Cartesian grids, the same HO-ACR algorithm can be applied directly to conservative quan-

tities 〈U〉 by setting J to one, and Equation 3.4 then becomes exact.

The method for localized linear redistribution begins by determining the overshoot from each

fine cell δ〈U〉i with

δ〈U〉i =





〈U〉i − βmax
i 〈U〉i > βmax

i

〈U〉i − βmin
i 〈U〉i < βmin

i

0 otherwise

, (3.5)

where βmax
i and βmin

i are respective maximum and minimum of the previously determined clipping

bounds βi (e.g., an interval). The mapped quantities that are clipped off are computed by

δ〈JU〉i = δ〈U〉i〈J〉i +O(h2) , (3.6)

which again is a 2nd-order operation. Using the clipping bounds, the extra mass to be redistributed

in region R is given by

ER =
∑

j∈R

δ〈JU〉j . (3.7)

To determine where mass may be pushed to, each fine cell has a maximum allowable difference

calculated as

αi =





βmax
i − 〈U〉i ER > 0

〈U〉i − βmin
i ER < 0

0 otherwise

. (3.8)

Using this, each fine cell can be updated using the clipping-and-redistribution as

〈̃JU〉i = 〈JU〉i − δ〈JU〉i +
αiER∑
j∈R αj

. (3.9)

In effect, this drops the order of accuracy of the interpolation to 1st-order in regions which are fully

clipped. This mapping process only needs to be 2nd-order, since the HO-ACR method effectively
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reduces the interpolation order in non-smooth regions where clipping is engaged. Note that the

smoothness check for the high-order extension must operate on 〈U〉.

Conservation Proof

The ACR method can be shown to maintain conservation, by demonstrating

∑

i∈R

〈̃JU〉i =
∑

i∈R

〈JU〉i . (3.10)

Assuming the prior equation holds, and substituting it into Equation 3.9, conservation can be shown

by

∑

i∈R

δ〈JU〉i =
∑

i∈R

αiER∑
j∈R αj

= ER ,

which is true by the definition of Equation 3.7, and therefore

∑

i∈R

〈̃JU〉i =
∑

i∈R

〈JU〉i

so long as
∑

i∈R

βmax
i ≥

∑

i∈R

〈U〉i ≥
∑

i∈R

βmin
i .

In general
∑

i∈R 〈̃U〉i 6=
∑

i∈R〈U〉i except for the case of Cartesian grids in physical space when

J is one.

1D Verification

The property of bound-preservation of the new method is verified using a range of 1D profiles

from smooth to non-smooth, including 6 tests — (a) a step function, (b) a smooth step function,

(c) a piecewise linear function, (d) a Gaussian profile, (e) a piecewise cubic function, and (f) a

discrete delta function. Figure 3.4 shows the spatial profiles of solution variable 〈U〉 and compares
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the performance of the HO-ACR method for the 6 cases on a Cartesian grid (by setting J = 1

uniformly).

The conservative interpolation is 4th-order accurate using a centered 5-point centered stencil.

For all cases, the HO-ACR method successfully clips off the overshoots (e.g., cases a, b, c, e, f),

while preserving the smooth extrema (e.g., case d). Additionally, all 1D cases maintain conserva-

tion to machine precision.

Despite bounding the interpolation near sharp features, there is still room for improvement

in the solution. In cases (c) and (e), the high-order interpolation at one coarse-cell away from the

discontinuities does not correctly capture the coarse polynomial solution. This is due to the interpo-

lation stencil spanning the discontinuities, and as a result oscillations are present in the high-order

conservative interpolation. While the HO-ACR method is not able to correct the high-frequency

oscillations, it still does no worse than the existing high-order interpolation. It is important to note,

the objective of the HO-ACR method is to prevent new extrema near discontinuous features and

the method does not enforce monotonic interpolations of non-smooth coarse data. The emphasis

of the HO-ACR method is to maintain solutions that are physically bounded, but leave the quality

of these solutions up to the base interpolation scheme.

Using the same 6 cases as shown in Figure 3.4, we demonstrate the mapped HO-ACR perfor-

mance on mapped grids. The setting of Figure 3.5 and Figure 3.6 is the same as that of Figure 3.4

— the sequence of cases (a-f), the line color and symbols, and the interpolation scheme. Cases in

Figure 3.5 use a mapping function of x = a tan(bξ) while in Figure 3.6 the mapping function is

x = 1
2
ξ2. The mapped HO-ACR performs exceptionally well for both cases. The clipped profiles

are bound-preserving and smooth extrema-preserving, while maintaining conservation to machine

precision. As in the prior example, the cases (c) and (e) do not correctly match the coarse poly-

nomial solution due to the high-order interpolation. Although there is room for improvement in

regions away from the discontinuity, the solution is still improved as a whole over the unbounded

high-order interpolation. Notably these small regions of error do not violate any existing coarse

bounds of the solution.
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Figure 3.4: 1D interpolation showing the HO-ACR method on Cartesian grids. The interpolation is 4th-

order and conservative using a 5-point centered stencil. The x axis shows the coarse cells, and y axis the

4th-order cell-averaged values of the solution. Blue lines indicate coarse solution values, orange lines the

coarse to fine interpolation, and green lines the interpolation with addition of the HO-ACR method. Gray

lines show the bounding envelope used by the HO-ACR method for non-smooth regions.
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Figure 3.5: 1D interpolation using the HO-ACR method on a mapped grid defined by x = a tan(bξ), where

the scaling factors are a = (2 cot(π8 ))
−1 and b = 3π

4 for the domain centered about zero. The interpolation

is 4th-order and conservative using a 5-point centered stencil. The x axis shows the coarse cells, and y axis

the 4th-order cell-averaged values of the solution. The blue lines shows the values of coarse solutions, the

orange lines the coarse to fine interpolation, and green lines the interpolation with addition of the HO-ACR

method. Gray lines show the bounding envelope used by the HO-ACR method for non-smooth regions.
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Figure 3.6: 1D interpolation using the HO-ACR method on a mapped grid defined by x = 1
2ξ

2 for positive

ξ. The interpolation is 4th-order and conservative using a 5-point centered stencil. The x axis shows the

coarse cells, and y axis the 4th-order cell-averaged values of the solution. The blue lines shows the values

of coarse solutions, the orange lines the coarse to fine interpolation, and green lines the interpolation with

addition of the HO-ACR method. Gray lines show the bounding envelope used by the HO-ACR method for

non-smooth regions.
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Algorithm 1 presents the mapped HO-ACR for 〈JU〉 of AMR level ℓ+ 1. The same algorithm

can be applied directly to conservative quantities 〈U〉 on a Cartesian grid by setting J to be one.

Algorithm 1: Mapped HO-ACR for 〈JU〉 of level ℓ+ 1

// Determine the clipping bounds

1 for iℓ ∈ C(Ωℓ+1) do

2 for iℓ+1 ∈ C−1(iℓ) do

3 βmin
iℓ+1 = min

(
〈U〉jℓ , jℓ ∈ I(iℓ)

)

4 βmax
iℓ+1 = max

(
〈U〉jℓ , jℓ ∈ I(iℓ)

)

5 end for

6 end for

// Clip-and-redistribute

7 for iℓ ∈ C(Ωℓ+1) do

8 if sign
(

∂2

∂ξ2
d

Uiℓ

)
6= sign

(
∂2

∂ξ2
d

Uiℓ±eb

)
for all b, d ∈ D then

9 for iℓ+1 ∈ R(iℓ+1) do

10 〈U〉iℓ+1 =
〈JU〉

iℓ+1

〈J〉
iℓ+1

11 δ〈U〉iℓ+1 =





〈U〉iℓ+1 − βmax
iℓ+1 〈U〉iℓ+1 > βmax

iℓ+1

〈U〉iℓ+1 − βmin
iℓ+1 〈U〉iℓ+1 < βmin

iℓ+1

0 otherwise

12 δ〈JU〉iℓ+1 = δ〈U〉iℓ+1〈J〉iℓ+1

13 end for

14 ER =
∑

jℓ+1∈R δ〈JU〉jℓ+1

15 for iℓ+1 ∈ R(iℓ+1) do

16 αiℓ+1 =





βmax
iℓ+1 − 〈U〉iℓ+1 ER > 0

〈U〉iℓ+1 − βmin
iℓ+1 ER < 0

0 otherwise

17 〈̃JU〉iℓ+1 = 〈JU〉iℓ+1 − δ〈JU〉iℓ+1 +
α
iℓ+1ER∑

jℓ+1∈R
α
jℓ+1

18 end for

19 end if

20 end for

3.3 Verification and Validation

The new HO-ACR algorithm is verified by a set of test cases involving the advection of smooth

and sharp profiles on mapped grids. The features to be verified are: (1) ensuring high-order accu-
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racy for smooth flow problems; (2) bound-preservation for non-smooth ones; and (3) maintaining

conservation. Specifically the algorithm is examined for interpolation operations involving both

the invalid ghost cells and the regridding process. The HO-ACR method is applied for invalid ghost

cells and newly refined cells without fundamentally changing the base interpolation algorithm. The

verification is first performed with the advection of a sharp profile in 1D, then advection of both a

smooth profile and non-smooth profile in 2D. A more complicated case is explored with the solid

body rotation of smooth and non-smooth profiles in 2D. All three features are demonstrated and

assessed in each case.

3.3.1 Advection of a 1D sharp profile

To explore the effects of the HO-ACR method in Chord, a one dimensional scalar advection

test using an Euler equation solver is explored. The initial condition top-hat profile is defined by

φ =





1 if 0.6875 > x > 0.3125

0 otherwise

on a one dimensional periodic Cartesian grid of length L = 2. This initial profile aligns the

discontinuity with cell boundaries on the coarse grid with spacing ∆x = 1/16, which preserves

the sharp discontinuity. The profile is advanced to t = 0.5 with speed u = 1. A time step size of

∆t = 5 · 10−3 is used on the coarse level, and finer levels are sub-cycled in time.

To investigate the HO-ACR method, three versions of “extreme” AMR are compared using

Chord with and without the HO-ACR method. In each case, a single level of AMR with a refine-

ment factor of 4 is used. Results are shown in figures 3.7, 3.8, and 3.9. To serve as references,

solutions run entirely on the fine and coarse grids are also shown. Due to the nature of the 4th-order

finite volume method, small overshoots and undershoots appear around discontinuous features as

they evolve in time, even on the coarse grid. Ideally the results in these test cases with “extreme”

AMR should never be worse than the coarse solution, and good results should match the fine

solution.
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The first case (3.7) examines the effects of delaying regridding, by initializing on the coarse

grid and first advancing for one coarse time step. Beginning at the second time step, the solution

is either refined using the base interpolation algorithm of Chord or using the HO-ACR method.

The solutions after the second time step are shown in Figure 3.7(a). A significant overshoot is

observed in the base algorithm; the HO-ACR method effectively reduces these overshoots. We

quantify the improvement in Table 3.1 by measuring the fine solution’s overshoot relative to the

analytic solution. The base algorithm has overshoots that are an order of magnitude larger than

the reference fine solution, while the HO-ACR modification has slightly smaller errors than the

fine solution. Although this represents a significant improvement over the base algorithm, the

HO-ACR method does not fully remove the small oscillations near the discontinuity, which is

reflected in the larger L2 norm than the fine solution. To see the long-term impact, the solutions

are advanced to 100 time steps, with results in Figure 3.7(b). During the advance, there are no

further interpolations between levels, only the action of the limiter on a single-grid level. The

overshoots from refining using the base algorithm are still present, while the solution using the

HO-ACR solution closely matches the reference fine case, with extrema quantified in Table 3.2.

The base algorithm has extrema that are nearly an order of magnitude larger than the fine solution,

while the HO-ACR has extrema that almost match the fine solution. Comparing the difference

in extrema demonstrates the improvement of HO-ACR, which is nearly two orders of magnitude

smaller. To summarize, improper refinement of the initial condition by tagging one time step too

late has significant and lasting consequences in the evolution of a solution. However, with the use

of the HO-ACR method we are able to mitigate the effects of imperfect initial tagging. In more

complex cases where discontinuous features appear spontaneously, this indicates that the HO-ACR

method may be more accurate and robust with new flow features.

The second case examines the effects of ghost cell interpolation by specifying an initial profile

with discontinuities on the coarse grid, shown in Figure 3.8. Directly ahead of the profile is a region

of AMR fixed in space for x > 0.75. Figure 3.8(a) shows the solution as the leading edge enters

the refinement region. The base algorithm produces a leading negative undershoot on the fine
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Figure 3.7: 1D advection with refinement spanning the entire domain at the beginning of the 2nd time

step, with tick marks representing the finest grid spacing. The orange lines are the solution using the base

algorithm of Chord, and green lines show the solution with addition of the HO-ACR method. The blue lines

show the coarse solution values with no AMR, and black lines show the solution purely on the fine grid.

The plot window follows the profile in time and the labeled x-axis locations indicate the analytic of solution

discontinuities.

Table 3.1: Interpolation overshoots for 1D advection with AMR added at the beginning of the 2nd time

step, measured at 2 time steps. Absolute overshoot is defined by solution values exceeding the bounds [0, 1].
The overshoot relative to fine data are calculated using solution values exceeding the fine solution peaks at

the matching time. Since the HO-ACR method does not exceed the fine solution peaks, there are no relative

errors to measure.

Absolute Overshoot Overshoot Relative to Fine

Base HO-ACR Fine Base HO-ACR

Max 1.621 · 10−1 3.950 · 10−2 4.259 · 10−2 1.195 · 10−1 —

Min −1.621 · 10−1 −3.950 · 10−2 −4.259 · 10−2 −1.195 · 10−1 —

L2 8.757 · 10−4 1.690 · 10−4 1.511 · 10−4 5.969 · 10−4 —

L1 1.189 · 10−2 7.144 · 10−4 8.014 · 10−4 1.047 · 10−3 —
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Table 3.2: Interpolation overshoots for 1D advection with AMR added at the beginning of the 2nd time step,

measured at 100 time steps. Absolute overshoot is defined by solution values exceeding the bounds [0, 1].
Overshoot relative to the fine solution is calculated using values exceeding the minimum and maximum

present in the fine solution at the same time.

Absolute Overshoot Overshoot Relative to Fine

Base HO-ACR Fine Base HO-ACR

Max 9.623 · 10−2 1.635 · 10−2 1.374 · 10−2 8.249 · 10−2 2.611 · 10−3

Min −9.623 · 10−2 −1.634 · 10−2 −1.375 · 10−2 −8.248 · 10−2 −2.597 · 10−3

L2 2.793 · 10−4 5.335 · 10−5 6.872 · 10−5 2.211 · 10−4 4.744 · 10−6

L1 5.503 · 10−3 1.230 · 10−3 1.187 · 10−3 3.842 · 10−3 3.794 · 10−5

region, as well as an overshoot in the coarse region. The HO-ACR method prevents both of these

new extrema, with minor oscillations from the 4th-order evolution scheme. In Figure 3.8(b), the

solution has been advanced until the profile has mostly entered the fine region. The extrema persist

in the base algorithm while the HO-ACR method keeps them suppressed. Extrema at the end time

are quantified in Table 3.3 relative to the analytic and fine solutions. The overshoots of the HO-

ACR method are only marginally larger than the fine solution, while the base algorithm roughly

doubles the overshoot. Surprisingly, the minimum values from the HO-ACR are even smaller than

those in the fine solution. Because of the smoother solution from the HO-ACR method, the L2

norm of its extrema is smaller than the fine solution’s, and the L1 norm nearly matches, while the

base algorithm case is significantly worse. The differences in extrema between the base algorithm

and the HO-ACR become more pronounced when compared relative to the fine solution. Relative

to the extrema allowed by the fine solution, the HO-ACR method reduces the overshoot in L2

and L1 norms by over two orders of magnitude from the base algorithm. To summarize, this test

demonstrates better robustness around sharp features and AMR interfaces when using HO-ACR.

