314 research outputs found

    A generalized risk approach to path inference based on hidden Markov models

    Full text link
    Motivated by the unceasing interest in hidden Markov models (HMMs), this paper re-examines hidden path inference in these models, using primarily a risk-based framework. While the most common maximum a posteriori (MAP), or Viterbi, path estimator and the minimum error, or Posterior Decoder (PD), have long been around, other path estimators, or decoders, have been either only hinted at or applied more recently and in dedicated applications generally unfamiliar to the statistical learning community. Over a decade ago, however, a family of algorithmically defined decoders aiming to hybridize the two standard ones was proposed (Brushe et al., 1998). The present paper gives a careful analysis of this hybridization approach, identifies several problems and issues with it and other previously proposed approaches, and proposes practical resolutions of those. Furthermore, simple modifications of the classical criteria for hidden path recognition are shown to lead to a new class of decoders. Dynamic programming algorithms to compute these decoders in the usual forward-backward manner are presented. A particularly interesting subclass of such estimators can be also viewed as hybrids of the MAP and PD estimators. Similar to previously proposed MAP-PD hybrids, the new class is parameterized by a small number of tunable parameters. Unlike their algorithmic predecessors, the new risk-based decoders are more clearly interpretable, and, most importantly, work "out of the box" in practice, which is demonstrated on some real bioinformatics tasks and data. Some further generalizations and applications are discussed in conclusion.Comment: Section 5: corrected denominators of the scaled beta variables (pp. 27-30), => corrections in claims 1, 3, Prop. 12, bottom of Table 1. Decoder (49), Corol. 14 are generalized to handle 0 probabilities. Notation is more closely aligned with (Bishop, 2006). Details are inserted in eqn-s (43); the positivity assumption in Prop. 11 is explicit. Fixed typing errors in equation (41), Example

    Semi-continuous hidden Markov models for speech recognition

    Get PDF

    Word alignment and smoothing methods in statistical machine translation: Noise, prior knowledge and overfitting

    Get PDF
    This thesis discusses how to incorporate linguistic knowledge into an SMT system. Although one important category of linguistic knowledge is that obtained by a constituent / dependency parser, a POS / super tagger, and a morphological analyser, linguistic knowledge here includes larger domains than this: Multi-Word Expressions, Out-Of-Vocabulary words, paraphrases, lexical semantics (or non-literal translations), named-entities, coreferences, and transliterations. The first discussion is about word alignment where we propose a MWE-sensitive word aligner. The second discussion is about the smoothing methods for a language model and a translation model where we propose a hierarchical Pitman-Yor process-based smoothing method. The common grounds for these discussion are the examination of three exceptional cases from real-world data: the presence of noise, the availability of prior knowledge, and the problem of underfitting. Notable characteristics of this design are the careful usage of (Bayesian) priors in order that it can capture both frequent and linguistically important phenomena. This can be considered to provide one example to solve the problems of statistical models which often aim to learn from frequent examples only, and often overlook less frequent but linguistically important phenomena

    Hidden Markov Models

    Get PDF
    Hidden Markov Models (HMMs), although known for decades, have made a big career nowadays and are still in state of development. This book presents theoretical issues and a variety of HMMs applications in speech recognition and synthesis, medicine, neurosciences, computational biology, bioinformatics, seismology, environment protection and engineering. I hope that the reader will find this book useful and helpful for their own research

    Incremental sampling based algorithms for state estimation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2012.Cataloged from department-submitted PDF version of thesis. This electronic version was submitted and approved by the author's academic department as part of an electronic thesis pilot project. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 95-98).Perception is a crucial aspect of the operation of autonomous vehicles. With a multitude of different sources of sensor data, it becomes important to have algorithms which can process the available information quickly and provide a timely solution. Also, an inherently continuous world is sensed by robot sensors and converted into discrete packets of information. Algorithms that can take advantage of this setup, i.e., which have a sound founding in continuous time formulations but which can effectively discretize the available information in an incremental manner according to different requirements can potentially outperform conventional perception frameworks. Inspired from recent results in motion planning algorithms, this thesis aims to address these two aspects of the problem of robot perception, through novel incremental and anytime algorithms. The first part of the thesis deals with algorithms for different estimation problems, such as filtering, smoothing, and trajectory decoding. They share the basic idea that a general continuous-time system can be approximated by a sequence of discrete Markov chains that converge in a suitable sense to the original continuous time stochastic system. This discretization is obtained through intuitive rules motivated by physics and is very easy to implement in practice. Incremental algorithms for the above problems can then be formulated on these discrete systems whose solutions converge to the solution of the original problem. A similar construction is used to explore control of partially observable processes in the latter part of the thesis. A general continuous time control problem in this case is approximates by a sequence of discrete partially observable Markov decision processes (POMDPs), in such a way that the trajectories of the POMDPs -- i.e., the trajectories of beliefs -- converge to the trajectories of the original continuous problem. Modern point-based solvers are used to approximate control policies for each of these discrete problems and it is shown that these control policies converge to the optimal control policy of the original problem in an appropriate space. This approach is promising because instead of solving a large POMDP problem from scratch, which is PSPACE-hard, approximate solutions of smaller problems can be used to guide the search for the optimal control policy.by Pratik Chaudhari.S.M

    Robust gesture recognition

    Get PDF
    It is a challenging problem to make a general hand gesture recognition system work in a practical operation environment. In this study, it is mainly focused on recognizing English letters and digits performed near the steering wheel of a car and captured by a video camera. Like most human computer interaction (HCI) scenarios, the in-car gesture recognition suffers from various robustness issues, including multiple human factors and highly varying lighting conditions. It therefore brings up quite a few research issues to be addressed. First, multiple gesturing alternatives may share the same meaning, which is not typical in most previous systems. Next, gestures may not be the same as expected because users cannot see what exactly has been written, which increases the gesture diversity significantly.In addition, varying illumination conditions will make hand detection trivial and thus result in noisy hand gestures. And most severely, users will tend to perform letters at a fast pace, which may result in lack of frames for well-describing gestures. Since users are allowed to perform gestures in free-style, multiple alternatives and variations should be considered while modeling gestures. The main contribution of this work is to analyze and address these challenging issues step-by-step such that eventually the robustness of the whole system can be effectively improved. By choosing color-space representation and performing the compensation techniques for varying recording conditions, the hand detection performance for multiple illumination conditions is first enhanced. Furthermore, the issues of low frame rate and different gesturing tempo will be separately resolved via the cubic B-spline interpolation and i-vector method for feature extraction. Finally, remaining issues will be handled by other modeling techniques such as sub-letter stroke modeling. According to experimental results based on the above strategies, the proposed framework clearly improved the system robustness and thus encouraged the future research direction on exploring more discriminative features and modeling techniques.Ph.D
    corecore