3 research outputs found

    Emerging Technology Based Design of Primitives for Hardware Security

    Get PDF
    Hardware security concerns such as IP piracy and hardware Trojans have triggered research into circuit protection and malicious logic detection from various design perspectives. In this paper, emerging technologies are investigated by leveraging their unique properties for applications in the hardware security domain. Five example circuit structures including camouflaging gates, polymorphic gates, current/voltage based circuit protectors and current-based XOR logic are designed to prove the high efficiency of Silicon NanoWire FETs and Graphene SymFET in applications such as circuit protection and IP piracy prevention. Simulation results indicate that highly efficient and secure circuit structures can be achieved via the use of emerging technologies

    Enhanced Hardware Security Using Charge-Based Emerging Device Technology

    Get PDF
    The emergence of hardware Trojans has largely reshaped the traditional view that the hardware layer can be blindly trusted. Hardware Trojans, which are often in the form of maliciously inserted circuitry, may impact the original design by data leakage or circuit malfunction. Hardware counterfeiting and IP piracy are another two serious issues costing the US economy more than $200 billion annually. A large amount of research and experimentation has been carried out on the design of these primitives based on the currently prevailing CMOS technology. However, the security provided by these primitives comes at the cost of large overheads mostly in terms of area and power consumption. The development of emerging technologies provides hardware security researchers with opportunities to utilize some of the otherwise unusable properties of emerging technologies in security applications. In this dissertation, we will include the security consideration in the overall performance measurements to fully compare the emerging devices with CMOS technology. The first approach is to leverage two emerging devices (Silicon NanoWire and Graphene SymFET) for hardware security applications. Experimental results indicate that emerging device based solutions can provide high level circuit protection with relatively lower performance overhead compared to conventional CMOS counterpart. The second topic is to construct an energy-efficient DPA-resilient block cipher with ultra low-power Tunnel FET. Current-mode logic is adopted as a circuit-level solution to countermeasure differential power analysis attack, which is mostly used in the cryptographic system. The third investigation targets on potential security vulnerability of foundry insider\u27s attack. Split manufacturing is adopted for the protection on radio-frequency (RF) circuit design

    A Low-Voltage Low-Power LC Oscillator Using the Diode-Connected SymFET

    No full text
    corecore