In realistic cases, this shows that discontinuous features can interact with AMR interfaces without

causing excessive overshoots and undershoots.

The third case, shown in Figure 3.9, defines the initial profile with immediate refinement based

on the solution gradients. The mesh is regridded at the beginning of each time step over the entire

run. However, the refinement is applied minimally so that only one coarse cell on each side of

the discontinuity is refined. This causes insufficient spacing between the discontinuity and the
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Figure 3.8: 1D advection with AMR at a fixed location in space, with refinement shown by the tick marks.

The orange lines are the solution using the base algorithm of Chord, and green lines show the solution with

the HO-ACR method. The blue lines show the values of the coarse solution with no AMR, and the black

lines the solution purely on the fine grid. The plot window is adjusted to follow the profile in time, and the

labeled points of the x-axis are the analytic location of the discontinuities.

Table 3.3: Interpolation overshoots for 1D advection with AMR at a fixed location in space, measured at

100 time steps. Absolute overshoot is defined by solution values exceeding the bounds [0, 1]. Overshoot

relative to the fine solution is calculated using values exceeding the minimum and maximum present in the

fine solution at the same time. Where the HO-ACR method has a smaller minimum value than the fine

solution, no relative minimum value is recorded.

Absolute Overshoot Overshoot Relative to Fine

Base HO-ACR Fine Base HO-ACR

Max 2.820 · 10−2 1.411 · 10−2 1.374 · 10−2 1.446 · 10−2 3.713 · 10−4

Min −2.742 · 10−2 −1.113 · 10−2 −1.375 · 10−2 −1.368 · 10−2 —

L2 7.006 · 10−5 2.011 · 10−5 6.872 · 10−5 6.332 · 10−5 9.153 · 10−7

L1 3.338 · 10−3 1.725 · 10−3 1.187 · 10−3 1.073 · 10−3 7.237 · 10−6
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interpolation stencil for filling invalid ghost cells. After the time t = 0.125, Figure 3.9(a) shows

the base algorithm solution has new extrema emerge in both the coarse and fine regions, and begins

to move away from the reference fine solution. The HO-ACR method prevents these new extrema

and is able to closely match the reference fine solution with less than half the number of cells.

This becomes more pronounced as the solutions advance to the final time t = 0.5 (Figure 3.9(b)).

At the end time Table 3.4 again shows the extrema of the base algorithm exceeding the analytic

and fine solutions. Comparing extrema of the fine and HO-ACR solutions shows good agreement.

Although we are hesitant to recommend this as a general practice, this test shows that using the

HO-ACR method enables smaller regions of refinement (and reduced computational cost) with

minimal loss of solution quality.
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Figure 3.9: 1D advection with AMR using the minimal tagging of two coarse cells spanning the solution

discontinuity, with refinement shown by the tick marks. The orange lines are the solution using the base

algorithm of Chord, and green lines show the solution using the HO-ACR method. The blue lines show the

values of the coarse solution with no AMR, and the black lines the solution purely on the fine grid. The plot

window is adjusted to follow the profile in time, and the labeled points of the x-axis indicate the analytic

solution discontinuities.
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Table 3.4: Interpolation overshoots for the 1D advection, after 100 time steps, with minimal refinement

of two coarse cells across the solution discontinuity. Absolute overshoot is defined by solution values

exceeding the bounds [0, 1]. Overshoot relative to the fine solution is calculated using values exceeding the

minimum and maximum present in the fine solution at the same time.

Absolute Overshoot Overshoot Relative to Fine

Base HO-ACR Fine Base HO-ACR

Max 4.619 · 10−2 2.358 · 10−2 1.374 · 10−2 3.245 · 10−2 9.839 · 10−3

Min −4.435 · 10−2 −2.874 · 10−2 −1.375 · 10−2 −3.060 · 10−2 −1.499 · 10−2

L2 3.829 · 10−4 1.969 · 10−4 6.872 · 10−5 2.443 · 10−4 7.677 · 10−5

L1 3.087 · 10−3 1.945 · 10−3 1.187 · 10−3 1.795 · 10−3 3.893 · 10−4

3.3.2 Advection of a smooth profile

A Gaussian profile in density is specified by

ρ = ρ0 + s(r)∆ρ e−(100r2) , (3.11)

where

s(r) =





0 : |4r| ≥ 1

cos6(2πr) : |4r| < 1

, (3.12)

ρ0 = 1.4, ∆ρ = 0.14, and r specifies the distance of a point from initial profile center at

(0.25, 0.375) in the periodic domain, [0, 1]D where D is 2. Constant pressure and velocity are

set as 1 and (1.0, 0.5), respectively. An initial profile is specified on a coarse grid and advected in

time. The grid mapping is defined as

xd = ξd +
D∏

p=1

sin(2πξp) d = 1, 2 . (3.13)

To test invalid ghost cell interpolation, a fixed region of AMR (also called fixed AMR through-

out the chapter) is added as shown in Figure 3.10(a). The initial profile does not initially fall inside

the refined region, but is advected into it over time. Testing regridding is done by initially starting
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with the coarse resolution only, then refining the solution profile based on the gradient of ρ with a

level of AMR after a specified time of 0.25 time units, as shown in Figure 3.10(b).

(a) Fixed AMR (b) AMR

Figure 3.10: Warped meshes and solutions of density at a point in time for testing invalid ghost cell and

regrid interpolation.

For a smooth profile, the HO-ACR scheme is designed to allow for new interpolated extrema to

maintain the 4th-order accuracy of the underlying finite-volume scheme. The profile is advected for

a total of 0.5 time units, after which solution errors are calculated by comparing the numerical and

exact solutions. Tables 3.5 and 3.6 show the measured solution errors in L1, L2, L∞ for grids sizes

642, 1282 2562 and 5122, and the convergence rates in L1, L2, L∞ between each two consecutive

grids, respectively. Clearly, the measures verify the high-order accuracy for both the fixed AMR

and regridded AMR cases using a smooth profile.

Table 3.5: Convergence rates for advection of a Gaussian profile using a fixed region of AMR.

Coarse Cells L1 Rate L2 Rate L∞ Rate

642 3.971 · 10−5 — 2.586 · 10−4 — 4.227 · 10−3 —

1282 2.675 · 10−6 3.89 1.734 · 10−5 3.90 2.919 · 10−4 3.86
2562 1.708 · 10−7 3.97 1.108 · 10−6 3.97 1.850 · 10−5 3.98
5122 1.080 · 10−8 3.98 6.980 · 10−8 3.99 1.166 · 10−6 3.99
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Table 3.6: Convergence rates for advection of a Gaussian profile using AMR.

Coarse Cells L1 Rate L2 Rate L∞ Rate

642 3.878 · 10−5 — 2.409 · 10−4 — 4.101 · 10−3 —

1282 2.607 · 10−6 3.90 1.631 · 10−5 3.88 2.714 · 10−4 3.92
2562 1.660 · 10−7 3.97 1.040 · 10−6 3.97 1.719 · 10−5 3.98
5122 1.042 · 10−8 3.99 6.530 · 10−8 3.99 1.081 · 10−6 3.99

Conservation is measured by computing a relative difference in the volume weighted sum of

the solution. Ideally, these differences should be within machine precision of zero between the

beginning and the end of a run. Using the fixed AMR case, Chord with the HO-ACR method is

measured to have a relative difference in conservative values of 2.104 · 10−14, whereas base Chord

has value of 2.326 · 10−14 on the 2562 case. This small difference shows that the HO-ACR method

is conservative. For the regridded AMR case, the relative conservation difference for the 2562

mesh is measured as 3.416 · 10−13 and 2.777 · 10−13 using Chord with and without the HO-ACR

method, respectively.

3.3.3 Advection of a sharp profile

In this test, using a similar setup to the Gaussian profile, a sharp profile is advected in a periodic

domain allowing for verification that the HO-ACR method is bound-preserving. The domain is of

size [0, 1]D where D is 2. The sharp profile is the “balls and jacks” inspired by Anderson et

al. [48]. This profile is composed of three features prescribed in density ρ0 + ∆ρ where ρ0 = 1.4

and ∆ρ = 0.14, as shown in Figure 3.11. Relative to a profile center of (0.25, 0.375), a smaller

circular shell is located at distance (0.1,−0.1) from the center with an outer radius of 0.07 and

an inner radius of 0.04. A larger circular shell is located at distance (0.1, 0.1) from the profile

center with an outer radius of 0.10 and an inner radius of 0.07. Finally, the jack base is placed at

the distance (−0.11,−0.11) from the profile center, with one arm specified by [−0.04,−0.095]×

[−0.25,−0.125] the other by [−0.095,−0.04] × [−0.125,−0.25] and both are rotated counter-

clockwise by 45 ◦ .
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Figure 3.11: Initial density profile of the sharp “balls and jacks”.

Beginning with the initial conditions as shown in Figure 3.11 and a fixed region of AMR, the

profile is advected forward in time for 0.492843 time units. Figure 3.12 shows the fixed region

of mesh refinement and compares the solution profiles obtained by Chord on the left and the in-

clusion of HO-ACR algorithm on the right. To emphasize, the HO-ACR method establishes the

bounds from the solution on the coarse grid without AMR, serving as the basis to determine over-

shoots. Despite only bounding invalid ghost cells, a significant reduction in regions that experience

overshoots beyond the coarse regions is seen when using the HO-ACR method. Although the im-

provement may not be immediately present based on the number of points producing new extrema,

the magnitude of these overshoots is greatly reduced as shown by the tabulated data in Figure 3.12.

Some new extrema are to be expected, as the high-order finite-volume algorithm includes other

unbounded operations.

To test the HO-ACR method for the regridding process, the initial sharp profile in Figure 3.11

is advected forward in time for 0.492843 time units. A new region of refinement which tracks the

profile is then added as shown in Figure 3.13, where the refinement spans the periodic boundary.

The figure compares the solution profiles obtained by Chord without (a) and with (b) the HO-ACR

algorithm. Clearly, the HO-ACR algorithm prevents many of the new extrema when regridding

sharp solutions as in Figure 3.13. Notice from the HO-ACR solution profile that a small number of

values appear to violate the bounds. However, this is due to the fact that some 4th-order operations

have happened between the final application of the HO-ACR and the output of the solution. These
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Overshoot

Max 6.067 · 10−2

Min −1.465 · 10−3

L2 1.882 · 10−2

L1 1.153 · 10−1

(a) Base algorithm

Overshoot

Max 3.768 · 10−3

Min −9.968 · 10−4

L2 1.157 · 10−2

L1 5.992 · 10−2

(b) With HO-ACR

Figure 3.12: AMR at a fixed location in space, testing invalid ghost cell interpolation.

operations will naturally produce new extrema beyond prior solution bounds. One example is the

conversion from one set of cell-averaged quantities to another [52], such as done for computing

primitives from conservative values or conservative values from the mapped values.

Overshoot

Max 3.910 · 10−3

Min −4.094 · 10−3

L2 9.567 · 10−3

L1 3.906 · 10−2

(a) Base algorithm

Overshoot

Max 5.010 · 10−4

Min −1.621 · 10−4

L2 5.514 · 10−4

L1 9.031 · 10−4

(b) With HO-ACR

Figure 3.13: AMR added at this point in time, testing regrid interpolation.
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Table 3.7 shows the solution growth of extrema, their L1, and L2-norms. For the fixed AMR

test, the HO-ACR method is shown to have reduced the magnitude of the new maximum by a factor

of 16, the minimum by a factor 1.5, and achieved modest reduction in the L1 and L2-norms. More

impressively, the adaptive test reduces the magnitude of the new maximum by a factor of 8, and the

minimum by a factor of 25. Decreases of over an order of magnitude are seen by the L1 and L2-

norms. As in the prior section, conservation is measured and the HO-ACR method is found to have

negligible impact on the total solution conservation. The relative conservation difference of the

2562 fixed AMR case is measured as 3.318 · 10−15 and 5.214 · 10−15 using Chord with and without

the HO-ACR method, respectively. Similarly, the regridded case measures relative conservation of

6.099 · 10−13 and 1.054 · 10−13 using Chord with and without the HO-ACR method.

Table 3.7: Interpolation overshoots for the advected “ball and jacks” case.

Fixed Adaptive

Base HO-ACR Base HO-ACR

Max 6.067 · 10−2 3.768 · 10−3 3.910 · 10−3 5.010 · 10−4

Min −1.465 · 10−3 −9.968 · 10−4 −4.094 · 10−3 −1.621 · 10−4

L2 1.882 · 10−2 1.157 · 10−2 9.567 · 10−3 5.514 · 10−4

L1 1.153 · 10−1 5.992 · 10−2 3.906 · 10−2 9.031 · 10−4

3.3.4 Solid Body Rotation

Another standard test problem for the HO-ACR method uses 2D solid body rotation to advect

a passive scalar quantity with different localized initial profiles. The velocity field is defined by

the profile u = ω(y,−x), where the rotational speed is ω = 20π in the clockwise direction. The

initial profiles (Anderson et al. [53]) are specified by

φ = φ0 +∆φ(φcone(rcone) + φbump(rbump) + φcyl(rcyl)) (3.14)

where φ0 = 0, ∆φ = 1, and rcone, rbump, rcyl specify the distances from the initial profile center as

(cos(π/6), sin(π/6)), (cos(3π/2), sin(3π/2)), and (cos(5π/6), sin(5π/6)) respectively. The cone,
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bump, and notched cylinder profiles are given as

φcone(r) =





0 if r > 1

1− r otherwise

(3.15)

φbump(r) =





0 if r > 1

cos(πr) otherwise

(3.16)

φcyl(r) =





0 if r > 1

0 if (1.3rj > y > 0.7rj) and (x > 1.4ri)

1 otherwise

(3.17)

and shown as evaluated on the initial mesh in Figure 3.14(a). The structured grid is defined by an

annulus centered at the origin with outer radius
√
8 and inner radius 0.1

√
8. The base mesh uses

64 cells in the radial direction and 128 in the angular. The inner and outer boundary conditions are

specified by Dirichlet conditions using the analytic solution values. The solution is advanced in

time for one rotation, or 0.1 units in time, after which the profiles should exactly match their initial

conditions.

This test is motivated by tagging regions other than where the solution discontinuities are, and

forcing the discontinuities to pass through the refined regions. For this imperfect application of

AMR, the primary objective for the scalar solution is that it is stable and produces no new extrema

as it is regridded and advects across AMR boundaries. This case is examined using three patches

of counter rotating AMR at a refinement factor of 2. These patches are initially centered about

π/2, 7π/6, and 11π/6 with widths of π/8, respectively marked A, B, and C in Figure 3.14(a). The

AMR patches are rotated in the opposite direction of the scalar advection by an angular velocity

of −5ω/6, and regridded every 10 time steps. Initial profiles are defined only in coarse regions

with this choice of AMR, whereas the final profiles primarily fall inside refined regions, indicated

with black boxes in Figure 3.14. Results from using the base algorithm of Chord and with the
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A

B C

φcyl φcone

φbump

ω

(a) Initial condition.

φcyl φcone

φbump

(b) Fine solution after one rotation.

