3 research outputs found

    A 128Kb RAM Design with Capacitor-Based Offset Compensation and Double-Diode based Read Assist Circuits at Low VDD

    Get PDF
    Low power static random access memory (SRAM) takes significant portion of area on chip in all modern SOCs and emerging Computing-in-memory applications for edge devices in IoT. This work proposes novel readability assist with the double-diode based word line under drive (WLUD) has been effective improving the read-static noise-margin (RSNM) by 26–46%and proposed a capacitor based current controlled sense amplifier offset compensation scheme. This scheme achieves 4X reduction in standard deviation of offset voltage over conventional sense amplifier design with 1.1% and 2.9% of area, power overheads respectively with 90 nm CMOS technology at 0.5–1.0 V supply voltages

    A 128Kb RAM Design with Capacitor-Based Offset Compensation and Double-Diode based Read Assist Circuits at Low VDD

    Get PDF
    788-793Low power static random access memory (SRAM) takes significant portion of area on chip in all modern SOCs and emerging Computing-in-memory applications for edge devices in IoT. This work proposes novel readability assist with the double-diode based word line under drive (WLUD) has been effective improving the read-static noise-margin (RSNM) by 26–46%and proposed a capacitor based current controlled sense amplifier offset compensation scheme. This scheme achieves 4X reduction in standard deviation of offset voltage over conventional sense amplifier design with 1.1% and 2.9% of area, power overheads respectively with 90 nm CMOS technology at 0.5–1.0 V supply voltages

    A Low-Voltage SRAM Sense Amplifier With Offset Cancelling Using Digitized Multiple Body Biasing

    No full text
    corecore