4,864 research outputs found

    Multipacket reception in the presence of in-band full-duplex communication

    Get PDF
    In-Band Full-DupleX (IB-FDX) is defined as the ability for nodes to transmit and receive signals simultaneously on the same channel. Conventional digital wireless networks do not implement it, since a node’s own transmission signal causes interference to the signal it is trying to receive. However, recent studies attempt to overcome this obstacle, since it can potentially double the spectral efficiency of current wireless networks. Different mechanisms exist today that are able to reduce a significant part of the Self- Interference (SI), although specially tuned Medium Access Control (MAC) protocols are required to optimize its use. One of IB-FDX’s biggest problems is that the nodes’ interference range is extended, meaning the unusable space for other transmissions and receptions is broader. This dissertation proposes using MultiPacket Reception (MPR) to address this issue and adapts an already existing Single-Carrier with Frequency-Domain Equalization (SC-FDE) receiver to IB-FDX. The performance analysis suggests that MPR and IB-FDX have a strong synergy and are able to achieve higher data rates, when used together. Using analytical models, the optimal transmission patterns and transmission power were identified, which maximize the channel capacity with the minimal energy consumption. This was used to define a new MAC protocol, named Full-duplex Multipacket reception Medium Access Control (FM-MAC). FM-MAC was designed for a single-hop cellular infrastructure, where the Access Point (AP) and the terminals implement both IB-FDX and MPR. It divides the coverage range of the AP into a closer Full-DupleX (FDX) zone and a farther Half-DupleX (HDX) zone and adds a tunable fairness mechanism to avoid terminal starvation. Simulation results show that this protocol provides efficient support for both HDX and FDX terminals, maximizing its capacity when more FDX terminals are used

    Design and Optimal Configuration of Full-Duplex MAC Protocol for Cognitive Radio Networks Considering Self-Interference

    Get PDF
    In this paper, we propose an adaptive Medium Access Control (MAC) protocol for full-duplex (FD) cognitive radio networks in which FD secondary users (SUs) perform channel contention followed by concurrent spectrum sensing and transmission, and transmission only with maximum power in two different stages (called the FD sensing and transmission stages, respectively) in each contention and access cycle. The proposed FD cognitive MAC (FDC-MAC) protocol does not require synchronization among SUs and it efficiently utilizes the spectrum and mitigates the self-interference in the FD transceiver. We then develop a mathematical model to analyze the throughput performance of the FDC-MAC protocol where both half-duplex (HD) transmission (HDTx) and FD transmission (FDTx) modes are considered in the transmission stage. Then, we study the FDC-MAC configuration optimization through adaptively controlling the spectrum sensing duration and transmit power level in the FD sensing stage where we prove that there exists optimal sensing time and transmit power to achieve the maximum throughput and we develop an algorithm to configure the proposed FDC-MAC protocol. Extensive numerical results are presented to illustrate the characteristic of the optimal FDC-MAC configuration and the impacts of protocol parameters and the self-interference cancellation quality on the throughput performance. Moreover, we demonstrate the significant throughput gains of the FDC-MAC protocol with respect to existing half-duplex MAC (HD MAC) and single-stage FD MAC protocols.Comment: To Appear, IEEE Access, 201

    Throughput Analysis for Wireless Networks with Full-Duplex Radios

    Full text link
    This paper investigates the throughput for wireless network with full-duplex radios using stochastic geometry. Full-duplex (FD) radios can exchange data simultaneously with each other. On the other hand, the downside of FD transmission is that it will inevitably cause extra interference to the network compared to half-duplex (HD) transmission. In this paper, we focus on a wireless network of nodes with both HD and FD capabilities and derive and optimize the throughput in such a network. Our analytical result shows that if the network is adapting an ALOHA protocol, the maximal throughput is always achieved by scheduling all concurrently transmitting nodes to work in FD mode instead of a mixed FD/HD mode or HD mode regardless of the network configurations. Moreover, the throughput gain of using FD transmission over HD transmission is analytically lower and upper bounded.Comment: 4 figure

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions
    • …
    corecore