1,050 research outputs found

    A QoS-aware routing protocol with adaptive feedback scheme for video streaming for mobile networks

    Full text link
    One of the major challenges for the transmission of time-sensitive data like video over mobile ad-hoc networks (MANETs) is the deployment of an end-to-end QoS support mechanism. Therefore, several approaches and enhancements have been proposed concerning the routing protocols. In this paper we propose a new QoS routing protocol based on AODV (named AQA-AODV), which creates routes according to application QoS requirements. We have introduced link and path available bandwidth estimation mechanisms and an adaptive scheme that can provide feedback to the source node about the current network state, to allow the application to appropriately adjust the transmission rate. In the same way, we propose a route recovery approach into the AQA-AODV protocol, which provides a mechanism to detect the link failures in a route and re-establish the connections taking into account the conditions of QoS that have been established during the previous route discovery phase. The simulation results reveal performance improvements in terms of packet delay, number of link failures and connection setup latency while we make more efficient use of the available bandwidth than other protocols like AODV and QAODV. In terms of video transmission, the obtained results prove that the combined use of AQA-AODV and the scalable video coding provides an efficient platform for supporting rate-adaptive video streaming.Castellanos Hernández, WE.; Guerri Cebollada, JC.; Arce Vila, P. (2016). A QoS-aware routing protocol with adaptive feedback scheme for video streaming for mobile networks. Computer Communications. 77:10-25. doi:10.1016/j.comcom.2015.08.012S10257

    Vehicle to vehicle (V2V) wireless communications

    Get PDF
    This work focuses on the vehicle-to-vehicle (V2V) communication, its current challenges, future perspective and possible improvement.V2V communication is characterized by the dynamic environment, high mobility, nonpredective scenario, propagation effects, and also communicating antenna's positions. This peculiarity of V2V wireless communication makes channel modelling and the vehicular propagation quite challenging. In this work, firstly we studied the present context of V2V communication also known as Vehicular Ad-hoc Netwok (VANET) including ongoing researches and studies particularly related to Dedicated Short Range Communication (DSRC), specifically designed for automotive uses with corresponding set of protocols and standards. Secondly, we focused on communication models and improvement of these models to make them more suitable, reliable and efficient for the V2V environment. As specifies the standard, OFDM is used in V2V communication, Adaptable OFDM transceiver was designed. Some parameters as performance analytics are used to compare the improvement with the actual situation. For the enhancement of physical layer of V2V communication, this work is focused in the study of MIMO channel instead of SISO. In the designed transceiver both SISO and MIMO were implemented and studied successfully

    Dual protocol performance using WiFi and ZigBee for industrial WLAN

    Get PDF
    The purpose of this thesis is to study the performance of a WNCS based on utilizing IEEE 802.15.4 and IEEE 802.11 in meeting industrial requirements as well as the extent of improvement on the network level in terms of latency and interference tolerance when using the two different protocols, namely WiFi and ZigBee, in parallel. The study evaluates the optimum performance of WNCS that utilizes only IEEE 802.15.4 protocol (which ZigBee is based on) without modifications as an alternative that is low cost and low power compared to other wireless technologies. The study also evaluates the optimum performance of WNCS that utilizes only the IEEE 802.11 protocol (WiFi) without modifications as a high bit network. OMNeT++ simulations are used to measure the end-to-end delay and packet loss from the sensors to the controller and from the controller to the actuators. It is demonstrated that the measured delay of the proposed WNCS including all types of transmission, encapsulation, de-capsulation, queuing and propagation, meet real-time control network requirements while guaranteeing correct packet reception with no packet loss. Moreover, it is shown that the demonstrated performance of the proposed WNCS operating redundantly on both networks in parallel is significantly superior to a WNCS operating on either a totally wireless ZigBee or WiFi network individually in terms of measured delay and interference tolerance. This proposed WNCS demonstrates the combined advantages of both the IEEE 802.15.4 protocol (which ZigBee is based on) without modifications being low cost and low power compared to other wireless technologies as well the advantages of the IEEE 802.11 protocol (WiFi) being increased bit rate and higher immunity to interference. All results presented in this study were based on a 95% confidence analysis
    • …
    corecore