B A

C

φcyl
φcone

φbump

(c) Solution with counter rotating AMR after one rota-

tion, using the base algorithm.

B A

C

φcyl
φcone

φbump

(d) Solution with counter rotating AMR after one rota-

tion, with HO-ACR.

Figure 3.14: Solution of a passive scalar after advecting for one clockwise rotation. Negative mass fractions

are shown in magenta, and positive overshoots beyond the analytic solution bounds of [0, 1] are shown in

yellow-orange. Black lines are a coarsened representation of the AMR region. Subfigures (b)-(d) show

the results for a fine-only mesh, the base AMR algorithm with moving refinement domains, and the HO-

ACR method with the same meshes, respectively. Each solution profile is labeled as φcone, φbump, and

φcyl matching the definitions given in Equation 3.17. The refinement regions labeled as A, B, and C, are

regridded to make 5/6ths of a rotation counter-clockwise.
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(a) Solution with counter rotating AMR after one

rotation, using the base algorithm of Chord.

(b) Solution with counter rotating AMR after one

rotation, with HO-ACR.

Figure 3.15: Close-up of the notched cylinder results after advecting for one rotation, as shown in Fig-

ure 3.14. Negative mass fractions are shown in magenta, and positive overshoots beyond the analytic solu-

tion bounds of [0, 1] are shown in yellow-orange. Black lines are a coarsened representation of the AMR

region.

addition of the HO-ACR method are examined and shown in Figure 3.14(c) and Figure 3.14(d),

respectively. A reference using a fine grid for the entire domain is shown in Figure 3.14(b). In each

of these cases values outside the analytic solution bounds of [0, 1] are highlighted, with overshoots

in the yellow-orange color, and undershoots in magenta.

The reference fine solution, in Figure 3.14(b), shows some small new extrema near the dis-

continuous features of the notched cylinder due to the 4th-order flux calculations in Chord. Even

with imperfect AMR, in Figure 3.14(c) and Figure 3.14(d), the cone and bump profiles do not

show any overshoot. This is expected since the scheme’s numerical dissipation smooths continu-

ous profiles over time, and AMR interpolation is designed for smooth solutions. With this in mind,

the continuous cone and bump regions of the solutions show no distinguishable differences with

or without the HO-ACR method, which indicate it is not changing the algorithm substantially in

smooth regions. However, the more extreme case of the notched cylinder using the counter rotating

AMR with Chord in Figure 3.14(c), shows significantly larger overshoots and undershoots. These

errors are the most pronounced at the edges of the notched cylinder, especially near the inner and
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outer boundaries, parallel to the velocity. These larger extrema are quantified in Table 3.8, labeled

as the “Base” columns, where the peak errors are seen to be an order of magnitude larger than

what is observed in the fine solution. In contrast, the HO-ACR method shown in Figure 3.14(d)

greatly reduces the extrema in the solution and closely resembles the fine solution. For better vi-

sual comparison between the two cases, Figure 3.15 shows solutions in a window containing only

the notched cylinder. The extrema are measured in Table 3.8, (columns labeled as “HO-ACR”)

where we see that the peak value errors are an order of magnitude smaller than the base case, and

comparable to the fine case. The same trend is apparent in the L1 and L2 measure of the errors,

with the HO-ACR overshoot an order of magnitude smaller than the base case and closer to the

fine solution.

Table 3.8: Measured interpolation overshoots for the solid body rotation case. The data for the absolute

overshoot are calculated from solution values exceeding the analytic bounds [0, 1]. The overshoots relative

to the fine solution are calculated at the same time.

Absolute Overshoot Overshoot Relative to Fine

Base HO-ACR Fine Base HO-ACR

Max 1.541 · 10−1 5.741 · 10−2 2.381 · 10−2 1.303 · 10−1 3.362 · 10−2

Min −1.365 · 10−1 −2.954 · 10−2 −2.435 · 10−2 1.121 · 10−1 −5.197 · 10−3

L2 5.243 · 10−5 2.577 · 10−5 1.485 · 10−5 1.607 · 10−5 2.216 · 10−6

L1 1.258 · 10−3 8.091 · 10−4 6.144 · 10−4 2.806 · 10−4 1.794 · 10−5

3.4 Results and Discussion

The verified HO-ACR algorithm is applied to solve two types of cases. In the first case, a H2

bubble is advected through a strong shock in 2D. This presents numerical challenges, including

properly tracking of the thin H2-O2 flame fronts and the strong discontinuities of shock waves.

The second case is the C3H8-air combustion in a bluff-body combustor in which the chemistry

is extremely stiff. In both these cases, the HO-ACR method is applied to invalid ghost cells and

newly refined cells with no fundamental changes to the base algorithm. The investigation has

demonstrated that the HO-ACR method has played a critical role in ensuring the stability and
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accuracy in the process of obtaining solutions. Immediately what follows is the description of each

problem. Then, results are presented and discussed.

3.4.1 H2-O2 Shock Induced Combustion

The configuration is shown in Figure 3.16 and follows the setup used in a previous study [27].

A Mach 2 steady planar shock is located 0.75 cm to the right of the origin and parallel to the y-axis.

A hydrogen bubble is located just upstream of the shock. The upper and lower boundaries of the y-

direction are periodic, while x-min boundary condition is Dirichlet and the x-max is extrapolated.

The initial velocities Uu = 1.24 · 105 cm/s and Us = 4.35 · 104 cm/s are the velocities up-

stream and downstream of the shock. The hydrogen mass fraction is initialized to

cH2 =
1

2

[
1 + tanh

(
rc − r

C2

)]
, r =

√
((x− x0)2 + (y − y0)2) , (3.18)

with rc the radius of the bubble and the coordinate (x0, y0) the center of the bubble. The coefficient

C2 determines the sharpness of the interface between the H2 bubble and the surrounding air. The

case parameters are C2 = 3 · 10−3 cm−1, rc = 0.28 cm, (x0, y0) = (0.4, 0.75)cm, and λ = 1.5 cm.

The mass fractions for the surrounding air are simplified to cN2 = 0.767 and cO2 = 0.233. The

H2-O2 combustion is a 9-species, 19-reaction mechanism described by Billet et al. [54].

Center line

Shock

III
(H2)

I (Air) II (Air)

x

y (0, 0)

λ

2λ

xs

Figure 3.16: Shock bubble case configuration.
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A traditional approach for this case would use AMR to completely refine around the disconti-

nuities. Instead, an imperfect AMR tagging scenario that is representative of what might occur in

an embedded-DNS simulation is considered. Assume only a small window of refinement can be

afforded in the solution process, and due to this limitation significant features will cross AMR in-

terfaces. Additionally, refinement is only added once the flow is developed. Ideally, the HO-ACR

algorithm will handle this imperfect tagging.

In total, three simulations are performed. Two cases are run for comparison: one with base

Chord (without the HO-ACR method), and the other with the HO-ACR method. The base mesh

has 512 × 256 cells. Both cases begin with only the base mesh until t = 5.3 µs. Then two AMR

levels with a refinement ratio of 2 are added based on the gradients of density and pressure for

the lower half of the domain, with a small buffer wrapping around the periodic boundary. For

comparison, the third case is run by using AMR on the entire domain from the initial solution,

which is considered as the “ideal” case. The goal here is to demonstrate that the HO-ACR method

enables us to obtain a quality solution even if imposing AMR in arbitrary space-time and crossing

strong discontinuities. This strategy may be performed for embedded-DNS or embedded-LES

where only a portion of the space-time mesh is appropriately refined due to computational expense.

Figure 3.17 shows the solution of H2O at t = 5.3 µs. In the figure, there are 4 subfigures: (a) the

“ideal” case where AMR has been used for the entire run; (b) showing an initially coarse solution

from Chord with refinement added; (c) and (d) comparing the closeups of solutions between Chord

without and with the HO-ACR algorithm for the domain regridded on the bottom half, as indicated

by the black rectangles in the prior subfigures. After the initial refinement as seen in the subfigure

(c), negative species mass fractions, as indicated by magenta, are large, and positive overshoots

beyond the coarse solution are shown in yellow-orange. While mass fractions of species must

be always positive to be physically meaningful, Chord does have a small tolerance for negative

mass fractions to cope with the numerical instability in the nonlinear solvers employed during the

solution process [55]. In the subfigure (d), the magnitude of the negative mass fractions is reduced
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by an order of magnitude, which is sufficient to have kept the overall algorithm stable and allow

the solution to develop properly.

(a) Full AMR the entire run time. (b) Solution regridded on half the domain at current time,

using Chord.

(c) Close-up view of the boxed region in (b) for the solu-

tion using Chord.

(d) Close-up view of the boxed region in (b) for the solu-

tion using Chord with HO-ACR.

Figure 3.17: Solution of H2O at t = 5.3 µs. In subfigures (b)-(d) negative species mass fractions are shown

in magenta, and positive overshoots beyond the coarse solution are shown in yellow-orange.
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Figure 3.18 shows the H2O after continuing to evolve the solution to t = 10 µs. The layout

of this figure is the same as Figure 3.18. Although not matching the “ideal” solution, the partially

added refinement is seen to begin capturing fine scale features not visible in the coarse solution

while using significantly less computational resources. This provides an ability to assess the valid-

ity of embedded-DNS or LES, although we refrain from making judgment here. Instead, we focus

on the quality of the interpolations. The magnitude of the solution difference with and without the

HO-ACR method grows smaller in comparison to that of the earlier time. There is a significant

overshoot along the AMR interface that is effectively prevented by the HO-ACR algorithm. De-

spite what may appear to be minor differences, this is of significant impact for chemically reacting

flows with stiff reactions where minor errors can push the solution to unphysical states that are

unsolvable. Running further in time, this overshoot would eventually destabilize the solution if the

HO-ACR method is not applied.

3.4.2 C3H8-Air Combustion in a Bluff-Body Combustor

The premixed combustion of C3H8-air is simulated in a bluff-body combustor [56, 57]. As

shown in Figure 3.19, the triangular bluff-body lies in a rectangular channel. At the inlet, a gaseous

mixture of 4.01% C3H8, 22.36% O2, and 73.64% N2 by mass fraction flows into the domain at

a velocity of 15.7m/s. The mixture has a temperature of 310K and a pressure of 101,325Pa.

The flow has a bulk Mach number of 0.053 and bulk Reynolds number of 50,000. The reaction

mechanism for C3H8-air is a stiff system including 25-species and 66-reactions [31]. To ensure

stability, only the ACR method is explored for this application and the high-order extension is

disabled. We revert to the low order (strictly bound-preserving) ACR method for this case, because

the reacting species are highly sensitive to any overshoots allowed by the HO-ACR method. The

initial conditions in the domain are set to the same values as the inlet, with the exception of a small

region surrounding the bluff-body. Near the bluff-body, the gas mixture is initialized to 12% CO2,

6.54% H2O, 5.14% O2, and 73.62% N2, with a temperature of 1300K. This hot spot provides the

ignition of the combustion.
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(a) With full AMR the entire run time. (b) Current solution after AMR added on half the domain

at t = 5.3 µs, using Chord.

(c) Close-up view of the boxed region in (b) for the solu-

tion using Chord.

(d) Close-up view of the boxed region in (b) for the solu-

tion using Chord with HO-ACR.

Figure 3.18: Solution H2O at t = 10 µs. In subfigures (b)-(d) negative species mass fractions are shown in

magenta, and positive overshoots beyond the coarse solution of the HO-ACR case (d) are shown in yellow-

orange.
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Figure 3.19: The geometry of the bluff-body combustor.

Figure 3.20: Initial grid boxes in physical space for the bluff-body combustor.

A base mesh of 11 008 cells is used, with two levels of refinement at a ratio of 2. The 2nd level

is fixed behind the bluff-body and spans the experimental observation window. The 3rd level dy-

namically tracks the flame and boundary layers. The bluff-body case uses the conforming mapped

multiblock technique to fit a structured mesh to the geometry. The initial grid boxes are shown in

Figure 3.20. Species OH and CH2O are good flame markers. Therefore, during the run time, cells

defining the 3rd level are tagged based on cOH × cCH2O > 2.0 · 10−9.

Figure 3.21 shows the CH2O contour in the region immediately downstream of the trailing

edge of the bluff-body. On the left, the solution obtained from base Chord after regridding displays

small artifacts arising from interpolation overshoots as highlighted by the violet bubbles. On the

right, the presence of these noises in the solution is diminished greatly by instead applying the

ACR method. Similarly, Figure 3.22 compares the OH mass distributions between the base and

the ACR algorithms after regridding for the same physical location and solution time. While the

differences in OH are barely visible in Figure 3.22, after 80 time steps, these grow into quite

large perturbations as shown in Figure 3.23. The effectiveness of using the ACR to suppress the

interpolation overshoots is clearly seen in Figure 3.23, as highlighted by gray bubbles. Through the
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numerical experiments, the ACR algorithm is found to be necessary to ensure the overall simulation

stability.

(a) Chord (b) Chord with ACR

Figure 3.21: Solution of CH2O after regridding. Small artifacts from interpolation overshoot are present in

the base algorithm, but suppressed using the ACR method in regions highlighted by the violet bubbles.

With the ACR method, a full simulation of the three-dimensional version of the bluff-body

case was performed. The z-direction is defined with width of 76.2mm, and enforced with periodic

boundaries. The base mesh is approximately 330 000 cells. One additional level with a refinement

factor of 2 is added. Figure 3.24 shows the instantaneous isosurfaces of the vorticity, tempera-

ture, mass fractions of H2O and OH, respectively, for the 3D C3H8-air flame at a solution time of

t = 246ms. Without using AMR, it is much more expensive to capture the flow and flame dy-

namics near the bluff-body as shown in Figure 3.24. Furthermore, without using the ACR method,

this 3D combustion simulation has numerical difficulty where the flame crosses AMR interfaces.

One could refine the flame everywhere in the domain to avoid numerical issues from AMR, but

this would require significantly more computing resources for little benefit – high fidelity is only

required in the experimental observation window.
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(a) Chord (b) Chord with ACR

Figure 3.22: Solution of OH after regridding. Small artifacts from interpolation overshoot are present in

the base algorithm, but suppressed using the ACR method in regions highlighted by the light gray bubbles.

(a) Chord (b) Chord with ACR

Figure 3.23: Solution of OH run 80 time steps after regridding. The originally small artifacts have developed

into significant erroneous features in the flow. After this point the chemistry of the base algorithm is no

longer numerically stable, while solution using the ACR method encounters no such issues.
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Figure 3.24: Vorticity, temperature, cH2O, and cOH of the 3D Bluff-Body C3H8-air case at solution time

t = 246ms.
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Chapter 4

High-Order Mapped Multi-Block for Arbitrary

Geometry

The focus of this chapter is to develop a method representing any arbitrary geometry by multi-

ple mapped grid blocks while maintaining fourth-order FVMs with AMR. First, the starting point

and background for previously developed methods are described. Then, the strategy for interpo-

lating a grid mapping from discrete sources using B-splines to support AMR at high-order is de-

scribed. The approach for the conforming mapped multi-block (MMB) methods are then extended

to general geometries. The approaches are verified and validated for both mapped single-block and

multi-block methods with AMR when grids are defined by discrete sources. Finally, the application

of the generalized mapped multi-block method is demonstrated for practical problems.

