76 research outputs found

    An investigation into the cloud manufacturing based approach towards global high value manufacturing for smes

    Get PDF
    Considering the high labour costs and intensive competitions in the global market, improving the effective deployment of innovative design and manufacturing and utilisation of all existing technical information, for the full life cycle of the product, is essential and much needed for manufacturing Small and Medium sized Enterprises (SMEs) in particular. Cloud Manufacturing , as a powerful tool supported with ‘big data’, will likely enable SMEs to move towards using dynamic scalability and ‘free’ available data resources in a virtual manner and to provide solution-based, value-added, digital-driven manufacturing service over the Internet. The research presented in this paper aims to develop a cloud manufacturing based approach towards value-added, knowledge/solution driven manufacturing for SMEs, where there are many constraints in engaging responsive high value manufacturing. The paper will present the framework, architecture and key moderator technologies for implementing cloud manufacturing and the associated application perspectives. The paper concludes with further discussion on the potential and application of the approach

    Cloud Manufacturing Model to Optimise Manufacturing Performance

    Get PDF
    Being predicted as the future of modern manufacturing, cloud-based manufacturing has drawn the attention of researchers in academia and industry. Researches are being done towards transforming every service in to cloud based service-oriented manufacturing mode in the manufacturing industry. There are many challenges that would arise when travelling towards this paradigm shift which is being addressed by researchers, but there are very few researches that concentrate on the elastic capability of cloud. Elastic capability makes this paradigm unique from all the other approaches or technologies. If elasticity is not achievable then the necessity of migrating to cloud is unnecessary. So, it is imperative to identify if at all it is necessary to adopt cloud-based manufacturing mode and discuss the issues and challenges that would arise to achieve elasticity when shifting to this emerging manufacturing paradigm. This research explores the importance of adopting cloud-based manufacturing mode to improve manufacturing performance based on the competitive priorities such as cost, quality, delivery and flexibility and proposes an elasticity assessment tool to be included in the cloud-based manufacturing model for the users to assess the challenges and issues on the realisation of elasticity on the context of manufacturing, which is the novelty of this research. The contribution to knowledge is a clear understanding of the necessity of cloud based elastic manufacturing model in the manufacturing environment for the manufacturing SMEs to gain a competitive advantage by achieving the competitive priorities such as low-cost, high-quality, and on-time delivery. Finally, the research suggests the best combination of manufacturing parameters that has to be emphasised to improve the manufacturing performance and gain a competitive advantage

    From Computer Integrated Manufacturing to Cloud Manufacturing

    Get PDF
    Until not much time ago, Computer Integrated Manufacturing (CIM) was considered as a key philosophy to increase the capability and quality of production, increase the ability to produce according to the diverse customer requirements, as well as decrease of delivery times, while retaining the revenues in a highly competitive global market. However, in the last two decades, the CIM philosophy has lost importance. With the advent of communications and application developments to promote the interaction of different actors in manufacturing enterprises, other philosophies have emerged. One of them is Cloud Manufacturing (CM) that is supported by the latest advances in communications, computing and applications developments. According to Wu et al. (2013) CM is "a customer-centric manufacturing model that exploits on-demand access to a shared collection of diversified and distributed manufacturing resources to form temporary, reconfigurable production lines which enhance efficiency, reduce product lifecycle costs, and allow for optimal resource loading in response to variable-demand customer generated tasking". This paper analyses similarities and differences between the concepts of CIM and CM. In addition, the work shows the current state of the concepts and their potential and limitations for the future.Sociedad Argentina de Informática e Investigación Operativ

    From Computer Integrated Manufacturing to Cloud Manufacturing

    Get PDF
    Until not much time ago, Computer Integrated Manufacturing (CIM) was considered as a key philosophy to increase the capability and quality of production, increase the ability to produce according to the diverse customer requirements, as well as decrease of delivery times, while retaining the revenues in a highly competitive global market. However, in the last two decades, the CIM philosophy has lost importance. With the advent of communications and application developments to promote the interaction of different actors in manufacturing enterprises, other philosophies have emerged. One of them is Cloud Manufacturing (CM) that is supported by the latest advances in communications, computing and applications developments. According to Wu et al. (2013) CM is "a customer-centric manufacturing model that exploits on-demand access to a shared collection of diversified and distributed manufacturing resources to form temporary, reconfigurable production lines which enhance efficiency, reduce product lifecycle costs, and allow for optimal resource loading in response to variable-demand customer generated tasking". This paper analyses similarities and differences between the concepts of CIM and CM. In addition, the work shows the current state of the concepts and their potential and limitations for the future.Sociedad Argentina de Informática e Investigación Operativ

    Manufacturing-as-a-Service (MaaS): state-of-the-art of up and running solutions and a framework to assess the level of development of a Cloud Manufacturing platform

