4 research outputs found

    Spoofing prevention via RF power profiling in wireless network-on-chip

    Get PDF
    With increasing integration in SoCs, the Network-on-Chip (NoC) connecting of cores and accelerators is of paramount importance to provide low-latency and high-throughput communication. Due to limits of scaling of electrical wires, especially for long multi-mm distances on-chip, alternate technologies such as Wireless NoC (WNoC) have shown promise. Since WNoCs can provide low-latency one-hop transfers across the entire chip, there has been a recent surge in research demonstrating their performance and energy benefits. However, little to no work has studied the additional security challenges that are unique to WNoCs. In this work, we study the potential threat of spoofing attacks in WNoCs due to malicious hardware trojans. We introduce Veritas, a drop-in solution aimed at detecting and correcting such spoofing attacks. To this end, our solution exploits the static propagation environment of WNoCs to associate each node to a power profile. We demonstrate that, with small area and power overheads, Veritas works well in a variety of settings.Peer ReviewedPostprint (author's final draft

    Millimeter-wave propagation within a computer chip package

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Wireless Network-on-Chip (WNoC) appears as a promising alternative to conventional interconnect fabrics for chip-scale communications. The WNoC paradigm has been extensively analyzed from the physical, network and architecture perspectives assuming mmWave band operation. However, there has not been a comprehensive study at this band for realistic chip packages and, thus, the characteristics of such wireless channel remain not fully understood. This work addresses this issue by accurately modeling a flip-chip package and investigating the wave propagation inside it. Through parametric studies, a locally optimal configuration for 60 GHz WNoC is obtained, showing that chip-wide attenuation below 32.6 dB could be achieved with standard processes. Finally, the applicability of the methodology is discussed for higher bands and other integrated environments such as a Software-Defined Metamaterial (SDM).Peer ReviewedPostprint (author's final draft

    Medium access control in wireless network-on-chip: a context analysis

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Wireless on-chip communication is a promising candidate to address the performance and efficiency issues that arise when scaling current NoC techniques to manycore processors. A WNoC can serve global and broadcast traffic with ultra-low latency even in thousand-core chips, thus acting as a natural complement to conventional and throughput-oriented wireline NoCs. However, the development of MAC strategies needed to efficiently share the wireless medium among the increasing number of cores remains a considerable challenge given the singularities of the environment and the novelty of the research area. In this position article, we present a context analysis describing the physical constraints, performance objectives, and traffic characteristics of the on-chip communication paradigm. We summarize the main differences with respect to traditional wireless scenarios, and then discuss their implications on the design of MAC protocols for manycore WNoC, with the ultimate goal of kickstarting this arguably unexplored research area.Peer ReviewedPostprint (author's final draft

    A MAC protocol for reliable broadcast communications in wireless network-on-chip

    No full text
    The Wireless Network-on-Chip (WNoC) paradigm holds considerable promise for the implementation of fast and efficient on-chip networks in manycore chips. Among other advantages, wireless communications provide natural broadcast support, a highly desirable feature in manycore architectures yet difficult to achieve with current interconnects. As technology advancements allow the integration of more wireless interfaces within the same chip, a critical aspect is how to efficiently share the wireless medium while reliably carrying broadcast traffic. This paper introduces the {Broadcast, Reliability, Sensing} protocol (BRS-MAC), which exploits the particularities of the WNoC context to meet its stringent requirements. BRS-MAC is flexible and employs a collision detection and notification scheme that scales with the number of receivers, making it compatible with broadcast communications. The proposed protocol is modeled and evaluated, showing a clear latency advantage with respect to wired on-chip networks and WNoCs with token passing.Peer ReviewedPostprint (published version
    corecore