4.1 Motivations

Prior to this work, mapped grids existed in Chord and Chombo but with restriction to smooth

analytically-defined geometries. The focus here is to develop a method enabling the MMB method

to work with any arbitrary geometry specified by a discrete grid, while maintaining fourth-order

accuracy with AMR. We specifically aim to operate on discrete structured grids because they are

the industry standard for mesh generation in CFD, and highly developed meshing tools [58] and

expertise can be leveraged. Powerful analytic grid generation methods do exist [59] and have been

shown to create grids for highly complex geometries that directly support AMR [60]. However,

there are few standards for how to manage these analytic meshes. As a consequence, using one of

these analytic grid generation methods requires either directly interfacing with existing software, or

expert support. This is a significant long term investment, and requires learning a domain specific

tool for creating grids.
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The approach taken in this work starts by addressing the challenge of how to enable AMR at

high-order accuracy on a mapped single-block grid defined by a discrete source. In particular, the

standard approach to describe a grid is by storing a structured set of node locations, which are

often generated from a geometry defined by NURBS curves. Connections between these nodes are

known implicitly from the data layout, but generally geometry information between points is not

provided. For low-ordered schemes, piecewise linear interpolation between these node locations

is generally sufficient and no further geometry information is required. However, when using a

high-ordered scheme with AMR, high-order interpolations of geometric information is required at

potentially an location in order to compute the grid metrics described in Section 2.2.1. With the

goal to produce this geometry information from a discrete source, what may seem a simple solution

is to generate a grid and required metric quantities at the finest level of refinement available, and

then coarsen the geometry information as needed for a given AMR level. This solution, although

simple, is counter to the purpose of AMR since it requires prior knowledge of the maximum refine-

ment, and stores excessive information. An alternative method to allow AMR from discrete grids

is to interpolate the mapping function at points needed with sufficient accuracy. Prior approaches

for block-based AMR on discrete grids have been made by Steinthorsson et at. [61] at second order

accuracy, where a hybrid of splines for interpolation along coarse grid lines and Hermite interpo-

lation for refinement off the coarse grid lines are used. Although effective, this method does not

easily transfer to high-order and has continuity challenges between coarse and fine levels. The

concept of using B-splines, or basis-splines, for interpolation of grid-based data is not a new idea,

and has been studied by many, such as de Boor [62] and Piegl [63]. Further study of B-splines

for a number of applications to CFD simulations, such as zonal grids and Galerkin methods, has

been done by Karvchenko et at. [64] where B-splines are concluded to be highly effective for var-

ious forms of interpolation. Use of B-splines for interpolating grid mappings also has the benefit

of being, or at least behaving similarly, how geometry is managed inside many mesh generation

algorithms, and is likely to recreate the original geometry. This dissertation takes the approach
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of multi-dimensional sixth-order B-spline to interpolate a grid mapping that allows for AMR in a

fourth-order FVM.

Given the ability to operate on mapped grids of discrete origins, this work then extends to

general MMB grids. The conforming multi-block scheme developed by McCorquodale et al. [10]

manages block intersections with a smooth continuation of each block’s mapping function which

requires extrapolation. Although this method has been demonstrated to work well for chosen

analytic mapping functions that avoid boundary conditions, its application to arbitrary complex

geometries is unclear. To use the MMB method with discrete grids, each block needs to create

an individual mapping function using the B-spline approach as in the single-block case. These B-

spline mapping functions can then be used for extrapolation to neighboring blocks, although with

some restrictions that are examined in this chapter. Communication between blocks comes with

logistical challenges where inverse mappings are not known. This work proposes to overcome the

lack of inverse mapping efficiently using targeted root finding strategies, in addition to development

of an approach for communication between blocks in the presence of boundaries and sharp corners.

4.2 Technical Approach for Mapped Single-Block Grids

First, we describe the technical approach for mapped single-block grids from discrete sources,

before extending to the multi-block scenario in the following section. The algorithm for mapped

single-block grids in Section 2.2.1 assumes an analytic formulation of the mapping function, x(ξ),

and its derivatives. Furthermore, the mapping function is assumed to be smooth, one-to-one, and

invertible inside its defined domain. When using AMR, the mapping function is potentially re-

quired at any location in space. For use of AMR on a discrete grid, an interpolation method is

needed to provide the mapping function at any arbitrary location inside the domain. When con-

structing a mapping function for a specified numerical scheme, the mapping function needs to

appear smooth relative to the reconstruction order used by the numerical scheme. A sufficient

interpolation of discrete data points should create a smooth function of chosen accuracy over the

entire domain and exactly reproduce the known points. When interpolating from a discrete mesh,
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the node locations are the only known geometry. It is important for an interpolation to construct

these known point exactly, while elsewhere, because no geometry information is made available,

we settle for any reasonable interpolation. Ideally this interpolation function will also have read-

ily known derivatives, so the grid metrics can be calculated directly. Practically, this allows for

the mapping function to be constructed using piecewise polynomials, so long as the construction

is globally at least one order of accuracy higher than the underlying FVM. This dissertation tar-

gets fourth-order FVMs, and as a result, requires mapping functions which are at least fifth-order

accurate.

An interpolating polynomial of order p, where the order specifies the number of terms in the

polynomial, is in general order of accuracy p [62]. In piecewise polynomial interpolation, rather

than polynomial order, the limiting factor for accuracy is connectivity between each segment. Cm

connectivity, meaning that first m derivatives are continuous, is generally of accuracy m + 1 for

piecewise polynomial interpolation. The order of accuracy of a piecewise polynomial can be de-

rived from the connectivity, as a polynomial of order p will have p − 1 non-zero derivatives, and

thus be up to Cp−1. For use in piecewise polynomial interpolation of grid metrics C0 connectivity

is required for a valid mapping, and C1 for valid grid metrics. However, this is only second order

accurate. For application to fourth-order algorithm with AMR, grid metrics must be at minimum

fifth-order. Thus, the resulting piecewise polynomial interpolation requires quintic, or 6th order,

piecewise polynomials with C4 connectivity. These piecewise polynomials with connectivity con-

straints are achieved with use of a B-spline [62]. For this application, B-spline interpolation can

be treated as a globally 6-th order accurate multi-dimensional piecewise polynomial P (ξ) = x.

This polynomial has four continuous derivatives, which are readily calculated as is required for the

grid metric terms. An inverse of the interpolating polynomial, P−1(x) = ξ, does exist but is not

explicitly defined or easily solved.

75



4.2.1 B-Spline Interpolation

A method for creating polynomial fits with global accuracy properties is B-spline interpola-

tion [62]. A B-spline is effectively a set of piecewise polynomials with the added constraint —

continuity between curves is specified. This constraint allows for higher-order splines to be cre-

ated in a memory efficient manner. However, solving the polynomial coefficients of the set of

piecewise polynomials must be done simultaneously because they are coupled.

A B-spline [63] polynomial of finite span is constructed as

P (t) =
a−1∑

j=0

cjBj,p(t) , (4.1)

where cj is a control point in a vector of size a, and Bj,p is the basis function of specified poly-

nomial order, p. For interpolation over n points, a vector of known sequential points, τ , ex-

ists. Each element τi and corresponding f(τi) define an interpolation site, and are defined from

i = 0, 1, 2, · · · , n− 1. The B-spline is created to fit these points by setting

P (τi) = f(τi) =
a−1∑

j=0

cjBj,p(τi).

By solving for the control points that force the B-spline to smoothly pass though specified known

points, a set of piecewise Cp−2 connected curves are created. This is most simply solved if, for the

spline P (t), each piecewise segment Pi(t) spans two interpolation sites, [τi, τi+1), and is accom-

plished by setting the knot vector t to include τ . This particular knot vector choice gives the ability

to specify extra information, and explicitly define levels of connectivity at each interpolation site.

The basis function Bj,p(t) is key in ensuring connectivity. The first index j is the knot number,

and the index p is the basis function order. A knot vector t = [t0, · · · , ti, · · · tm−1] must exist for

each spline, where the number of knots m ≥ n, where n is the number of interpolation points. The

knot vector defines the break points at which polynomial segments are joined. In the definition of
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a B-spline use herein, the basis functions are defined as

Bj,1(t) =





1 tj ≤ t < tj+1

0 otherwise

, (4.2)

and for higher order basis functions

Bj,p(t) =
t− tj

tj+p−1 − tj
Bj,p−1(t) +

tj+p − t

tj+p − tj+1

Bj+1,p−1(t). (4.3)

In curve fitting it is useful to define derivatives, such as when solving grid metrics in this applica-

tion. Derivatives of the basis functions are specified as

B′
j,p(t) = (p− 1)

(
Bj,p−1(t)

tj+p−1 − tj
− Bj+1,p−1(t)

tj+p − tj+1

)
.

Some manipulation of this definition allows for differentiation of a B-spline as [63]

P ′(t) = (p− 1)
a−1∑

j=1

cj − cj−1

tj+p−1 − tj
Bj,p−1(t). (4.4)

This form can be extended to any number of derivatives k as

P (k)(t) =
a−1∑

j=k

c
(k+1)
j Bj,p−k(t), (4.5)

with

c
(k+1)
j =





cj for k = 0

(p− k)
c
(k)
j −c

(k)
j−1

tj+p−k−tj
for k > 0

.

The choice of knot vector is particularly important in creation of B-splines. All knot vectors

must be defined in sequential increasing order, but allow for repeated knots. There are several

implications of knot choice, however only the two most relevant will be covered here. First, for

end point interpolation, the beginning and end of the knot vector must contain p repeated knots.
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Figure 4.1: Illustration of a cubic B-spline(left), and the associated basis functions(right) for a specified

knot vector t = [0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4]. In the spline, each polynomial segment is shown by a different

color and is connected to neighboring segments at the interpolation sites. The control points are visualized

by black points, and seen to govern the curve. The basis functions to construct this curve are each shown,

with break points occurring at knot indices.

The second important property deals with repeated internal knots. A B-spline usually has Cp−2

connectivity, however this is only the case for uniform internal knots. A knot repeated r times has

connectivity decreased to Cp−2−r at the knot. This is potentially useful in cases when some level

of discontinuity is desired at a specific point.

For an interpolation spline, the definition of basis functions and knot vector provides a relation

between the number of knots m, control points a, and order of spline p such that

m = a+ p. (4.6)

This also allows for a relation of a and m to the number of interpolation points n and total number

of interior repeated knots rt such that

m = n+ 2(p− 1) + rt, (4.7)

and

a = n+ p+ rt − 2. (4.8)
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By breaking the piecewise polynomial, Equation 4.1, into sections Pi over the interval t ∈

[ti, ti+1), the definition of basis functions allows for a reduced equation for a spline segment as

Pi(t) =
i∑

j=i−p

cjBj,p(t). (4.9)

When solving for the control points, the previous Equation 4.9 becomes

Pi(τi) = f(τi) =
i∑

j=i−p

cjBj,p(τi),

for each τi in τ . This results in a system of equations that can be conveniently represented in the

form BC = Y where B becomes a banded matrix of bandwidth p − 1, C is the vector of control

points, and Y is the vector of interpolation points.

Example of control point solution method

An example of the popular cubic B-spline demonstrates the solution method. Assuming n

interpolation points and uniform internal knots, a total of a = n + 2 control points are needed,

and the knot vector will be of size m = n + 6. Using τ provides n constraints, so 2 additional

constraints are needed. A simple way to generate 2 constraints is specifying end derivatives. The

end control points can be specified by setting

f ′(τ0) = (p− 1)
i∑

j=i−p+1

cj − cj−1

tj+p−1 − tj
Bj,p−1(τ0).

At location τ0, the corresponding knot is at t3, and the basis functionB0,p−1(τ0) = 1 with all others

being zero. This allows for

f ′(τ0) = (p− 1)
c1 − c0
tp − t1

.
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Using the same process for τn−1 and known end point interpolation gives control points

c0 = f(τ0), cn+1 = f(τn−1),

c1 = c0 +
t4 − t1

3
f ′(τ0), cn = cn+1 −

tn+5 − tn+2

3
f ′(τn−1).

The remaining interior points are solved in the form of BC = R − D, which becomes




B2(τ1) B3(τ1) 0 · · · 0 0 0

B2(τ2) B3(τ2) B4(τ2) · · · 0 0 0

0
. . .

. . .
. . . 0

0 0 0 · · · Bn−3(τn−3) Bn−2(τn−3) Bn−1(τn−3)

0 0 0 · · · 0 Bn−2(τn−2) Bn−1(τn−2)







c2

c3
...

cn−2

cn−1




=




f(τ1)

f(τ2)

...

f(τn−3)

f(τn−2)




−




c1B1(τ1)

0

...

0

cnBn(τn−2)




,

where all basis function are of order p = 4, which is dropped for convenience. The end deriva-

tives f ′(τ0) and f ′(τn−1) are typically unknown, but one-sided finite difference approximations are

sufficient so long as they meet the spline order of accuracy.

The methodology for constructing cubic B-splines is easily extended to any order. For any

number of interpolation points, n, Equation 4.7 for a smooth curve requires m = n + 2(p − 1)

knots and Equation 4.8 yields a = n + p − 2 control points. Solving the a unknowns is done

by using the n interpolation point constraints, and requires an additional p − 2 extra constraints.

Extra constraints are commonly specified boundary conditions, such as the prior example of cubic

splines with fixed end derivatives. For symmetry of boundary conditions, splines of even order are

preferred. Extending from cubic to quintic spline interpolation is done by addition of two boundary
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conditions. The quintic spline with fixed first and second end derivatives adjusts coefficients to

c0 = f(τ0), cn+3 = f(τn−1),

c1 = c0 +
t6 − t1

5
f ′(τ0), cn+2 = cn+3 −

tn+9 − tn+4

5
f ′(τn−1),

and adds

c2 = (t7 − t2)

[
(t6 − t2)

20
f ′′(τ0)−

(t7 + t6 − t2 − t1)c1
(t6 − t1)(t7 − t2)

+
c0

t6 − t1

]
,

cn+1 = (tn+8 − tn+3)

[
(tn+9 − tn+4)

20
f ′′(τn−1)−

(tn+9 + tn+8 − tn+4 − tn+3)cn+2

(tn+8 − tn+3)(tn+9 − tn+4)
+

cn+3

tn+8 − tn+3

]
.

In the prior solution for interior control points BC = R − D, the B matrix is now expanded using

basis function of order p = 6 becoming penta-diagonal rather than tri-diagonal. Since a = n + 4,

all elements grow to account for the control points. Additionally, the vector D now accounts for

extra boundary conditions and becomes

D =




c1B1(τ1) + c2B2(τ1)

c2B2(τ2)

0

...

0

cn+2Bn+2(τn−3)

cn+2Bn+2(τn−2) + cn+3Bn+3(τn−2)




.

Uniform Knot Vectors

B-splines for uniform interior knots, also known as cardinal splines, allow for some vast simpli-

fication [62]. Cardinal splines have knot vectors with constant spacing ∆t between each element,

81



except for the end repeated knots, which allows for simpler form of the end conditions such that

for quintic splines,

c0 = f(τ0), cn+3 = f(τn−1),

c1 = c0 +
∆t

5
f ′(τ0), cn+2 = cn+2 −

∆t

5
f ′(τn−1),

c2 = (2∆t)

[
∆t

20
f ′′(τ0)−

3c1
2∆t

+
c0
∆t

]
, cn+1 = (2∆t)

[
∆t

20
f ′′(τn−1)−

3cn+2

2∆t
+
cn+3

∆t

]
.

This scaling only must be done when calculating the end points and evaluating x values for

given t values.

