4,212 research outputs found

    Assistance strategies for robotized laparoscopy

    Get PDF
    Robotizing laparoscopic surgery not only allows achieving better accuracy to operate when a scale factor is applied between master and slave or thanks to the use of tools with 3 DoF, which cannot be used in conventional manual surgery, but also due to additional informatic support. Relying on computer assistance different strategies that facilitate the task of the surgeon can be incorporated, either in the form of autonomous navigation or cooperative guidance, providing sensory or visual feedback, or introducing certain limitations of movements. This paper describes different ways of assistance aimed at improving the work capacity of the surgeon and achieving more safety for the patient, and the results obtained with the prototype developed at UPC.Peer ReviewedPostprint (author's final draft

    Artificial intelligence surgery: how do we get to autonomous actions in surgery?

    Get PDF
    Most surgeons are skeptical as to the feasibility of autonomous actions in surgery. Interestingly, many examples of autonomous actions already exist and have been around for years. Since the beginning of this millennium, the field of artificial intelligence (AI) has grown exponentially with the development of machine learning (ML), deep learning (DL), computer vision (CV) and natural language processing (NLP). All of these facets of AI will be fundamental to the development of more autonomous actions in surgery, unfortunately, only a limited number of surgeons have or seek expertise in this rapidly evolving field. As opposed to AI in medicine, AI surgery (AIS) involves autonomous movements. Fortuitously, as the field of robotics in surgery has improved, more surgeons are becoming interested in technology and the potential of autonomous actions in procedures such as interventional radiology, endoscopy and surgery. The lack of haptics, or the sensation of touch, has hindered the wider adoption of robotics by many surgeons; however, now that the true potential of robotics can be comprehended, the embracing of AI by the surgical community is more important than ever before. Although current complete surgical systems are mainly only examples of tele-manipulation, for surgeons to get to more autonomously functioning robots, haptics is perhaps not the most important aspect. If the goal is for robots to ultimately become more and more independent, perhaps research should not focus on the concept of haptics as it is perceived by humans, and the focus should be on haptics as it is perceived by robots/computers. This article will discuss aspects of ML, DL, CV and NLP as they pertain to the modern practice of surgery, with a focus on current AI issues and advances that will enable us to get to more autonomous actions in surgery. Ultimately, there may be a paradigm shift that needs to occur in the surgical community as more surgeons with expertise in AI may be needed to fully unlock the potential of AIS in a safe, efficacious and timely manner

    Skill-based human-robot cooperation in tele-operated path tracking

    Get PDF
    This work proposes a shared-control tele-operation framework that adapts its cooperative properties to the estimated skill level of the operator. It is hypothesized that different aspects of an operatorâ\u80\u99s performance in executing a tele-operated path tracking task can be assessed through conventional machine learning methods using motion-based and task-related features. To identify performance measures that capture motor skills linked to the studied task, an experiment is conducted where users new to tele-operation, practice towards motor skill proficiency in 7 training sessions. A set of classifiers are then learned from the acquired data and selected features, which can generate a skill profile that comprises estimations of userâ\u80\u99s various competences. Skill profiles are exploited to modify the behavior of the assistive robotic system accordingly with the objective of enhancing user experience by preventing unnecessary restriction for skilled users. A second experiment is implemented in which novice and expert users execute the path tracking on different pathways while being assisted by the robot according to their estimated skill profiles. Results validate the skill estimation method and hint at feasibility of shared-control customization in tele-operated path tracking

    Artificial intelligence for renal cancer: From imaging to histology and beyond

    Get PDF
    Artificial intelligence (AI) has made considerable progress within the last decade and is the subject of contemporary literature. This trend is driven by improved computational abilities and increasing amounts of complex data that allow for new approaches in analysis and interpretation. Renal cell carcinoma (RCC) has a rising incidence since most tumors are now detected at an earlier stage due to improved imaging. This creates considerable challenges as approximately 10%–17% of kidney tumors are designated as benign in histopathological evaluation; however, certain co-morbid populations (the obese and elderly) have an increased peri-interventional risk. AI offers an alternative solution by helping to optimize precision and guidance for diagnostic and therapeutic decisions. The narrative review introduced basic principles and provide a comprehensive overview of current AI techniques for RCC. Currently, AI applications can be found in any aspect of RCC management including diagnostics, perioperative care, pathology, and follow-up. Most commonly applied models include neural networks, random forest, support vector machines, and regression. However, for implementation in daily practice, health care providers need to develop a basic understanding and establish interdisciplinary collaborations in order to standardize datasets, define meaningful endpoints, and unify interpretation
    • …
    corecore