29,142 research outputs found

    Machine-checked proofs of the design and implementation of a fault-tolerant circuit

    Get PDF
    A formally verified implementation of the 'oral messages' algorithm of Pease, Shostak, and Lamport is described. An abstract implementation of the algorithm is verified to achieve interactive consistency in the presence of faults. This abstract characterization is then mapped down to a hardware level implementation which inherits the fault-tolerant characteristics of the abstract version. All steps in the proof were checked with the Boyer-Moore theorem prover. A significant results is the demonstration of a fault-tolerant device that is formally specified and whose implementation is proved correct with respect to this specification. A significant simplifying assumption is that the redundant processors behave synchronously. A mechanically checked proof that the oral messages algorithm is 'optimal' in the sense that no algorithm which achieves agreement via similar message passing can tolerate a larger proportion of faulty processor is also described

    Notes for Miscellaneous Lectures

    Full text link
    Here I share a few notes I used in various course lectures, talks, etc. Some may be just calculations that in the textbooks are more complicated, scattered, or less specific; others may be simple observations I found useful or curious.Comment: 6 pages. New section 6 adde

    Interactive Consistency Algorithms Based on Voting and Error-Correding Codes

    Get PDF
    This paper presents a new class of synchronous deterministic non authenticated algorithms for reaching interactive consistency (Byzantine agreement). The algorithms are based on voting and error correcting codes and require considerably less data communication than the original algorithm, whereas the number of rounds and the number of modules meet the minimum bounds. These algorithms based on voting and coding are defined and proved on the basis of a class of algorithms, called the dispersed joined communication algorithm

    Protocols versus objects: can models for telecommunications and distributed processing coexist?

    Get PDF
    This paper identifies two paradigms that influence the design of telematics systems nowadays: the protocol-centred and the object-centred paradigms. Both paradigms have been introduced to cope with interoperability, each in their own way. The coexistence of these paradigms can have an enormous impact on the design of telematics systems. This paper identifies some combined uses of both paradigms and some fundamental research problems related to the coexistence of these paradigm

    Challenges Using Linux as a Real-Time Operating System

    Get PDF
    Human-in-the-loop (HITL) simulation groups at NASA and the Air Force Research Lab have been using Linux as a real-time operating system (RTOS) for over a decade. More recently, SpaceX has revealed that it is using Linux as an RTOS for its Falcon launch vehicles and Dragon capsules. As Linux makes its way from ground facilities to flight critical systems, it is necessary to recognize that the real-time capabilities in Linux are cobbled onto a kernel architecture designed for general purpose computing. The Linux kernel contain numerous design decisions that favor throughput over determinism and latency. These decisions often require workarounds in the application or customization of the kernel to restore a high probability that Linux will achieve deadlines
    • …
    corecore