A benefit of using a uniform knot vector is that basis functions are simplified. If each knot is

uniformly spaced, then there will only be a single unique set of basis functions, and all others are

translates of that set. The uniform basis functions Mj,d(t) is defined as

Mj,1(t) = Bj,1(t) =





1 tj ≤ t < tj+1

0 otherwise

,

and the recurrence relation defined previously is reduced to

Mj,p(t) =
t− j

∆t(p− 1)
Mj,p−1(t) +

(
1− t− j

∆t(p− 1)

)
Mj+1,p−1(t). (4.10)

As an example using this relation, the uniform basis functions for cubic order with unit spacing are

given as

Mj,4(t) =
1

6





(t− tj)
3 tj ≤ t < tj+1

−3(t− tj)
3 + 12(t− tj)

2 − 12(t− tj) + 4 tj+1 ≤ t < tj+2

3(t− tj)
3 − 24(t− tj)

2 + 60(t− tj)− 44) tj+2 ≤ t < tj+3

(3 + tj − t)3 tj+3 ≤ t < tj+4

0 otherwise

.
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This clearly is simpler to calculate than the traditional recurrence relation basis function, and since

only one unique set exists it grants some computational savings. For this reason, this work is

restricted to use of cardinal splines with knots located at the interpolation points.

4.2.2 Tensor Product B-Splines

Construction of multi-dimensional splines, such as needed for any grid, is done with a tensor

product of one-dimensional (1D) splines [63]. Extending upon Equation 4.1 for creation of 1D

splines, 2D splines are created as a product of two directional 1D splines by

P (t, s) =
nt∑

i=0

ns∑

j=0

ci,jBi,p(t)Bj,p(s), (4.11)

where s, similar to t, is a second knot vector. This is broken into solving two 1D problems as

P (t, s) =
nt∑

i=0

Li(s)Bi,p(t),

Li(s) =
ns∑

j=0

ci,jBj,p(s),

where L(s) is a vector of independent piecewise polynomials, and the subscript indicates the piece-

wise polynomial set. Using the control curves, a set of control points is chosen at some sj and used

to create B-splines of t that create the surface. These are evaluated at a chosen value of sj to give p

points. Using these points, another spline is fit in the t direction and evaluated at a chosen ti point,

yielding a point on the surface. This process is direction independent so t and s may be evaluated

in any order. In this representation, c is a two-dimensional set of control points. To evaluate a

particular point P (t, s), the control points c are sliced along the j direction and the set of control

curves L(s) created. Each curve Li(s) follows s along the row where i is constant. Now that all

curves in the j direction exist, curves in the i direction are created. The control curves are evalu-

ated at any point s resulting in a set of secondary control points L(s) in the i direction, from which

is created a B-spline following t. A single point t can then be evaluated on the surface. Stretching
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the evaluation of s and t over the whole domain creates the final surface P (t, s), with this process

illustrated in Figure 4.2. This process is direction independent so t and s may be evaluated in any

order.

Surface P (t, s) Control curves L(s) Surface curve P (t, s)

Interpolation points f(τi) Control points ci,j Secondary control points L(s)

Figure 4.2: Illustration of tensor spline creation.

Further expansion to 3D follows a similar procedure, were a number of 1D B-splines are solved

and a tensor product is performed to create a higher dimensional structure. This becomes

P (t, s, r) =
nt∑

i=0

ns∑

j=0

nr∑

k=0

ci,j,kBi,p(t)Bj,p(s)Bk,p(r), (4.12)

where r is another knot vector. This can once again be split into a set of 1D problems as

P (t, s, r) =
nt∑

i=0

Li(s, r)Bi,p(t),

Li(s, r) =
ns∑

j=0

Ki,j(r)Bj,p(s),

Ki,j(r) =
nr∑

k=0

ci,j,kBk,p(r).

In order to use a tensor product B-spline to interpolate f(τi), the control net of points must

be solved for. This is done by reducing a multi-dimensional problem to a set of 1D problems.

By fixing one direction, a set of 1D B-splines is fit to interpolation points, and the control points

for each of these 1D splines is found. This set of control points is only temporary, as the fixed
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direction is now shifted and the previous control points are now used as interpolation sites. Cycling

through each direction, a new set of 1D splines is fit through the previously existing control points,

recursing through all dimensions with the final result a tensor of control points. This method is

direction-independent and can be extended to any number of higher dimensions as needed.

B-splines, and specifically cardinal splines, are well suited for interpolating grid mappings.

Using the tensor product of B-splines allows for a concise procedure for multi-dimensional inter-

polation. For multi-dimensional problems, this procedure is reduced to a set of single-dimensional

problems, and thus no significant complexity is added. Due to good scaling in both the number of

dimensions and the order of accuracy, B-splines for high-order grid mappings perform well.

4.3 Technical Approach for Mapped Multi-Block Grids

Now, we extend the approach to mapped multi-block grids. The major challenge of the MMB

method, as described in Section 2.2.2, is determining how to compute the fluxes on multi-block

faces. For high-order methods, an additional challenge is introduced due to the large stencils used.

For example, fluxes at interior cell-faces near a block boundary may have a stencil that extends

beyond the block-domain. McCorquodale et al. [10] reduces the problem of solving stencils over

multi-block boundaries to one of performing high-order interpolations. Employing MMB ghost

cells, artificial cells which are extended outside the block-domains, allows the centered scheme to

be applied everywhere. For the mapped multi-block method, MMB ghost cells from each block are

extended over block interfaces. Their values are then interpolated from the existing valid regions.

We further define MMB ghost cells as either interior or exterior. Interior ghost cells are those

whose cell center lies inside the global physical domain, while exterior ghost cells have a cell

center that falls outside the global physical domain. To emphasize, all cells except the ghost cells

are referred to as valid cells, i.e. those cells being part of the global domain. This concept is

illustrated in Figure 4.3, where each block is shown in different colors and given black boundaries.

The solid lines of each block show the valid cells, and dashed lines are for MMB ghost cells. The
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enhanced blue ghost cell in the top left is an interior ghost cell, while the enhanced red ghost cell

in the bottom right is an exterior ghost cell.

~xg

~xg

Figure 4.3: A mapped multi-block grid with two blocks is shown in physical space, one in red and the

other in blue. For each colored grid, solid lines show the valid cells and dashed lines the ghost cells. The

emphasized blue ghost cell is an interior ghost cell, which is filled by interpolation from the surrounding

highlighted neighborhood of cells. The emphasized red ghost cell in the bottom right is an exterior ghost

cell. This exterior ghost cell value is extrapolated as a constant from the indicated nearest highlighted valid

cell.

Interior ghost cells are interpolated using a high-order polynomial, as has been previously de-

veloped [10]. For cases with exterior ghost cells, such as the red ghost cell seen in Figure 4.3,

interpolation is not possible, so an extrapolation method must be devised instead. Logistical con-

cerns about how to identify where ghost cells should interpolate values from arise when dealing

with arbitrary grids and require care to address efficiently. Finally, considerations must be made

for restrictions of the method, being that the mapping function must be of sufficient quality to in-

terpolate ghost cells. These challenges must be addressed for the algorithm to operate on general

geometries with an acceptable computational cost and are discussed in the subsequent sections.
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4.3.1 Ghost Cell Interpolation

The approach for filling interior ghost cells is accomplished by interpolating a fourth-order

multi-dimensional polynomial from valid solution data using the least squares method, as detailed

in Section 2.3.3. For each ghost cell g, the interpolation is centered about the physical location of

the ghost cell center xg, as labeled in the enhanced blue cell in Figure 4.3. A region of valid neigh-

boring cells, I(g), is established that is sufficiently sized to produce a fourth-order polynomial,

as is illustrated by the highlighted cells surrounding the blue xg in Figure 4.3. In Chord, where

fourth-order reconstruction is used in either two or three dimensions, the resulting neighborhoods

must contain at minimum 10 or 20 cells, respectively. This choice of interpolation region is de-

tailed by McCorquodale et al. [10], and in general spans multiple blocks while having the smallest

footprint reasonable. The interpolating polynomial Ud,g(x) for each solution component d of cell

g is constructed using the form in Equation 2.13

Ud,g(x) =
∑

‖q‖1<Q

cq (x− xg)
q +O(hQ) , (4.13)

where to achieve fourth-order accuracy in Chord, Q = 4 is used. The coefficients cq for each

cell are solved by the least squares method to fit the neighborhood (〈Ud〉i : i ∈ I(g)). Once the

coefficients are solved, the ghost cell is then interpolated as

〈Ud〉g =
1

Vg

∑

‖q‖1<Q

cqm
q
g(xg) . (4.14)

Notably, there are no feasible ways to enforce conservation constraints in this approach for ghost

cell construction. However, this does not impact the solution conservation because ghost cells

are only intermediate data used for flux reconstruction and each face flux is still single valued by

restriction to conforming multi-block grids.

87



Exterior Ghost Cell Extrapolation

One of the challenges for general mapped multi-block grids is that ghost cells fall outside the

global physical domain, as shown by the red emphasized cell in Figure 4.3. For such cells an

interpolation can not be well-defined. Instead, an extrapolation scheme is developed to fill these

ghost cells with reasonable values. These values are then used to reconstruct fluxes needed.

As the first step, the multi-block algorithm must detect the exterior ghost cells. Determining

whether a ghost cell is exterior is not straightforward and can be computationally expensive. This

is because the multi-block boundaries are generally complex and the computational geometry al-

gorithm using high-order B-splines is expensive to evaluate. As part of the multi-block setup, the

physical location of the center of each ghost cell, xg, must be solved through its inverse mapping

x(ξg) to find the corresponding valid cell. Since the mapping and its inverse must be one-to-one,

exterior ghost cells can then be detected if an inverse fails to exist inside the global domain.

Once detected, external ghost cell extrapolation is performed. Ideally, the extrapolation should

be smoothly extended from the interior. The simplest solution is to perform a constant extrapolation

along the grid lines to the exterior ghost cells. This is a low-order method, but the extrapolation

can be reasonable and stable. However, the extrapolation can be improved by taking values from

the physically nearest cell, that is the cell i such that argmini‖xi−xg‖, which intuitively is more

reasonable while still being stable. Inspecting Figure 4.3, one can see this from the enhanced red

ghost cell (i.e., an exterior ghost cell) in the bottom right. The exterior ghost cell is extrapolated as a

constant from the indicated nearest valid cell. This approach has been observed to yield reasonable

results in the present study.

4.3.2 Inverse Mapping

One computationally challenging piece of this algorithm is finding the nearest valid cell to a

given location in physical space xg. This is required for creating the interpolation neighborhood

I(g) required for filling each ghost cell. One such example stencil is shown in Figure 4.3 by the

shaded cells. With a high-order scheme that uses many ghost cells, the number of total ghost cells
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can frequently rival or even exceed the number of valid cells in the global domain. Although this

stencil creation and search for the nearest valid cell must happen for every ghost cell, it needs only

happen once per mesh. However, if implemented poorly, this one-time stencil creation algorithm

can still be prohibitively expensive.

This challenge is addressed by formulating a root finding problem, where the point ξinv interior

to the domain is desired to satisfy f(ξinv) = 0. For a given point xg, the distance function to satisfy

is

f(ξ) = ‖x(ξ)− xg‖ .

Since solving the function x−1(ξ) directly is infeasible, a root solving method is required. New-

ton’s method may be used to solve the root finding problem efficiently, since the mapping function

is represented by B-splines which have readily computed derivatives. However, Newton’s method

requires a sufficient initial estimate in order to converge to the root. Quantifying a sufficient initial

estimate is challenging in general. Empirically, we find that Newton’s method will converge to the

correct root when the initial estimate ξinit is of distance ‖ξinit − ξinv‖ < h on the coarsest grid.

To reach a region where iterative root solvers such as Newton’s method can converge to the

correct solution, a global root solver must first be used to arrive at a coarse approximation ξinit.

However, global root solvers are generally expensive to evaluate. In this case, using a global root

solver requires additional care because the global domain may be quite large, and a root solve must

be performed for every ghost cell. We develop an optimized approach for the global root solver

specifically for this scenario.

For the global root solve, each block has a cache of coarse nodes built into a KD-tree using

the nanoflann library [65]. A KD-tree is in essence a multi-dimensional extension of a binary tree

specially designed for efficiently partitioning regions in space. Of particular interest, a KD-tree

has construction time of O(DN log(N)) and average nearest neighbor lookup time of O(log(N)),

where N is the number of coarse nodes in a given block. A coarse approximation for the global

root of any given point is found by searching for the nearest neighbor of each block following

a breadth first search of block connectivity. Given the nearest neighbor node, the point xg can
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quickly be determined to lie inside the block based upon its proximity to boundary and exterior

nodes. The case where the nearest node is further than two nodes away from a boundary can be

immediately determined as inside or outside a block. When the nearest node is on or adjacent to

a boundary, an inverse existing inside the block is questionable and requires solving the exact root

using Newtons method. Points exterior to each block are stored as potential candidates for exterior

ghost cells if no interior ghost cell is found. A point interior to a block clearly is near the global

inverse, which is then used as the starting location for a Newton solve to converge to the true global

inverse. In practice, the use of a KD-tree has insignificant cost relative to many other parts of the

grid initialization algorithm. Additionally, there are other geometry operations of the FVM which

are able to leverage the KD-tree to reduce computational expense.

4.3.3 Mapping Restrictions Imposed by Ghost Cells

Ghost cells are created by extending each block-domain with a required number of cells that

enables the centered scheme (e.g., centered stencil) to evaluate the block-boundary fluxes. An

important consideration in this process is how the mapping function behaves when extended be-

yond block-domains. The mapping in ghost cells is assumed to still hold its prescribed shape and

properties — one-to-one, smooth, and invertible. However, this assumption can be problematic

for a number of mappings. For example, as illustrated in Figure 4.4, extending the original block-

domain to ghost cells results in a region with degenerated grids. This is further exacerbated for

grids with a high-stretching ratio. The figure shows a continuation of the mapping may result in

points where grid lines cross and the mapping is no longer one-to-one. When this situation occurs,

the discrete grid needs to be recreated with the guidance provided by the mapped multi-block algo-

rithm, including the adjustment to the amount of stretching near block boundaries or the refinement

to the grids near boundaries to improve the ghost cell quality. As cell size shrinks, the distance of

ghost cells beyond the block-domains also reduces.

For discrete grids, the mapping function is represented using B-splines defined within each

block-domain. This introduces another challenge. Extrapolation, as required of the mapping func-
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(a) Contracting grid. (b) Grid crossing.

Figure 4.4: Visualization of examples where ghost cells degenerate.

tion to create ghost cells, is known to be error-prone for polynomials. Fortunately, the extrapolation

region is always known to be small, and so long as the mapping remains one-to-one the error is

inconsequential. However, in cases where the mapping degenerates due to extrapolation errors

from the B-splines, it is again left to the researcher to alter the grid.

4.3.4 Multi-block Domains with Adaptive Mesh Refinement

Enabling the AMR capability for the multi-block domains adds significant logistical chal-

lenges. For AMR regions, ghost cells are used to communicate data between levels and allow

each level to be updated independently. In the context of multi-block grids, ghost cells can be

divided into in two categories, invalid and MMB ghost. Invalid ghost are cells interpolated from a

coarser level and MMB ghost cells are those which are interpolated on a single level over a MMB

boundary. On a grid with a single level, the MMB ghost cells are interpolated using the method

presented in Section 4.3. Invalid ghost cells are interpolated onto level ℓ + 1 from level ℓ using a

conservative high-order multi-dimensional interpolation. The addition of AMR adds complication

to filling ghost cells on finer levels. On fine levels, grids typically do not span the entire domain

with AMR. The MMB ghost cell interpolation scheme creates stencils assuming the entire domain

is available and caches those stencils for efficiency. This is problematic when filling MMB ghost

cells, since it either requires regenerating stencils every time the grid adapts, which is expensive,

or dealing with incomplete stencils. The approach taken in this work is to deal with incomplete

stencils, by using MMB stencils where possible and stencils that interpolate from invalid ghost
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cells elsewhere. Figure 4.5 shows an example of this, with regions able fill ghost cell by MMB

interpolation in green and regions requiring invalid ghost cell interpolation in gray.

