3 research outputs found

    Algorithm/Architecture Co-Design for Low-Power Neuromorphic Computing

    Full text link
    The development of computing systems based on the conventional von Neumann architecture has slowed down in the past decade as complementary metal-oxide-semiconductor (CMOS) technology scaling becomes more and more difficult. To satisfy the ever-increasing demands in computing power, neuromorphic computing has emerged as an attractive alternative. This dissertation focuses on developing learning algorithm, hardware architecture, circuit components, and design methodologies for low-power neuromorphic computing that can be employed in various energy-constrained applications. A top-down approach is adopted in this research. Starting from the algorithm-architecture co-design, a hardware-friendly learning algorithm is developed for spiking neural networks (SNNs). The possibility of estimating gradients from spike timings is explored. The learning algorithm is developed for the ease of hardware implementation, as well as the compatibility with many well-established learning techniques developed for classic artificial neural networks (ANNs). An SNN hardware equipped with the proposed on-chip learning algorithm is implemented in CMOS technology. In this design, two unique features of SNNs, the event-driven computation and the inferring with a progressive precision, are leveraged to reduce the energy consumption. In addition to low-power SNN hardware, accelerators for ANNs are also presented to accelerate the adaptive dynamic programing algorithm. An efficient and flexible single-instruction-multiple-data architecture is proposed to exploit the inherent data-level parallelism in the inference and learning of ANNs. In addition, the accelerator is augmented with a virtual update technique, which helps improve the throughput and energy efficiency remarkably. Lastly, two techniques in the architecture-circuit level are introduced to mitigate the degraded reliability of the memory system in a neuromorphic hardware owing to the aggressively-scaled supply voltage and integration density. The first method uses on-chip feedback to compensate for the process variation and the second technique improves the throughput and energy efficiency of a conventional error-correction method.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144149/1/zhengn_1.pd

    Dynamical Systems in Spiking Neuromorphic Hardware

    Get PDF
    Dynamical systems are universal computers. They can perceive stimuli, remember, learn from feedback, plan sequences of actions, and coordinate complex behavioural responses. The Neural Engineering Framework (NEF) provides a general recipe to formulate models of such systems as coupled sets of nonlinear differential equations and compile them onto recurrently connected spiking neural networks – akin to a programming language for spiking models of computation. The Nengo software ecosystem supports the NEF and compiles such models onto neuromorphic hardware. In this thesis, we analyze the theory driving the success of the NEF, and expose several core principles underpinning its correctness, scalability, completeness, robustness, and extensibility. We also derive novel theoretical extensions to the framework that enable it to far more effectively leverage a wide variety of dynamics in digital hardware, and to exploit the device-level physics in analog hardware. At the same time, we propose a novel set of spiking algorithms that recruit an optimal nonlinear encoding of time, which we call the Delay Network (DN). Backpropagation across stacked layers of DNs dramatically outperforms stacked Long Short-Term Memory (LSTM) networks—a state-of-the-art deep recurrent architecture—in accuracy and training time, on a continuous-time memory task, and a chaotic time-series prediction benchmark. The basic component of this network is shown to function on state-of-the-art spiking neuromorphic hardware including Braindrop and Loihi. This implementation approaches the energy-efficiency of the human brain in the former case, and the precision of conventional computation in the latter case
    corecore