    Get PDF
    During the last decades manufacturers tried to find new sources of flexibility because of the uncertainty of the market. Both practitioners and academics started to study new paradigms aiming to make companies more flexible up and downstream of their value chains leveraging on suppliers and customers. Cloud Manufacturing (CM) is certainly one of the most interesting concepts because it comes from the success of Cloud Computing and belongs to the complex fourth industrial revolution (i.e. Industry 4.0 paradigm). It has been introduced in 2010, defined as the “manufacturing version of cloud computing” where manufacturing resources are available to users on-demand, with outstanding flexibility. CM pursues the idea of creating Manufacturing as-a-Service (MaaS) leveraging on the benefits of the platform economy. In spite of its interest, after ten years debate there is not consensus on the essential characteristics of this paradigm because of the very limited number of real applications (prototypes excluded). In this paper we explore 6 cases of up and running platforms which resemble some of the characteristics of CM, define them as “CM Early adopters” and inductively propose a framework to assess the level of development of a CM platform. This study contributes to theory as it shows that CM is already arising in some businesses, the approach to the paradigm can vary significantly from one case to another, and different levels of development can be assessed. From a managerial point of view, this paper helps to understand the CM paradigm as it shows concrete examples of real companies pursuing the MaaS idea. In conclusion, MaaS seems ready to land on some industrial sectors and this can be either a new opportunity for competitiveness or a serious threat

    Architectural Support for Efficient Communication in Future Microprocessors

    Get PDF
    Traditionally, the microprocessor design has focused on the computational aspects of the problem at hand. However, as the number of components on a single chip continues to increase, the design of communication architecture has become a crucial and dominating factor in defining performance models of the overall system. On-chip networks, also known as Networks-on-Chip (NoC), emerged recently as a promising architecture to coordinate chip-wide communication. Although there are numerous interconnection network studies in an inter-chip environment, an intra-chip network design poses a number of substantial challenges to this well-established interconnection network field. This research investigates designs and applications of on-chip interconnection network in next-generation microprocessors for optimizing performance, power consumption, and area cost. First, we present domain-specific NoC designs targeted to large-scale and wire-delay dominated L2 cache systems. The domain-specifically designed interconnect shows 38% performance improvement and uses only 12% of the mesh-based interconnect. Then, we present a methodology of communication characterization in parallel programs and application of characterization results to long-channel reconfiguration. Reconfigured long channels suited to communication patterns enhance the latency of the mesh network by 16% and 14% in 16-core and 64-core systems, respectively. Finally, we discuss an adaptive data compression technique that builds a network-wide frequent value pattern map and reduces the packet size. In two examined multi-core systems, cache traffic has 69% compressibility and shows high value sharing among flows. Compression-enabled NoC improves the latency by up to 63% and saves energy consumption by up to 12%

    A Reference Model For Mobile Product Information Systems

    Get PDF
    This paper analyses the state of the art in research and practice on mobile product information systems. Based on literature review and multiple case study research, we design a reference model that is suitable for researchers and practitioners as a first reference point and recommendation for the construction and analysis of mobile product information systems

    Software-Oriented Distributed Shared Cache Management for Chip Multiprocessors

    Get PDF
    This thesis proposes a software-oriented distributed shared cache management approach for chip multiprocessors (CMPs). Unlike hardware-based schemes, our approach offloads the cache management task to trace analysis phase, allowing flexible management strategies. For single-threaded programs, a static 2D page coloring scheme is proposed to utilize oracle trace information to derive an optimal data placement schema for a program. In addition, a dynamic 2D page coloring scheme is proposed as a practical solution, which tries to ap- proach the performance of the static scheme. The evaluation results show that the static scheme achieves 44.7% performance improvement over the conventional shared cache scheme on average while the dynamic scheme performs 32.3% better than the shared cache scheme. For latency-oriented multithreaded programs, a pattern recognition algorithm based on the K-means clustering method is introduced. The algorithm tries to identify data access pat- terns that can be utilized to guide the placement of private data and the replication of shared data. The experimental results show that data placement and replication based on these access patterns lead to 19% performance improvement over the shared cache scheme. The reduced remote cache accesses and aggregated cache miss rate result in much lower bandwidth requirements for the on-chip network and the off-chip main memory bus. Lastly, for throughput-oriented multithreaded programs, we propose a hint-guided data replication scheme to identify memory instructions of a target program that access data with a high reuse property. The derived hints are then used to guide data replication at run time. By balancing the amount of data replication and local cache pressure, the proposed scheme has the potential to help achieve comparable performance to best existing hardware-based schemes.Our proposed software-oriented shared cache management approach is an effective way to manage program performance on CMPs. This approach provides an alternative direction to the research of the distributed cache management problem. Given the known difficulties (e.g., scalability and design complexity) we face with hardware-based schemes, this software- oriented approach may receive a serious consideration from researchers in the future. In this perspective, the thesis provides valuable contributions to the computer architecture research society
    corecore