Figure 4.5: A mapped multi-block grid with two blocks is shown in physical space, one in red and the other

in blue. A region of AMR spans the block boundary, with a refinement factor of two. Ghost cells of the blue

grid are shown with blue dashed lines. The green highlighted ghost cells are those with complete stencils on

the fine level, which are interpolated over the MMB boundary from other fine cells on the level. The gray

highlighted ghost cells are those with incomplete stencils, which are interpolated up using the coarser levels

ghost cells.

To simplify the process for filling both invalid and MMB ghost cells, the interpolation of all

ghost cells is coupled and described by the following procedure:

1. Assume the coarse level ℓ has all ghost cells filled. In a correct AMR hierarchy, all ghost

cells of the fine level ℓ+1 are contained within the coarse level ghost cells and have sufficient

coarse cells for all required stencil operations.

2. Interpolate from the coarse to fine level for all ghost cells as though they are invalid. This

happens on each block individually with no knowledge of MMB interfaces. This fills all

ghost cells, of which only the invalid are correct while the MMB ghost cells are inaccurate

but of reasonable value.
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3. Do a multi-block interpolation for all ghost cells on the fine level that have a complete stencil

on the current level. On all but the coarsest level, it is possible for MMB ghost cells to have

incomplete MMB stencils on their given level due to the variability in mesh refinement.

When stencils can not be fully satisfied on an AMR level, the previously computed invalid

ghost cell interpolation is used. Although not ideal, this is still a sufficient interpolation over

MMB boundaries.

4.4 Verification and Validation

We have implemented the MMB techniques described in this chapter into Chord. To verify

the MMB algorithm on discrete grids, we consider three cases. First, the B-spline interpolation is

verified to show the desired global accuracy. Second, a periodic advection cube with AMR is used

to verify the B-spline mapping functions. Third, the periodic advection cube with AMR is again

used for verification of a MMB grid coming from a discrete source. With the periodic advection

cube, we further verify that the MMB algorithm maintains conservation and achieves the desired

order of accuracy over multi-block boundaries.

4.4.1 B-Spline Order of Accuracy

One of the main challenges for the development of a fourth-order AMR algorithm on arbitrary

mapped grids is maintaining the order of accuracy. In the development of B-spline theory, they are

claimed to have global order of accuracy p, and validation of this takes place.

Implementation of 1D cubic and quintic splines can be validated against any smooth function,

ideally of reasonable complexity. Convergence tests are performed using a sample function, which

happens to be a viscosity-temperature relation, with uniform interpolation points and results shown

in Figure 4.6. This work specially makes use of cardinal splines, that is the knot locations coincide

with interpolation points.

Results of this convergence test show the expected order of accuracy for both the cubic and

quintic splines is observed. The cubic spline maintains a convergence rate of 4.0. The quintic spline
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(a) Cubic spline.
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(b) Quintic spline.

Figure 4.6: Convergence rate of interpolation B-splines for the function f(x) = exp(0.746 log x+ 43.555
x

−
3259.934

x2 + 0.13556) with the number of interpolation points uniformly spaced over x ∈ [300, 700].

exhibits a convergence rate between the 6.0 and 7.0. This verifies 1D B-spline implementation,

and provides confidence for multi-dimensional B-splines since they simply apply recursion to one-

dimensional problems, and thus are suitable for high-order grid interpolation.

4.4.2 Advection on a Mapped Single-Block Grid with AMR

The Gaussian advection case is chosen as a test for validation of geometry implementation,

as seen by Guzik et al. [8]. Using the Euler equations on a mapped grid with periodic boundary

conditions, a Gaussian density bump is initialized with a specified flow velocity. The density profile

is initialized as

ρ = ρ0 + s(r)∆ρ e−(100r2), (4.15)
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where 



0 : |2r| ≥ 1

cos6(πr) : |2r| < 1

, (4.16)

ρ0 = 1.4, and ∆ρ = 0.14. The value r specifies the distance from the center of the periodic

domain, [0, 1]D. Pressure is initialized to a constant of 1 and the velocity is set to (1.0, 0.5). With

this choice of velocity, the Gaussian profile will return to the initial location after 2 time periods,

and solution error is calculated using the exact solution. The mapping is defined by

xd = ξd + cd

D∏

p=1

sin(2πξp) d = 1, 2 . (4.17)

Initialization of this case is shown in Figure 4.7 in both computational and physical space.

Boxes, a collection of cells, are shown to describe the mesh with two levels of AMR applied. The

refinement is set analytically such that the first level is an approximate circle of radius 0.35 from

the center of the Gaussian bump, and the second level is of radius 0.225 from the center. This

is chosen such that, when performing a convergence test, the refinement regions cover nearly the

same area regardless of the base grid.

A convergence study is performed to analyze the effectiveness of using (cardinal) splines to

recover geometry representation. Using the mapping described, two sets of convergence test are

run, with the first using the analytically defined geometry, and the second using a discretized

form. Quintic spline interpolation is applied to the discretized geometry and used to provide grid

information as needed. Using the analytic and interpolated geometry, a convergence test is run

both with and without AMR applied. The cases with AMR have two layers of refinement by 2,

where, when compared, the most refined grid matches the base grid of the single level cases. Ie., a

64×64 grid with two levels of AMR has a refined region matching the single level 256×256 grid.

All single level convergence rates are measured at 4.0 as expected. The addition of AMR does

not significantly reduce convergence rates, as they are measured between 3.78 and 4.0 independent
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(a) Computational space. (b) Physical space.

Figure 4.7: Advection case initial Gaussian density profile. Boxes show the grid with gray the first level of

refinement and black the second.

of mapping. It is expected that the discontinuous grid created by AMR can induce a reduction in

accuracy by up to one order.

Additionally, the Gaussian advection case with periodic boundaries allows for testing conser-

vation. A finite volume scheme with no source or sink terms does not change mass, which is

tested by integration of the conservative variables in computational space JU. This is computed

for initialized and completed solutions of the 512 × 512 AMR case, using both the analytic and

interpolated mappings. These results and the difference are tabulated in Table 4.1 and Table 4.2,

and it is seen that conservation is preserved to machine precision. In this test, the difference in

conservative quantities over the run time of the advection case is on the order of machine zero, and

thus the algorithm works as expected.

Table 4.1: Initial and final conservative values for the advection case, using the analytic mapping

JU Initial Final Difference

Jρ 2.299 286 119 588 755 · 104 2.299 286 119 588 766 · 104 0.000 000 000 000 011 · 104
Jρu 2.299 286 119 588 755 · 104 2.299 286 119 588 766 · 104 0.000 000 000 000 011 · 104
Jρv 1.149 643 059 794 377 · 104 1.149 643 059 794 385 · 104 0.000 000 000 000 008 · 104
JρE 5.533 053 824 742 974 · 104 5.533 053 824 742 998 · 104 0.000 000 000 000 024 · 104
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(a) Analytic mapping.
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(b) Interpolated mapping.

Figure 4.8: Convergence rates of the advection case. The Single-Level L2 and Linf plots are overlapped by

the corresponding 3-Level-AMR plots, and thus not visible.

Table 4.2: Initial and final conservative values for the advection case, using the quintic spline interpolated

mapping

JU Initial Final Difference

Jρ 2.299 286 119 578 092 · 104 2.299 286 119 578 102 · 104 0.000 000 000 000 010 · 104
Jρu 2.299 286 119 578 092 · 104 2.299 286 119 578 102 · 104 0.000 000 000 000 010 · 104
Jρv 1.149 643 059 789 046 · 104 1.149 643 059 789 051 · 104 0.000 000 000 000 005 · 104
JρE 5.533 053 824 736 307 · 104 5.533 053 824 736 325 · 104 0.000 000 000 000 018 · 104

4.4.3 Advection on a Mapped Multi-Block Grid

In a periodic advection cube, a Gaussian density profile is created and advected across the do-

main. Solutions from the present mapped multi-block method are compared to those previously

obtained on a single-block. Using the Euler equations on a periodic domain, a constant uniform
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flow velocity is specified as in Section 4.4.2. The density profile is again initialized using Equa-

tion 4.15 and Equation 4.15. The solution error is calculated relative to the exact solution.

Figure 4.9: The density profile of the periodic advection case is shown on the Cartesian multi-block grid.

The grid of each block is shown in a different color.

For verification, an analytically mapped single-block and multi-block grid are generated to

be identical in physical space. The multi-block grid is shown in Figure 4.9, and although not

shown, the grid in the single-block is identical except without the block distinctions. For both of

these methods, a convergence study is performed. Both cases exhibit the expected fourth-order

convergence, as shown in Figure 4.10. The solution errors between the single-block and multi-

block method are seen to be similar, with the multi-block errors only marginally higher. For this

simple Cartesian geometry, results from discrete grids interpolated using the B-spline approach are

identical to their analytic counterparts within machine precision.

Additionally, it is possible to test conservation of the periodic advection case. Without source

or sink terms in the governing equations, the sum of conservative quantities in the control volume

should remain constant. This is tested by comparing integration of the solution variables U in

physical space at the initial and final solution times. Results from a global grid of size 256 ×

256 are tabulated for the single-block method in Table 4.3 and multi-block method in Table 4.4.

The conservation is maintained in both cases; solutions are conserved to near machine precision.

98



32 64 128 256
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

dy
dx

= −3

dy
dx

= −4
1

1

1

1

2

2

2

2

∞

∞

∞

∞

1

1

1

1

2

2

2

2

∞

∞

∞

∞

Grid size

S
o
lu
ti
o
n
E
rr
o
r

∞ L∞ Multi-Block
2 L2 Multi-Block
1 L1 Multi-Block
∞ L∞ Single-Block
2 L2 Single-Block
1 L1 Single-Block

Figure 4.10: Convergence rates for the periodic advection cube, using both a mapped single-block grid and

a multi-block one. Solution errors from both methods lie very near one another, and both show fourth-order

convergence.

Importantly for this study, the multi-block scheme is shown to maintain conservation equally well

as the single-block scheme.

Table 4.3: Initial and final conservative values for the advection case, using the single-block grid

U Initial Final Difference

ρ 9.197 144 478 240 506 · 104 9.197 144 478 240 158 · 104 0.000 000 000 000 348 · 104
ρu 9.197 144 478 240 506 · 104 9.197 144 478 240 144 · 104 0.000 000 000 000 362 · 104
ρv 4.598 572 239 120 253 · 104 4.598 572 239 120 067 · 104 0.000 000 000 000 186 · 104
ρE 2.213 221 529 890 319 · 105 2.213 221 529 890 331 · 105 0.000 000 000 000 012 · 104

Table 4.4: Initial and final conservative values for the advection case, using the multi-block grid

U Initial Final Difference

ρ 9.197 144 478 240 506 · 104 9.197 144 478 240 123 · 104 0.000 000 000 000 383 · 104
ρu 9.197 144 478 240 506 · 104 9.197 144 478 240 107 · 104 0.000 000 000 000 405 · 104
ρv 4.598 572 239 120 253 · 104 4.598 572 239 120 053 · 104 0.000 000 000 000 200 · 104
ρE 2.213 221 529 890 319 · 105 2.213 221 529 890 325 · 105 0.000 000 000 000 006 · 105
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4.5 Results and Discussion

The verified and validated MMB algorithm is now applied to solve problems of engineering

interest. First, the Mach reflection problem is examined, and we compare the shock capturing

capability in the MMB algorithm by comparing to literature. Second, the premixed combustion of

C3H8-air in a bluff-body combustor is demonstrated. This represents common complex geometric

features and fluid dynamics occurring in practical combustion devices.

4.5.1 Mach Reflection

In previous work, the Woodward-Colella mach reflection case has been studied in detail using

Chord [6]. There are a number of interesting physical phenomenon in this flow, such as shocks

and induced flow instabilities. In this study, the case is of interest because it is one of the most

geometrically complex cases using a mapped single-block grid. The single-block solution uses a

Schwarz-Christoffel mapping to generate the ramp. Although the geometry of the bottom boundary

with a sharp feature is possible, it comes at loss of geometry specification in the remaining domain.

Due to the geometry, applying boundary conditions requires special treatment, and the grid can no

longer be aligned with the shock. However, the multi-block methodology can create a grid with

full geometric flexibility, allowing for simpler boundaries and grid alignment to flow features. A

comparison study is made between the previously validated mapped single-block grid solution,

and the new multi-block one.

A ramp of angle of 30 ◦ is created. An incident shock of Mach 10 reflects off the ramp. The

front of the shock has specified flow conditions p = 1, ρ = γ, and u = 0. Conditions behind

the shock are set from the shock relations. The bottom boundary is treated as a slip wall, while

all others have specified Dirichlet conditions. The top boundary is specially adjusted based on the

analytic position of the shock.

This case is of particular interest when using the multi-block scheme, since it introduces a

scenario that exhibits exterior ghost cells. Both solutions clearly capture the same physics, with

minor differences, as shown in Figure 4.12. This is particularly encouraging near the corner of the
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(a) Single-block analytic Schwarz-Christoffel grid. (b) Multi-block discretely defined grid.

Figure 4.11: Coarsened representations of the grid used to capture the mach reflection geometry.

(a) Single-block solution. (b) multi-block solution.

Figure 4.12: A comparison of the density contours between the mapped single-block and multi-block solu-

tions.

ramp, where the exterior ghost cell extrapolation method is active. The multi-block case, with the

grid represented in Figure 4.11, appears better able to capture the off body vertical shock along the

top boundary where the grid is aligned with the physics. However, the grid is no longer entirely

aligned with the shock orthogonal to the wall and a minor distortion is observed. From the results of

this comparison, we are able to validate the mapped multi-block methodology on arbitrary discrete

grids.
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4.5.2 C3H8-air Bluff-Body Combustor

The bluff-body combustor geometry features a triangular body inside a channel followed by a

plenum region, as shown in figure Figure 4.13. The geometry is extended into three-dimension,

with the z-direction defined with a depth of 76.2mm and enforced with periodic boundaries. The

boundary conditions in the channel are defined by adiabatic no-slip (zero velocity) walls. Walls

immediately upstream of the channel and inside the plenum are specified with an adiabatic slip wall

condition. The inlet is specified by a gaseous mixture of 4.01% C3H8, 22.36% O2, and 73.62% N2

by mass fraction entering at a velocity of 15.7m s−1. The mixture has a temperature of 310K. The

outlet is specified by species mass fractions of 12% CO2, 6.54% H2O, 5.14% O2, and 73.62% N2.

The outlet has a temperature of 1300K, and pressure of 101 325Pa.

The initial conditions for the plenum are set to the same values as the inlet, except for a small

region surrounding the bluff-body. In this region, the gas mixture is initialized to the state defined

for the outlet condition. This hot spot serves as the ignition of the combustion. The flow has a

bulk Mach number of 0.053 and bulk Reynolds number of 50 000. The reaction mechanism for

C3H8-air is a stiff system including 25 species and 66 reactions [31].

The bluff-body geometry is represented by a conforming mapped multi-block grid, with the

blocks shown in green in Figure 4.13 and the black lines showing a coarsened representation of

the grid. In the z-direction the grid is uniformly extended and not shown. This multi-block grid

consists of 25 connected blocks. The solution has three levels of grids, each refined by a factor of

2. The base mesh contains 393 216 cells, generated by mesh generation software demonstrating

that Chord works with pre-created grids. Using the grid interpolation feature of Chord, AMR is

feasible. The second level in the AMR grid, which is fixed in time, contains 1 302 528 cells. The

third level is tagged dynamical based on the criteria cOH × cCH2O > 2.0 · 10−9 which is found as

an effective flame indicator.

Figure 4.14 shows an instantaneous isosurface of the OH species for the 3D C3H8-air flame.

Without using AMR, it is computationally infeasible to use a uniform fine mesh to capture the

flow and flame dynamics near the bluff-body as shown in Figure 4.14. At the time shown, the grid
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Figure 4.13: Coarsened grid for the bluff-body case. Boundary conditions are labeled and color coded.

Block boundaries are highlighted in green.

contains a total of 5 477 376 cells using AMR. For comparison, the same resolution using a single

level would require 25 165 824 cells, which is nearly 4.6 times as many as required with AMR.

In this mesh, several regions experience the mapping limitations as described in Section 4.3.3.

Careful considerations are made to avoid these limitations, and they often determine the allowed

amount of grid stretching. For example, the expansion rate of the mesh in the plenum region is

restricted to maintain positive ghost cell sizes. This mapped multi-block grid also contains sharp

corners around the bluff-body and at the entrance of the plenum. Each of these regions must deal

with exterior ghost cells, and there are notably no erroneous solution features appearing in these

regions. Additionally, the solution for this case has many complex flow features (e.g., shearing,

mixing, and recirculating) and AMR interfaces that regularly cross block boundaries. Despite this,

no distortion is found due to multi-block interfaces. Successful applications from using this MMB

algorithm have been shown in other studies [30, 55].
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Figure 4.14: cOH isosurfaces of the 3D Bluff-Body C3H8-air case, with a two dimensional slice of the grid

and AMR.
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Chapter 5

High-Order Embedded-Boundary Method

In this chapter, we devise a new high-order embedded-boundary scheme for the time dependent

Stokes equations. First, the motivations for developing this method are discussed, along with the

current state of embedded-boundary methods. Next, the technical approach for the high-order EB

method is described. The method is then verified and validated, and finally results of the Stokes

equations featuring complex geometries are demonstrated.

5.1 Motivations

The embedded-boundary method has been used with great success in a number of fluid dy-

namics applications, and has been shown capable of representing highly complicated geome-

tries with automated meshing [44, 66–68]. Previous time dependent applications have only been

achieved up to second-order accurate solutions, with first-order or inconsistent results near em-

bedded boundaries [35]. Elaborate reconstruction schemes are required near the boundaries of

embedded-boundary methods, since regular or grid-aligned stencils are not accurate or stable in

the presence of cut cells. Volumes of cut cells may also be arbitrarily small with respect to the

Cartesian cells they originate from, and maintaining stability of these small cells requires special

care. Dealing with these irregular reconstructions and small cells has been achieved for low-order

schemes, but not widely explored for high-order schemes. The related immersed boundary method

has been successfully developed for high-order solutions of complex flows using finite difference

methods [69,70], although this method is not considered in this dissertation. The immersed bound-

ary method is in general diffusive at the boundaries and not conservative.

A high-order finite volume embedded-boundary method for smooth and kinked (C0) domains

was demonstrated for Poisson’s equation by Devendran et al [12]. The goal of this work is to

extend the fourth-order embedded-boundary method to solve the time dependent Stokes equations.

Spatial discretizations are based on a weighted least-squares technique that mitigates the “small
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cut cell” problem, without mesh modifications, cell merging, or redistribution. Advancing the

viscous term in time is done using a fourth-order implicit time marching method, while the source

terms are done explicitly. These two schemes are combined using an additive Runge-Kutta (ARK)

scheme coupled with a projection method to solve the unsteady Stokes equations.

5.2 Technical Approach

The challenge of embedded-boundary methods is to approximate the flux terms 〈F〉f when

regular grid stencils cannot be used due to nearby cut cells. To solve this requires knowledge of the

flux as a function, so that face averages may be computed appropriately. A general reconstruction

is done by creating local polynomials and evaluating their value and derivatives on the face as

needed to evaluate fluxes. For a structured grid, reconstructed polynomials lead to grid-aligned

regular stencils. When using an embedded-boundary method, the cells near the boundary require

a consistent approach to generate stencils that depend on the local geometry. On irregular regions,

our approach is to use a weighted least-squares polynomial approximation from the cell average

values in a local region of neighboring cells. The scheme presented can theoretically produce any

order of spatial discretization that is desired, but for the context of this dissertation, fourth-order is

the focus. The present study continues and extends the work started by Devendran et al. [12] and

Schwartz et al. [11], and the procedure is briefly summarized in this section.

5.2.1 The Problem of Small Cut Cells

To reconstruct the stencils required for the spatial discretization in the presence of EB geome-

tries, the WLS method Equation 2.31 is used. First, we select a neighborhood of cells within

a given radius (including any cut-cells and their contained subset of the boundary). Rather than

exhaustively searching for an interpolation neighborhood that can determine all the required coeffi-

cients with finite volume stencils, we use a larger number of neighbors and a weighting scheme that

assigns relative importance to each cell’s entry in the WLS system. Smaller relative weights mean

that cells have less importance and a smaller coefficient in the resulting stencils. As in Devendran
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et al. [12], an effective weighting for a fourth-order interpolation is:

Wi,f = max(Di,f , 1)
−5 , (5.1)

where Di,f is the Euclidean distance between cell i center and face f center. This weighting

was shown to improve solution stability and spectral properties, especially when interpolation

neighborhoods are large and there are many possible consistent stencils.

5.2.2 Interpolation Neighborhoods

An important aspect of the WLS reconstruction is neighborhood selection. Conceptually, we

require a large enough interpolation neighborhood to attain the desired accuracy and stability prop-

erties, while not making it so far-reaching so as to create large (expensive), ill-conditioned inter-

polation matrices. In this dissertation, the focus is on fourth-order accurate stencils, which in the

general 2D case, requires a minimum of 10 neighbors (with at least Q in each direction) for all of

the polynomial coefficients for |q| < Q = 4. Higher-order derivative operations will require more

neighbors to maintain the same accuracy, and values near an embedded boundary will require the

boundary condition and further cells because of the lower accuracy of one-sided differences. For

example, for a fourth-order WLS viscous operator (Laplacian), flux stencils of radius 3 cells from

the reconstructed face can be used for a third-order accurate gradient. This is illustrated for a radius

of 3 in Figure 5.1(a) for regular regions, and Figure 5.1(b) in the presence of an EB region with

the inclusion of boundary conditions. However, for stencils that do not specify a boundary condi-

tion, such as the divergence on outflow boundaries, this radius of cells may need to be expanded

to make the system sufficiently over-determined. Similarly, for stencils that evaluate cell-averaged

values, such as the gradient for the projection operator, cell-average reconstructions are used. An

example of a stencil of radius 3 centered about a cell is shown in Figure 5.2(a) for regular cells

and Figure 5.2(b) for a cut-cell, following a similar pattern to reconstruction centered on faces.

Cell-average reconstructions may include the cell where the reconstruction takes place, which is

indicated as a radius of zero.
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(b) An example irregular flux stencil, using 13 cells and

6 boundary conditions.

Figure 5.1: Stencil neighborhoods for flux construction in 2D on the red highlighted faces, with cells

numbered according to the Manhattan distance from the indicated red face. Boundary sections included in

the stencil are colored in (b).
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(a) An example regular cell stencil with 25 cells and no

boundary conditions.
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(b) An example irregular cell stencil, using 16 cells and
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Figure 5.2: Stencil neighborhoods for cell value construction around the red highlighted cells, with cells

numbered according to the Manhattan distance from the red cell. Boundaries included in the stencil are

colored in (b).
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5.2.3 Higher-order EB Viscous Flux Stencil

We can use the WLS approach to calculate face-average fluxes, on partial or curved faces, for

Equation 2.4 from cell-average quantities (as in [12]). This is accomplished by determining the

stencil Sf applied to neighbor values V, derived from the coefficient vector C:

Af 〈Fd〉f ≡ S
⊺

f V

= B⊺ C

=
(
B⊺ (W M)† W

)
V ,

where B is a vector that approximates any face-average flux (or other quantity) from the known

coefficients. For a linear flux, such as the viscous term Fd = ν∇ud, we determine B (and thus Sf )

using a Taylor expansion from the face center x̄f :

Af 〈Fd〉f =

∫

Af

∇ud · n̂f dx+O(hQ)

=

∫

Af

∇
( ∑

|q|<Q

cq

d(x− x̄f )
q

)
· n̂f dx+O(hQ)

≡
∑

|q|<Q

cq

db
q

f = B⊺C .

Each bq

f can be expressed as a sum of normal-weighted face moments mq

f ,d:

bq

f =
D∑

d=1

∫

Af

∂

∂xd
(x− x̄f )

q n̂f ,d dx =
D∑

d=1

qdm
q−ed

f ,d , (5.2)

where q − ed is required to be positive (derivatives of constants are zero).

For grid-aligned cell faces, normals ed are constant, so the normal-weighted moments are sim-

ply the face moments. However, for curved embedded boundaries all the components of the nor-

mal play a role in the interpolation, especially in the case of inhomogeneous boundary conditions.

Ultimately, the viscous flux stencil sf depends only on the local neighbor volume and boundary
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moments, so it may be initialized once per geometry and stored as a sparse matrix operator over the

(much smaller) subset of irregular cells. This process requires having moments, m, cell volumes,

V , and face areas, A available to sufficient order of accuracy. These quantities are computed from

geometries defined by implicit functions using the divergence theorem based algorithm detailed by

Schwartz et al. [11].

5.2.4 Approximate Projection

The higher-order projection operator starts with cell-average velocities, 〈u〉i, and modifies

them to be approximately divergence-free (see Equation 2.55). To accomplish this, we require

discretizations and boundary conditions for each operator in Equation 2.53. First, the Laplacian

operator L is essentially the same as the viscous flux in section 5.2.3, as a divergence of face-

averaged quantities, but with different boundary conditions based on Equation 2.56. For the cell-

average gradient operator, G, the WLS stencil is similar to Equation 5.2. However, in this case we

use cell moments instead of face moments to calculate a cell-average gradient:

Gq

d,i =

∫

Vi

∂

∂xd
(x− x̄i)

q dx = qdm
q−ed

i . (5.3)

The gradient operator uses the same boundary conditions as the Laplacian operator.

Finally, we define a cell-average divergence operator D using the divergence theorem,

∫

Vi

∇ · u dx =

∫

∂Vi

u · n̂ dx ,

so the cell-average of the divergence of the velocity field can be determined from face-average

quantities as

〈∇ · u〉i =
∑

f∈∂Vi

Af

Vi

〈u · n̂〉f .
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The divergence flux 〈u · n̂〉f can be constructed similarly to the Laplacian, with an operator that

computes an average velocity flux Uf from each velocity component coefficient

Uq

f =
D∑

d=1

∫

Af

(x− x̄i)
qn̂f ,d dx =

D∑

d=1

mq

f ,d . (5.4)

Again, the terms on regular faces have single component normal vectors n̂f = ed, and as a result

〈u · n̂〉f = 〈ud〉f . The boundary condition for the divergence is u · n̂ = 0 at any solid wall,

including EB boundaries. The velocity is specified at inflow boundaries, while outflow has no

boundary conditions applied [71].

5.2.5 Physical Boundary Conditions

For Dirichlet boundary conditions, each face with a prescribed function uses a boundary aver-

age value 〈u〉f = 〈ubc(x)〉f . A polynomial fitting the function about a face can be reconstructed

using:

Af 〈ubc,d〉f =

∫

Af

ubc,d dx

=

∫

Af

∑

|q|<Q

cq

f (x− x̄f )
q dx

=
∑

|q|<Q

cq

fm
q

f .

Including this additional equation and value into the stencil system will match the boundary condi-

tion in a least-squares sense, with a similar method for Neumann boundaries. These extra boundary

condition equations are used when any neighboring cell included in the reconstruction contains a

portion of the boundary, and so can accommodate different parts of the boundary (such as corners,

etc.). This does require that the boundary conditions and derivatives are known at least to order Q.
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5.2.6 Time Marching Method

When solving the Stokes equations, time constraints for the source term and diffusion portions

of the fluxes can be significantly different. The source terms are hyperbolic in nature and generally

non-linear and less stiff, making them well suited for explicit time marching methods. In con-

trast, the diffusion fluxes are parabolic, more stiff, and linear, making them well suited for implicit

time marching methods using fast linear solvers. In the context of embedded-boundary methods,

where cut cells can become arbitrarily small, the time step stability constraints between advection

and diffusion terms can differ by orders of magnitude. To maintain reasonable time step sizes, a

hybrid implicit-explicit (ImEx) Runge-Kutta method is chosen for the embedded-boundary algo-

rithm [72]. This allows for the advection terms to be updated using an explicit method, and the

diffusion terms with an implicit method. As a result, the time evolution is generally not limited

by the small time steps required for the diffusion physics. At each stage of the implicit RK time

marching, a large sparse matrix system must be solved. To do this efficiently, we use a geometric

multigrid solver included in Chombo [73] with PETSC [74, 75] as a bottom solver.

To achieve the desired fourth-order accuracy of the presented algorithm, the ARK4(3)6L[2]SA

time marching method [21] is used. This method has successfully been demonstrated for stiff,

higher-order finite volume methods that use AMR for advection-diffusion problems [76].

5.3 Verification and Validation

We verify the projection and viscous operators separately on simple embedded boundary ge-

ometries. The projection operator was verified for correctness and stability using the Taylor Green

vortex. The viscous operator with boundary conditions was verified using manufactured solutions

in space and time. The order of accuracy for solving the Stokes equations was verified on a Couette

flow between concentric circles.
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5.3.1 Projection of the Taylor-Green Vortex

The approximate projection operator P(u) is demonstrated to be both fourth-order accurate

and stable by solving the classic Taylor-Green vortex [32] on a unit domain. The stream function

is defined by

ψ = sin(nπx) sin(nπy) . (5.5)

and the corresponding velocity field in Cartesian coordinates is,

u = sin(nπx) cos(nπy) , v = cos(nπx) sin(nπy) , (5.6)

which is analytically divergence free. For this case, we choose the period n = 2, and as a re-

sult there is no flow through the domain boundary. In addition, EB boundaries are cut along the

contours of the stream function at ψ = −0.8. Initial conditions use the exact velocity profiles, inte-

grated to fourth-order cell-averages, while projection boundary conditions are specified (no-flow,

but not viscous, walls). The geometry and velocity field are shown in Figure 5.3(a).

(a) The Taylor-Green velocity magnitude |u| and stream-

lines.

(b) Log plot of the divergence magnitude Du and a

coarsened grid representation.

Figure 5.3: The Taylor-Green vortex at h = 1/256.
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Stability of the approximate projection operator is demonstrated by showing that repeated ap-

plications of the projection on a velocity field reduce the discrete divergence monotonically towards

zero. The velocity divergence Du and pressure gradient Gφ are computed on a grid with cell size

h = 1/256 for 100 projection applications and plotted in Figure 5.4. These quantities strictly

decrease, showing stability of the fourth-order approximate projection.

1 10 100

10−9

10−8

10−7

Iteration

L∞(Du)

L2(Du)

L1(Du)

(a) Error norms of the velocity divergence.

1 10 100

10−13

10−12

10−11

10−10

10−9

Iteration

L∞(|Gφ|)
L2(|Gφ|)
L1(|Gφ|)

(b) Error norms of the pressure gradient.

Figure 5.4: Solution error norms from repeated projections of the Taylor-Green vortex with cell size h =
1/256.

Convergence tests are performed to ensure the targeted fourth-order accuracy is achieved. The

projection is applied once for grids of decreasing refinement, and the divergence field Du is used

to evaluate the solution error. The finest levels are chosen with cell sizes h = 1/256 and h =

1/192, and subsequent coarser levels each double h. The L1, L2, and L∞ errors are calculated and

plotted in Figure 5.5, where convergence rates reach and exceed expected fourth-order accuracy.

Divergence errors are the largest in cut-cells at the embedded boundaries, as seen in Figure 5.3(b),

and dominate the L∞ errors. Nevertheless, the solution in cut-cells still converges at the expected

rate.
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Figure 5.5: Convergence rates of the divergence for the Taylor-Green vortex in 2D. The gray series of points

are coarsened from a fine level of h = 1/192, and the white series coarsened from h = 1/256.

5.3.2 Manufactured Solution for Diffusion Inside a Circle

To demonstrate the accuracy of the viscous operator in the Stokes equations, we use a manu-

factured solution and solve without the projection operator. This completely decouples the velocity

equations. The algorithm targets fourth-order in space and time using the high-order stencils de-

scribed in section 5.2.6 and the ImEx scheme in section 5.2.6. A circular domain is created of

radius 0.3 centered about the point (0.5, 0.5). The manufactured solution is the same for each

component, defined by

ud(x, t) = sin(2πt) sin(R2 − (x− x0)
2) (5.7)

where R = 0.3 matches the domain radius, and x0 = (0.5, 0.5) gives the domain center. The

embedded boundaries are specified by Dirichlet conditions with values determined by the man-

ufactured solution. Following the method of manufactured solutions, a source term is added to

balance the equation where

sd(x, t) =2π cos(2πt) sin(R2 − (x− x0)
2)

− sin(2πt)
D∑

d

(
−4xd sin(R

2 − (x− x0)
2) + 2 cos(R2 − (x− x0)

2)
)
.
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The source term is evaluated explicitly in time, while the Laplacian term is evaluated implicitly.

The solution is initialized using fourth-order cell-averages at time 0.125, and a viscosity of ν = 1.

On the finest level, with cell size h = 1/128, a time step of ∆t = 0.1 is taken to advance the

solution forward for 128 steps. Subsequent coarser levels double the cell size and time step, while

halving the number of time steps to reach the same end time. Using the chosen exact solution

in Equation 5.7, the L1, L2, and L∞ errors and convergence rates are calculated and compiled

in Table 5.1. Third-order truncation error is anticipated at the embedded boundaries, and will

dominate the L∞ norm. However, the L1 and L2 norms still attain fourth-order accuracy because

the embedded boundary is only codimension one [77]. Fourth-order accuracy is demonstrated in

these error norms, verifying the algorithm.

Table 5.1: Viscous operator convergence errors and rates for diffusion inside a circle.

N L1 Rate(L1) L2 Rate(L2) L∞ Rate(L∞)

16 3.676 · 10−7 — 5.323 · 10−7 — 1.271 · 10−6

32 1.421 · 10−8 4.693 2.111 · 10−8 4.656 6.810 · 10−8 4.223
64 6.449 · 10−10 4.463 9.529 · 10−10 4.470 3.186 · 10−9 4.418

128 3.688 · 10−11 4.128 5.467 · 10−11 4.123 2.195 · 10−10 3.860

5.3.3 Spherical Couette Flow

A pair of concentric spheres are created with radii rinner = 0.25 and router = 0.475. The inner

sphere is held stationary, while the outer sphere is rotated about the z-axis with constant angular

velocity ωouter =
1

0.475
so that the outer sphere has a peak tangential velocity of 1. Velocity of the

rotating sphere is specified purely tangential to the surface by

utan = sin(ϕ)Rω
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where R is the sphere radius, ω the angular velocity, and ϕ the polar angle from the z-axis. Con-

verting this to Cartesian coordinates prescribes a velocity field

u = ωy , v = −ωx , w = 0 ,

where x and y are the Cartesian coordinates on the sphere centered at the origin. The solution is

initialized to zero velocity uniformly with a viscosity of ν = 1. Using the developed method in

this work, the Stokes equations are solved to steady state. A two-dimensional case normal to the

z-axis is shown in Figure 5.6(a), and the three-dimensional version in Figure 5.9.

(a) Velocity magnitude and vectors for the h = 1/256
solution.
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h−1 = 64, θ = 45 ◦

(b) Velocity magnitude profiles compared to the analytic

solution.

Figure 5.6: The two-dimensional circular Couette flow at steady state.

On the finest level, of cell size h = 1/256, a time step of ∆t = 1 · 10−3 is taken to advance the

solution forward until the divergence norm converges in the two-dimensional case. To validate the

solutions, radial profiles of the solution in two dimensions are compared to the analytic solution

[78]

uθ(r) = ωouterrouter

r/rinner − rinner/r

router/rinner − rinner/router

,
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in Figure 5.6(b), where good agreement is observed. Convergence rates are measured and shown

in Figure 5.7(b) using the Richardson extrapolation method for a series of grids coarsened by a

factor of 2 from refinements of both h = 1/256 and h = 1/192. Solution norms for the u and

v velocity components only have differences on the order of machine precision, since the flow is

symmetric, and so only one set of errors are shown. Results show that fourth-order accuracy is

achieved or exceeded for all solution norms. The L∞ norm in particular is dominated by cut-cell

values, as shown in Figure 5.7(a). On the finest grid there are 39 364 valid cells, of which 716 are

cut-cells with volume fractions as small as κ = 1.317 · 10−5, demonstrating the robustness of the

method. The distribution of cut-cell sizes is shown in Figure 5.8.

(a) Solution errors of the u velocity on the h = 1/128
grid, with a coarsened grid representation.
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Figure 5.7: The two-dimensional circular Couette flow solution errors.

5.4 Results and Discussion

Using the verified and validated fourth-order EB algorithm, Stokes flow over a circle and sphere

in a channel are tested, and convergence order is verified. The Stokes equations are also used to

solve for flow through a complex bio-inspired material of engineering interest.
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Figure 5.8: Distribution of cut-cell sizes for the two-dimensional Couette flow at cell size h = 1/256.

Figure 5.9: The three-dimensional spherical Couette flow at steady state. The velocity vector field is shown,

and a slice along the x-y plane shows the grid and velocity magnitude.
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5.4.1 Steady Stokes Flow Over a Sphere in a Channel

A square channel is generated with a channel length of 2 in the x-direction, and an inlet length

of 1 in the y and z directions. A sphere of radius r = 0.15 is centered in the channel at x = 1.

A developed inflow of peak value 1 is specified at the inflow on the left most boundary, while an

outflow is specified for the right most boundary. All other boundary conditions are specified as

walls. The Stokes equations are solved to steady state in both two-dimensions, in Figure 5.10,

and three-dimensions, in Figure 5.13. Although no analytic solution for this flow can be used for

comparison, qualitatively the flow is observed to be highly symmetric and respect the imposed

boundary conditions. Notably, the inflow boundary and outflow nearly match, and have stream-

lines normal to the boundaries as expected. At wall boundaries, solution velocities approach zero,

although particularly along the sphere there is some discrepancy due to the projection and viscous

operators smearing the third-order boundary solution with the fourth-order interior.

Figure 5.10: Stokes flow for a circle in a channel, where the left boundary is an inlet, the right an outlet, and

all other boundaries walls. Streamlines are shown in black, and the contours plot the velocity magnitude.

Convergence rates for the u and v velocity from Richardson extrapolation are plotted in Fig-

ure 5.11. L1 and L2 norms indicate fourth-order accuracy, but the L∞ norm lags slightly. The

plot of solution error (Figure 5.12) indicates lower accuracy in cut-cells and parts of the domain

boundary.
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Figure 5.11: Convergence rates of the 2D circle in a channel.

Figure 5.12: Solution errors for the u velocity of the 2D Stokes flow over a circle in a channel on the

h = 1/265 grid, with a coarsened grid representation.

Figure 5.13: Stokes flow over a sphere in a channel, where the left boundary is an inlet, the right an outlet,

and all other boundaries walls. The streamlines and contour plot show the velocity magnitude.
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5.4.2 Stokes Flow for Bone Scaffolding

Cellular structures have been a topic of interest for a range of bio-inspired materials because

their geometries can be quickly adapted to target desired mechanical properties. In the work by

Asbai-Ghoudan el at. [79] a structure for bone growth scaffold is analyzed, and one of the key

challenges identified when modeling such structures is mesh generation. We construct models of

similar geometry using the EB method to significantly simplify the meshing process. The geometry

of interest is defined by the gyroid function

f(x) = cos(nπx) sin(nπy) + cos(nπy) sin(nπz) + cos(nπz) sin(nπx) , (5.8)

evaluated in two dimensions along the z = 0.1 plane where f(x) = 0 with a period of n = 2.

The surface is approximately thickened to width of 1/6. Flow is solved through a pipe of radius

r = 0.95 and length 8, with a cut of the gyroid centered in the pipe at x = 4. A cut is made

through the centerline with radius r = 0.175. The cut boundaries are smoothed (as in Devendran

et al. [12]) to prevent singular solutions around sharp exterior corners. Stokes flow through this

structure is shown in Figure 5.14 for a grid refinement of h = 1/512 in the flow direction.

Figure 5.14: Velocity magnitude and streamlines for a two-dimensional representation of the bone scaffold

geometry.
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The flow is found to be symmetric, and well-behaved along the cut-cell boundaries. The EB

grid for this case contains 26 585 valid cells, of which 1643 are cut-cells with the smallest volume

fraction of κ = 5.933 · 10−5. A close up view of this grid is shown in Figure 5.15(a), and the

distribution of cut-cell sizes is shown in Figure 5.15(b). In particular, the mesh generation requires

trivial involvement, and because the geometry is specified analytically, adjustments such as gyroid

size, position, and thickness are easily made. This shows promise for more detailed analysis using

the high-order EB method, where a large design space of geometries could be examined quickly

without special considerations for mesh generation or solution stability.

(a) A close up of the EB grid.
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(b) Distribution of the cut-cell sizes.

Figure 5.15: Bone scaffold grid.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This research has developed three methods to enable complex geometries for high-order FVMs

on structured grids with AMR. These methods include the HO-ACR method, the MMB method

for arbitrary discrete grids with AMR, and the high-order EB method. The HO-ACR and MMB

methods have been implemented in Chord, a fourth-order finite-volume CFD software, and en-

abled modeling complex fluid dynamics involving turbulence and combustion in the presence of

complex geometries. AMR is a foundational feature for capturing multi-scale flows with compu-

tational efficiency in Chord. Combusting flows are highly sensitive to changes in refinement, and

interpolation overshoots near discontinuities can destabilize the overall simulation. The HO-ACR

method has been show as essential for stable chemistry in the presence of AMR by preventing these

overshoots. The HO-ACR method has been verified to ensure high-order accuracy for smooth flow

problems, preserve bounds for non-smooth ones, and maintain conservation on mapped grids. The

MMB method for arbitrary discrete geometries has allowed Chord to model geometries such as

the bluff-body combustor. The method is capable of using discrete grids created from traditional

meshing tools while still allowing for high-order AMR by constructing mapping functions using

B-splines. This differs from some high-order applications which utilize coupled analytic functions

with grids. Further, the conforming MMB method is used to provide gridding flexibility. A number

of strategies are proposed, implemented, and tested to allow the high-order conforming MMB to

handle arbitrary discrete geometries such as sharp corners, although with some limitations. Finally,

as an alternative approach to the MMB method, the high-order EB method has been implemented

as a standalone code using the Chombo framework. The high-order EB method is verified and val-

idated, and demonstrated to solve Stokes flows for highly complex geometries. Additionally, the

method is stable in the presence of small cells, without any form of cell merging or redistribution.
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6.2 Original Contributions

This research has made novel contributions, enabling the high-order FVM algorithm to solve

flow on complex geometries using structured AMR grids. Original contributions include:

• Development of the HO-ACR method for conservative bounded interpolation of averaged

quantities. This method is required for stability of solutions with AMR and stiff physics, such

as turbulent chemistry. This method makes approaches for embedded-LES or embedded-

DNS possible for high-order finite-volume schemes, and allows greater flexibility in when

and where AMR may be applied.

• Demonstration of high-order AMR on discretely defined structured grids by use of a B-

spline mapping function. This allows for Chord to utilize grids from industry standard mesh

generation tools with no loss of accuracy.

• Development of the high-order conforming multi-block method for arbitrary geometries.

This allows complex non-analytic geometries on structured grids, while maintaining permit-

ting AMR and maintaining solution conservation. This work has enabled modeling complex

cases such as the bluff-body combustor in Chord.

• Creation of a time dependent fourth-order embedded-boundary method for the Stokes equa-

tions. Prior work with embedded-boundary methods has been limited to second-order in

time, and fourth-order methods have only previously been shown for the Poisson equation.

6.3 Future Work

There are a number of directions for future work, such as improvements to existing algorithms

and new areas of exploration. These include:

• Extending the HO-ACR method to the computational geometries represented by general

mapped multi-block domains. This would require having some form of bound-preserving

property in the interpolation operation across blocks, where the grid metrics may also be
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discontinuous. Interpolation between blocks requires a somewhat different approach for

bounds preservation since no reasonable conservation constraint can be maintained.

• The mapped multi-block algorithm as implemented in Chord is restricted by the number of

ghost cells used. Many ghost cells make designing grids difficult, and the data exchanges

between blocks are costly. To alleviate the ghost cell restriction, the number of ghost cells

could be reduced at the expense of more frequent data exchanges. This requires moderate

modification to the current algorithm of Chord, but no fundamental changes to the MMB

approach.

• Ghost cell restrictions of the MMB method may be removed altogether by instead building

a reconstruction function at block interfaces. The reconstruction could then be incorporated

into stencils near the block boundaries, and eliminate ghost cells between blocks entirely.

This would remove the challenges and complexity of filling ghost cells, but require rethink-

ing the MMB approach and significantly change stencils near boundaries.

• The high-order EB methodology has shown great promise, but has yet to be shown for more

complex physics. An immediate goal is to expand the method developed in this work to the

full Navier-Stokes equations and utilize AMR. To do so, the most immediate challenge is

modeling the non-linear advection term.

• The combination of EB with MMB technologies could ideally provide the advantages of

both. This would allow for meshes which are mapped to control grid quality for coarse

features, while capable of representing small scale sharp features that only unstructured or

EB meshes can capture. This requires additional development of the EB methodology to

consider mapped coordinates.

• For both the MMB and EB methods, the choice of stencil greatly impacts the resulting inter-

polation stencils. Choosing large symmetric stencils as done in this dissertation is effective,

but can be expensive to evaluate. Ideally, these stencils could be reduced automatically in
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a way that has no adverse effects on the stability and greatly improves computation time.

With this goal in mind, stencil selection may be viewed from the angle of a basis pursuit

problem. For MMB applications, this approach may be able to detect when grids conform

and correctly reduce the stencil interpolation. The EB method could take advantage of this

to prune stencils in ways appropriate for the particular operator being evaluated.
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